Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 267
Filtrar
1.
Int J Biol Macromol ; 277(Pt 1): 134159, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059540

RESUMEN

The development of high-performance biodegradable polylactic acid (PLA) materials integrating high strength, malleability and toughness is desired but an ongoing challenge. In this work, a novel full-biobased block copolymer was designed and synthesized by grafting L (+)-lactide (L-LA) and ε-caprolactone (ε-CL) onto lignin via ring-opening polymerization. The obtained lignin-PLA-PCL block copolymer was composed of rigid lignin and poly (LA-CL) rubber segment, could self-assemble into uniform nano-micelles with average diameters of 80-100 nm regulated by simply altering copolymer content. The incorporation of lignin-PLA-PCL copolymers into PLA matrix induced the formation of many cavities, promoted free volume between PLA matrix and copolymer to accelerate chain mobility, achieving excellent ductility and stretchability with maximum stretching deformation of 64.8 %. The resultant PLA composites with the copolymer content as low as 5 wt% displayed simultaneously improved strength (41.84 MPa) and toughness (8.1 MJ/m3), 6.7 % and 1520 % increment than those of neat PLA, respectively. The reinforcing and toughening mechanisms were explored and verified that the combination of cavity growth and fibrillation, followed by extensive shear yielding of matrix, causing substantial plastic deformation. This study extended the design strategy and the foundation for simultaneous reinforcing and toughening PLA plastics using lignin-derived rubbery micelles.

2.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893416

RESUMEN

Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic of increasing research interest in the past decade. Toughening enhancement is achieved often at the cost of a large sacrifice in strength, with the toughness-strength trade-off having remained as one of the main bottlenecks of PLA modification. In the present study, a bio-elastomeric material of epoxidized soybean oil (ESO) crosslinked with sebacic acid (SA) and enhanced by graphene oxide (GO) nanoparticles (NPs) was employed to toughen PLA with the purpose of simultaneously preserving strength and achieving additional functions. The even dispersion of GO NPs in ESO was aided by ultrasonication and guaranteed during the following ESO-SA crosslinking with GO participating in the carboxyl-epoxy reaction with both ESO and SA, resulting in a nanoparticle-enhanced and dynamically crosslinked elastomer (GESO) via a ß-hydroxy ester. GESO was then melt-blended with PLA, with the interfacial reaction between ESO and PLA offering good compatibility. The blend morphology, and thermal and mechanical properties, etc., were evaluated and GESO was found to significantly toughen PLA while preserving its strength, with the GO loading optimized at ~0.67 wt%, which gave an elongation at break of ~274.5% and impact strength of ~10.2 kJ/m2, being 31 times and 2.5 times higher than pure PLA, respectively. Moreover, thanks to the presence of dynamic crosslinks and GO NPs, the PLA-GESO blends exhibited excellent shape memory effect and antistatic properties.

3.
Materials (Basel) ; 17(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893742

RESUMEN

High-strength low-alloy steels are widely used, but their traditional heat-treatment process is complex, energy-intensive, and makes it difficult to fully exploit the material's potential. In this paper, the electropulsing processing technology was applied to the quenching and tempering process of ZG25SiMn2CrB steel. Through microstructural characterization and mechanical property testing, the influence of electropulsing on the solid-state phase transition process of annealing steel was systematically studied. The heating process of the specimen with the annealing state (initial state) is the diffusion-type transition. As the discharge time increased, the microstructure gradually transformed from ferrite/pearlitic to slate martensite. Optimal mechanical properties and fine microstructure were achieved after quenching at 500 ms. The steel subjected to rapid tempering with 160 ms electropulsing exhibited good, comprehensive mechanical properties (tensile strength 1609 MPa, yield strength 1401.27 MPa, elongation 11.63%, and hardness 48.68 HRC). These favorable mechanical properties are attributed to the coupled impact of thermal and non-thermal effects induced by high-density pulse current. Specifically, the thermal effect provides the thermodynamic conditions for phase transformation, while the non-thermal effect reduces the nucleation barrier of austenite, which increases the nucleation rate during instantaneous heating, and the following rapid cooling suppresses the growth of austenite grains. Additionally, the fine microstructure prevents the occurrence of temper brittleness.

4.
Angew Chem Int Ed Engl ; : e202408840, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38927000

RESUMEN

Structural adhesives that do not require heating are in high demand in the automotive and electronics industries. However, it remains a challenge to develop robust adhesives that rapidly achieve super adhesion near ambient temperature. Herein, a room-temperature curable, fast-bonding, and super strong epoxy-based structural adhesive was designed from the perspective of cross-scale structure, which lies in threefold pivotal aspects: (i) high branching topology of glycerol carbonate-capped polyurethane (PUGC) increases the kinetics of the ring-opening reaction, contributing to fast crosslinking and the formation of abundant urethane and hydroxyl moieties; (ii) asynchronous crosslinking of epoxy and PUGC synergistically induces phase separation of PUGC within the epoxy resin and the resulting PUGC domains surrounded by interpenetrated shell serves to efficiently toughen the matrix; (iii) abundant dynamic hydrogen bonds including urethane and hydroxyl moieties, along with the elastomeric PUGC domains, dissipate energy of shearing force. As a result, the adhesive strength rapidly grows to 16 MPa within 4 hours, leveling off to 21 MPa after 7 hours, substantially outperforming commercial room-temperature curable epoxy adhesives. The results of this study could advance the field of high-performance adhesives and provide valuable insights into designing materials for efficient curing at room temperature.

5.
J Colloid Interface Sci ; 672: 497-511, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852352

RESUMEN

The design and construction of high strength hydrogels is a widely discussed topic in hydrogel research. In this study, we combined three toughening strategies, including dual network, oriented structure construction and nanophase doping, to develop an alginate/polyacrylamide (PAM)/modified titanium dioxide fiber (TiO2 NF@PAM) dual network composite hydrogel prepared via syringe. The effects of different preparation methods, AM/Alginate ratios, inorganic doping phases and TiO2 NF@PAM/AM ratios on the mechanical properties of composite hydrogels were investigated. The study found that the alginate hydrogel prepared by syringe exhibited superior axial orientation and achieved a tensile strength of (1091 ± 46) kPa. And the composite hydrogel doped with 0.2 wt% TiO2 NF@PAM had a tensile strength of (1006 ± 64) kPa, which was higher than that of the composite hydrogel doped with 0.2 wt% TiO2 nanoparticles (976 ± 66) kPa. The highest tensile strength (1120 ± 67) kPa and elongation at break (182 ± 8) % were achieved when the ratio of TiO2 NF@PAM/AM was 0.6 wt%. The force applied to the gel solution in the syringe affects the orientation of the polymer chains and TiO2 NF@PAM within the gel, which subsequently impacts the mechanical properties of the hydrogel. Therefore, we further investigated the mechanical properties of composite hydrogels under varying propulsion speeds, syringe diameters, and syringe lengths. It was observed that the gel solution's shear strength increased as the syringe diameter decreased. The resulting composite hydrogels were better oriented and had improved mechanical properties. The composite hydrogels' tensile strength peaked at (1117 ± 47) kPa when the syringe advance rate was between 1-7 mL/min. The mechanical properties of the hydrogels were optimal when the syringe length was 30 mm, with a maximum tensile strength of (1131 ± 67) kPa and a tensile ratio of (166 ± 5) %. This study demonstrates the viability of integrating three distinct strengthening methodologies to generate hydrogels of considerable strength. Furthermore, the Alginate/PAM/TiO2 NF@PAM composite hydrogels possess remarkable potential as adaptable, wearable sensors due to their exemplary mechanical properties, knittability, and conductivity.

6.
Small ; : e2403322, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898720

RESUMEN

Mineralized bio-tissues achieve exceptional mechanical properties through the assembly of rigid inorganic minerals and soft organic matrices, providing abundant inspiration for synthetic materials. Hydrogels, serving as an ideal candidate to mimic the organic matrix in bio-tissues, can be strengthened by the direct introduction of minerals. However, this enhancement often comes at the expense of toughness due to interfacial mismatch. This study reveals that extreme toughening of hydrogels can be realized through simultaneous in situ mineralization and salting-out, without the need for special chemical modification or additional reinforcements. The key to this strategy lies in harnessing the kosmotropic and precipitation behavior of specific anions as they penetrate a hydrogel system containing both anion-sensitive polymers and multivalent cations. The resulting mineralized hydrogels demonstrate significant improvements in fracture stress, fracture energy, and fatigue threshold due to a multiscale energy dissipation mechanism, with optimal values reaching 12 MPa, 49 kJ m-2, and 2.98 kJ m-2. This simple strategy also proves to be generalizable to other anions, resulting in tough hydrogels with osteoconductivity for promoting in vitro mineralization of human adipose-derived mesenchymal stem cells. This work introduces a universal route to toughen hydrogels without compromising other parameters, holding promise for biological applications demanding integrated mechanical properties.

7.
Angew Chem Int Ed Engl ; 63(28): e202404481, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38699952

RESUMEN

The pursuit of fabricating high-performance graphene films has aroused considerable attention due to their potential for practical applications. However, developing both stretchable and tough graphene films remains a formidable challenge. To address this issue, we herein introduce mechanical bond to comprehensively improve the mechanical properties of graphene films, utilizing [2]rotaxane as the bridging unit. Under external force, the [2]rotaxane cross-link undergoes intramolecular motion, releasing hidden chain and increasing the interlayer slip distance between graphene nanosheets. Compared with graphene films without [2]rotaxane cross-linking, the presence of mechanical bond not only boosted the strength of graphene films (247.3 vs 74.8 MPa) but also markedly promoted the tensile strain (23.6 vs 10.2 %) and toughness (23.9 vs 4.0 MJ/m3). Notably, the achieved tensile strain sets a record high and the toughness surpasses most reported results, rendering the graphene films suitable for applications as flexible electrodes. Even when the films were stretched within a 20 % strain and repeatedly bent vertically, the light-emitting diodes maintained an on-state with little changes in brightness. Additionally, the film electrodes effectively actuated mechanical joints, enabling uninterrupted grasping movements. Therefore, the study holds promise for expanding the application of graphene films and simultaneously inspiring the development of other high-performance two-dimensional films.

8.
Adv Mater ; : e2312816, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445902

RESUMEN

Stretchable materials, such as gels and elastomers, are attractive materials in diverse applications. Their versatile fabrication platforms enable the creation of materials with various physiochemical properties and geometries. However, the mechanical performance of traditional stretchable materials is often hindered by the deficiencies in their energy dissipation system, leading to lower fracture resistance and impeding their broader range of applications. Therefore, the synthesis of fracture-resistant stretchable materials has attracted great interest. This review comprehensively summarizes key design considerations for constructing fracture-resistant stretchable materials, examines their synthesis strategies to achieve elevated fracture energy, and highlights recent advancements in their potential applications.

9.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543416

RESUMEN

The brittle behavior of poly(lactic acid) (PLA) and PLA composites with inorganic filler limits their applications; the addition of a toughening agent, such as a rubbery phase, was selected to transform the brittle to ductile behavior for versatility in various applications. This work aims to study the properties of PLA and PLA composite with filled nanosized hydroxyapatite (nHA) after adding modified natural rubber (MoNR), which acts as a toughening agent. MoNR refers to poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber. nHA was prepared from fish scales. Its characteristics were investigated and was confirmed to be comparable to those of commercial grade. PLA-MoNR at various MoNR contents and PLA/nHA composites with/without MoNR were prepared by melt mixing. Their morphology, mechanical, and thermal properties were observed and investigated. Samples with MoNR added showed the dispersion of spherical particles, indicating incompatibility. However, the mechanical properties of PLA-MoNR, which had MoNR added at 10 phr, showed toughening behavior (increased impact strength by more than two times compared to that of neat PLA). The PLA/nHA composite with MoNR showed the same result. The addition of MoNR in the composite increased its impact strength by 1.27 times compared to the composite without MoNR. MoNR can be a stress concentrator, resulting in toughened PLA and PLA/nHA composite.

10.
Small ; 20(25): e2310046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38183373

RESUMEN

Hydrogels are widely used in tissue engineering, soft robotics and wearable electronics. However, it is difficult to achieve both the required toughness and stiffness, which severely hampers their application as load-bearing materials. This study presents a strategy to develop a hard and tough composite hydrogel. Herein, flexible SiO2 nanofibers (SNF) are dispersed homogeneously in a polyvinyl alcohol (PVA) matrix using the synergistic effect of freeze-drying and annealing through the phase separation, the modulation of macromolecular chain movement and the promotion of macromolecular crystallization. When the stress is applied, the strong molecular interaction between PVA and SNF effectively disperses the load damage to the substrate. Freeze-dried and annealed-flexible SiO2 nanofibers/polyvinyl alcohol (FDA-SNF/PVA) reaches a preferred balance between enhanced stiffness (13.71 ± 0.28 MPa) and toughness (9.9 ± 0.4 MJ m-3). Besides, FDA-SNF/PVA hydrogel has a high tensile strength of 7.84 ± 0.10 MPa, super elasticity (no plastic deformation under 100 cycles of stretching), fast deformation recovery ability and excellent mechanical properties that are superior to the other tough PVA hydrogels, providing an effective way to optimize the mechanical properties of hydrogels for potential applications in artificial tendons and ligaments.

11.
Adv Healthc Mater ; 13(14): e2303655, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265971

RESUMEN

The modulus of traditional biomedical hydrogels increases exponentially meditated by dehydration-stiffing mechanism, which leads to the failure of interface matching between hydrogels and soft tissue wounds. It is found in the study that the dual-solvent gels exhibit dehydration-toughening mechanism with the slowly increasing modulus that are always match the soft tissue wounds. Therefore, dual-solvent glycerol hydrogels (GCFen-gly DGHs) are prepared with hydrophobically modified catechol chitosan (hmCSC) and gelatin based on the supramolecular interactions. GCFen-gly DGHs exhibit excellent water retention capacity with a total solvent content exceeding 80%, permanent skin-like modulus within a range of 0.45 to 4.13 kPa, and stable photothermal antibacterial abilities against S, aureus, E. coli, as well as MRSA. Infectious full-thickness rat skin defect model and tissue section analysis indicate that GCFen-gly DGHs are able to accelerate infectious wound healing by alleviating the inflammatory response, promoting granulation tissue growth, re-epithelialization, collagen deposition, and vascular regeneration. As a result, GCFen-gly DGHs is expected to become the next-generation biological gel materials for infectious wound treatment.


Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Cicatrización de Heridas , Animales , Hidrogeles/química , Hidrogeles/farmacología , Ratas , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Antibacterianos/química , Antibacterianos/farmacología , Ratas Sprague-Dawley , Staphylococcus aureus/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Gelatina/química , Masculino , Glicerol/química , Glicerol/farmacología , Piel/efectos de los fármacos , Viscosidad
12.
Acta Biomater ; 176: 267-276, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296014

RESUMEN

The Bouligand structure has been observed in a variety of biological materials, such as lamellar bone and exoskeleton of lobsters. It is a hierarchical and non-homogeneous architecture that exhibits excellent damage-resistant performance. This paper presents a multiscale fracture model considering the material inhomogeneity, the multiscale property, and the anisotropy to reveal the toughening mechanisms in the Bouligand structure. Firstly, the macro and micro constitutive properties of this composite are derived. Then, a multiscale fracture model is developed to characterize the local stress intensity factors and the energy release rates at the crack front of twisted cracks. Our results demonstrate that the decrease in the local energy release rate can be attributed to two-step mechanisms. The first mechanism is that the multiscale structure and the material inhomogeneity cause a release of stress near the initial crack tip. The second mechanism is that the twisted crack leads to the transformation from single-mode loading to mixed-mode loading, which enhances the fracture toughness. These results can not only reveal the toughening mechanism of the Bouligand structure but also provide guidelines for the design of high-performance composites. STATEMENT OF SIGNIFICANCE: Biological materials in nature often possess excellent mechanical properties that have not been achieved by synthetic materials. Bioinspired Bouligand structures provide prototypes for designing high-performance materials. In this study, we propose a multiscale theoretical fracture model to investigate the fracture properties of Bouligand structures with twisted cracks. We systematically consider the roles of material inhomogeneity, anisotropy, and multiscale properties. Our analysis demonstrates that the remarkable toughness of Bouligand structures results from the combined effects of material inhomogeneity and twisted cracks. This research contributes to unveiling the secret behind the outstanding toughness of Bouligand structures and provides inspiration for the development of novel designs for man-made composites.


Asunto(s)
Fracturas Óseas , Humanos , Huesos , Modelos Teóricos
13.
Polymers (Basel) ; 16(2)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38257031

RESUMEN

Poly(lactic acid) (PLA), derived from renewable resources, plays a significant role in the global biodegradable plastic market. However, its widespread adoption faces challenges, including high brittleness, hydrophobicity, limited biodegradability, and higher costs compared to traditional petroleum-based plastics. This study addresses these challenges by incorporating thermoplastic pineapple stem starch (TPSS) and modified natural rubber (MNR) into PLA blends. TPSS, derived from pineapple stem waste, is employed to enhance hydrophilicity, biodegradability, and reduce costs. While the addition of TPSS (10 to 40 wt.%) marginally lowered mechanical properties due to poor interfacial interaction with PLA, the inclusion of MNR (1 to 10 wt.%) in the PLA/20TPSS blend significantly improved stretchability and impact strength, resulting in suitable modulus (1.3 to 1.7 GPa) and mechanical strength (32 to 52 MPa) for diverse applications. The presence of 7 wt.% MNR increased impact strength by 90% compared to neat PLA. The ternary blend exhibited a heterogeneous morphology with enhanced interfacial adhesion, confirmed by microfibrils and a rough texture on the fracture surface. Additionally, a downward shift in PLA's glass transition temperature (Tg) by 5-6 °C indicated improved compatibility between components. Remarkably, the PLA ternary blends demonstrated superior water resistance and proper biodegradability compared to binary blends. These findings highlight the potential of bio-based plastics, such as PLA blends with TPSS and MNR, to contribute to sustainable economic models and reduce environmental impact for using in plastic packaging applications.

14.
Carbohydr Polym ; 327: 121708, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171668

RESUMEN

Nanocellulose films possess numerous merits ascribing to their inherent biocompatibility, non-toxic and biodegradability properties. The potential for practical applications would be improved if their mechanical strength and toughness requirements could be met simultaneously. Herein, dual cross-linked nanocellulose (DC) film was fabricated by the treatments of chemical and physical cross-linking, which was mechanically superior to pure nanocellulose (CNF) films. To further increase the toughness of DC films, spherical cellulose (Sph) was incorporated into DC film (DC-Sph film), and analyzed under different humidity conditions (RH) (from 10 % to 90 %). The changes of functional groups of CNF, DC and DC-Sph films were detected by FTIR and XPS spectrum. The epichlorohydrin and Sph content were optimized, followed by the investigation of RH on the toughness of films. The highest tensile strength (146.6 ± 4.6 MPa) was obtained in DC film at 50 % RH, while the DC-Sph film showed the largest toughness (40.3 ± 3.7 kJ/m2) at 70 % RH. Furthermore, the possible toughening mechanism of DC-Sph film was also discussed.

15.
Macromol Rapid Commun ; 45(7): e2300650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38158795

RESUMEN

Double-network hydrogels based on calcium alginate are extensively exploited. Unfortunately, their low strength and unstable constitution to open environments limit their application potential. Herein, a new type of double-network organohydrogel (OHG) is proposed. By solvent exchange, a stable physical network is established based on dimethyl sulfoxide (DMSO)-alginate in the presence of a polyacrylamide network. The DMSO content endows tunable mechanical properties, with a maximum tensile strength of ≈1.7 MPa. Importantly, the OHG shows much better environmental stability compared to the conventional double-network hydrogels. Due to the reversible association of hydrogen bonds, the OHG possesses some unique properties, including free-shapeability, shape-memory, and self-adhesion, that offers several promising ways to utilize alginate-based gels for wide applications.


Asunto(s)
Alginatos , Dimetilsulfóxido , Solventes , Hidrogeles , Enlace de Hidrógeno
16.
Int J Solids Struct ; 286-2872024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38130319

RESUMEN

Fibrous gels such as cartilage, blood clots, and carbon-nanotube-based sponges with absorbed oils suffer a reduction in volume by the expulsion of liquid under uniaxial tension, and this directly affects crack-tip fields and energy release rates. A continuum model is formulated for isotropic fibrous gels that exhibit a range of behaviors from volume increasing to volume decreasing in uniaxial tension by changing the ratio of two material parameters. The motion of liquid in the pores of such gels is modeled using poroelasticity. The direction of liquid fluxes around cracks is shown to depend on whether the gel locally increases or decreases in volume. The energy release rate for cracks is computed using a surface-independent integral and it is shown to have two contributions - one from the stresses in the solid network, and another from the flow of liquid. The contribution to the integral from liquid permeation tends to be negative when the gel exhibits volume decrease, which effectively is a crack shielding mechanism.

17.
Data Brief ; 52: 109862, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38146307

RESUMEN

In this article, four different structural epoxy adhesives such as SPABOND™ 820HTA (non-toughened), SPABOND™ 840HTA (toughened) adhesives, and their two hybrid combinations are fabricated using a manual mixing method. Quasi-static tensile experiments are conducted at standardized and high strain rates using ASTM D638-22 Type II specimens to investigate the strain rate effects on the tensile properties. Tensile-tensile fatigue experiments are performed using ASTM D638-22 Type I and Type II specimens to evaluate the impact of specimen geometry and toughening on fatigue life. The digital image correlation technique is utilized to obtain full-field strain data in these experiments. Technical data analysis, plotting, smoothing, filtering, and averaging are carried out using Origin ProⓇ and MATLAB R2021bⓇ. The obtained S-N curve data can be used to develop fatigue failure criteria and predict the behavior of wind turbine blade adhesive joints through finite element modeling.

18.
Adv Mater ; 36(11): e2307444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112236

RESUMEN

Anisotropic materials formed by living organisms possess remarkable mechanical properties due to their intricate microstructure and directional freedom. In contrast, human-made materials face challenges in achieving similar levels of directionality due to material and manufacturability constraints. To overcome these limitations, an approach using 3D printing of self-assembling thermotropic liquid crystal polymers (LCPs) is presented. Their high stiffness and strength is granted by nematic domains aligning during the extrusion process. Here, a remarkably wide range of Young's modulus from 3 to 40 GPa is obtained by utilizing directionality of the nematic flow the printing process.   By determining a relationship between stiffness, nozzle diameter, and line width, a design space where shaping and mechanical performance can be combined is identified. The ability to print LCPs with on-the-fly width changes to accommodate arbitrary spatially varying directions is demonstrated. This unlocks the possibility to manufacture exquisite patterns inspired by fluid dynamics with steep curvature variations. Utilizing the synergy between this path-planning method and LCPs, functional objects with stiffness and curvature gradients can be 3D-printed, offering potential applications in lightweight sustainable structures embedding crack-mitigation strategies. This method also opens avenues for studying and replicating intricate patterns observed in nature, such as wood or turbulent flow using 3D printing.

19.
Front Chem ; 11: 1294152, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075494

RESUMEN

Existing elastic band materials for sports rehabilitation equipment have some deficiencies in strength, flexibility and durability, and need to be further improved. Therefore, the aim of this paper is to modify elastic bands using a conjugated material, carbon nanotubes, to improve the strength, flexibility and durability of elastic bands. In this paper, conjugated carbon nanotubes were prepared, and their elastic bands were strengthened and toughened by solvent, dispersant and functionalizer respectively under tensile testing machine and scanning electron microscope. Then the application effect of elastic band modified by conjugated materials in exercise rehabilitation was analyzed experimentally. The experimental results show that the strength of the elastic bands modified with carbon nanotubes is in the optimal range for sports rehabilitation, and the elongation at break of the test elastic band toughness index was also higher than that before modification, all of which were more than 90%. The recovery time of the elastic band after modification was long; the elastic retention rate was high, and the deformation was not easy. The satisfaction rate of different grades of elastic bands after modification was particularly high, which was not less than 95%. The research and application of elastic band modification based on conjugated material carbon nanotubes is very important for training and treatment in sports rehabilitation, which can provide better support and stability.

20.
Artículo en Inglés | MEDLINE | ID: mdl-37917046

RESUMEN

Toughness of epoxies is commonly improved by adding thermoplastic phases, which is achieved through dissolution and phase separation at the microscale. However, little is known about the synergistic effects of toughening phases on multiple scales. Therefore, here, we study the toughening of epoxies with layered poly(ether imide) (PEI) structures at the meso- to macroscale combined with gradient morphologies at the microscale originating from reaction-induced phase separation. Characteristic features of the gradient morphology were controlled by the curing temperature (120-200 °C), while the layered macro structure originates from facile scaffold manufacturing techniques with varying poly(ether imide) layer thicknesses (50-120 µm). The fracture toughness of the modified epoxy system is investigated as a function of varying cure temperature (120-200 °C) and PEI film thickness (50-120 µm). Interestingly, the result shows that the fracture toughness of modified epoxy was mainly controlled by the macroscopic feature, being the final PEI layer thickness, i.e., film thickness remaining after partial dissolution and curing. Remarkably, as the PEI layer thickness exceeds the plastic zone around the crack tip, around 62 µm, the fracture toughness of the dual scale morphology exceeds the property of bulk PEI in addition to a 3 times increase in the property of pure epoxy. On the other hand, when the final PEI thickness was smaller than 62 µm, the fracture toughness of the modified epoxy was lower than pure PEI but still higher than pure epoxy (1.5-2 times) and "bulk toughened" system with the same volume percentage, which indicates the governing mechanism relating to microscale interphase morphology. Interestingly, decreasing the gradient microscale interphase morphology can be used to trigger an alternative failure mode with a higher crack tortuosity. By combining facile scaffold assemblies with reaction-induced phase separation, dual-scale morphologies can be tailored over a wide range, leading to intricate control of fracture mechanisms with a hybrid material exceeding the toughness of the tougher phase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA