Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 136182, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357735

RESUMEN

This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 µm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %), due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m3), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl2. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.

2.
Int J Biol Macromol ; 278(Pt 4): 134980, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179077

RESUMEN

The design and development of wound-dressing hydrogels with desirable therapeutic effects and proper mechanical and self-healing properties are crucial in the healthcare sector. This research aims to prepare a new self-healing hydrogel based on Tragacanth, polyvinyl alcohol, and borax to be used as a wound dressing, the hydrogel was first prepared through a simple and one-pot reaction. The efficiency of the resulting product was then assessed based on the rheological and self-healing tests as well as cellular tests on a mouse fibroblast cell line (L929) including toxicity and scratch tests as well as the investigation of the expression of TGFß1, TGFß2, and VEGF-A gens (using Real-time PCR). The synthesized hydrogel exhibited proper mechanical strength, high self-healing features, and no toxicity (cell viability >100 %). Rheological studies indicate that hydrogels with a higher borax content (PVA: B ratio of 5:1) exhibit a higher storage modulus across all frequencies. The presence of hydrogel improved the migration of the L929 cells and scratch healing. The hydrogel also caused a significant improvement in the expression of the growth factors of the genes (P < 0.001). Therefore, it can be concluded that the prepared wound dressing can actively contribute to wound healing, opening promising potentials in medical applications.


Asunto(s)
Vendajes , Hidrogeles , Reología , Tragacanto , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Ratones , Hidrogeles/química , Línea Celular , Tragacanto/química , Supervivencia Celular/efectos de los fármacos , Alcohol Polivinílico/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Boratos/química
3.
Environ Pollut ; 358: 124534, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004207

RESUMEN

This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.


Asunto(s)
Compuestos de Anilina , Luz , Nitrofenoles , Fotólisis , Compuestos de Anilina/química , Nitrofenoles/química , Contaminantes Químicos del Agua/química , Nanopartículas de Magnetita/química , Níquel/química , Zinc/química , Tecnología Química Verde/métodos
4.
Food Technol Biotechnol ; 62(2): 205-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39045299

RESUMEN

Research background: In the food industry, research interest in the functional effects of natural polysaccharides from plants has increased in recent years. Tragacanth gum is used in dairy products because of its stabilising, thickening, fat-replacing and prebiotic properties. However, skimmed milk is considered a significant commercial loss in the production of buffalo clotted cream. Therefore, the aim of the present study is to investigate the potential of tragacanth gum in the production of yoghurt from buffalo milk residues with different concentrations of tragacanth gum (0.5, 1 and 1.5 g/L). Experimental approach: Skimmed buffalo milk with different concentrations of tragacanth gum was pasteurised and, after cooling at 45 °C, a starter culture was added to each sample. All samples were fermented to a pH=4.80±0.2. The gross composition, acidity, water activity, water-holding capacity, whey separation, mass fractions of organic acids and volatile aroma compounds, counts of total aerobic mesophilic bacteria, yeasts and moulds, Lactococcus spp. and Lactobacillus spp. as well as sensory and textural properties were analysed during 15 days storage. Results and conclusions: The results showed that the use of tragacanth gum increased the dry matter mass fraction, water-holding capacity and mass fraction of proteins in the samples, while whey separation decreased as the concentration of gum increased. The addition of gum improved textural properties and hardness of the yoghurt. In terms of consistency, the sample with 1 g/L tragacanth gum was the most reliable. In the control group, the total aerobic mesophilic bacteria count was highest on the first and last day of storage. According to the results of the sensory evaluation, the sample with 0.5 g/L tragacanth gum was the most favourable. Novelty and scientific contribution: Research has shown that the use of stabilisers in varying ratios improves the quality of yoghurt made from fat-free buffalo milk, which is a by-product of industrial production. So instead of ending up as industrial waste, it is recycled and its value is increased.

5.
Int J Biol Macromol ; 276(Pt 1): 133736, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992543

RESUMEN

Pea peptides can lead to degradation through oxidation, deamidation, hydrolysis, or cyclization during production, processing, and storage, which in turn limit their broader application. To stabilize pea peptides, this study employed spray drying technology to create a pea peptide micro-encapsule using maltodextrin, gum tragacanth, and pea peptides. Four key factors, including polysaccharide ratio, glycopeptide ratio, solid-liquid ratio, and inlet temperature, were optimized to enhance the antioxidant properties of the pea peptide micro-encapsule. The results indicated that the utilization of maltodextrin and gum tragacanth significantly improves the storage stability and antioxidant activity of pea peptides. Moreover, optimal storage stability for pea peptides was achieved with a polysaccharide ratio of 9:1, a glycopeptide ratio of 10:1, a solid-liquid ratio of 4:40, and an inlet temperature of 180 °C. After 60 days of storage, the encapsulated pea peptides maintained 70.22 %, 25.19 %, and 40.32 % for scavenging abilities to hydroxyl radical, superoxide anion, and ABTS radical, respectively. In contrast, the unencapsulated pea peptides showed a decline to 47.02 %, 0 %, and 24.46 % in the same antioxidant activities after storage. These findings underscore the potential of spray drying technology to enhance the functional properties of pea peptides for various applications.


Asunto(s)
Depuradores de Radicales Libres , Proteínas de Guisantes , Polisacáridos , Tragacanto , Depuradores de Radicales Libres/química , Polisacáridos/química , Tragacanto/química , Proteínas de Guisantes/química , Péptidos/química , Antioxidantes/química , Pisum sativum/química , Temperatura , Radicales Libres/química , Estabilidad de Medicamentos
6.
Sci Rep ; 14(1): 14010, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890349

RESUMEN

Hybrid structures made of natural-synthetic polymers have been interested due to high biological features combining promising physical-mechanical properties. In this research, a hybrid dressing consisting of a silk fibroin (SF)/polyvinyl alcohol (PVA) nanofibers and sodium alginate (SA)/gum tragacanth (GT) hydrogel incorporating cardamom extract as an antibacterial agent was prepared. Accordingly, SF was extracted from cocoons followed by electrospinning in blend form with PVA (SF/PVA ratio: 1:1) under the voltage of 18 kV and the distances of 15 cm. The SEM images confirmed the formation of uniform, bead free fibers with the average diameter of 199 ± 28 nm. FTIR and XRD results revealed the successful extraction of SF and preparation of mixed fibrous mats. Next, cardamom oil extract-loaded SA/GT hydrogel was prepared and the nanofibrous structure was placed on the surface of hydrogel. SEM analysis depicted the uniform morphology of hybrid structure with desirable matching between two layers. TGA analysis showed desired thermal stability. The swelling ratio was found to be 1251% after 24 h for the hybrid structure and the drug was released without any initial burst. MTT assay and cell attachment results showed favorable biocompatibility and cell proliferation on samples containing extract, and antibacterial activity values of 85.35% against S. aureus and 75% against E. coli were obtained as well. The results showed that the engineered hybrid nanofibrous-hydrogel film structure incorporating cardamom oil extract could be a promising candidate for wound healing applications and skin tissue engineering.


Asunto(s)
Alginatos , Antibacterianos , Elettaria , Fibroínas , Hidrogeles , Nanofibras , Extractos Vegetales , Alcohol Polivinílico , Tragacanto , Alginatos/química , Nanofibras/química , Fibroínas/química , Alcohol Polivinílico/química , Hidrogeles/química , Tragacanto/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Elettaria/química , Animales , Escherichia coli/efectos de los fármacos , Ratones , Staphylococcus aureus/efectos de los fármacos , Materiales Biocompatibles/química
7.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714808

RESUMEN

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Asunto(s)
Agar , Fibroínas , Hidrogeles , Nanocompuestos , Tragacanto , Fibroínas/química , Humanos , Hidrogeles/química , Agar/química , Nanocompuestos/química , Tragacanto/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Células HEK293 , Zinc/química , Proliferación Celular/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Pruebas de Sensibilidad Microbiana , Células MCF-7 , Línea Celular Tumoral
8.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769551

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Asunto(s)
Sulfatos de Condroitina , Curcumina , Gelatina , Nanocápsulas , Nanopartículas , Tragacanto , Curcumina/farmacología , Curcumina/química , Sulfatos de Condroitina/química , Gelatina/química , Animales , Nanocápsulas/química , Nanopartículas/química , Ratones , Tragacanto/química , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Artritis Reumatoide/tratamiento farmacológico , Masculino , Tamaño de la Partícula , Antiinflamatorios/farmacología , Antiinflamatorios/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Liberación de Fármacos , Ratas
9.
Int J Biol Macromol ; 270(Pt 1): 132361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750857

RESUMEN

Critical-sized bone defects are a major challenge in reconstructive bone surgery and usually fail to be treated due to limited remaining bone quality and extensive healing time. The combination of 3D-printed scaffolds and bioactive materials is a promising approach for bone tissue regeneration. In this study, 3D-printed alkaline-treated polycaprolactone scaffolds (M-PCL) were fabricated and integrated with tragacanth gum- 45S5 bioactive glass (TG-BG) to treat critical-sized calvarial bone defects in female adult Wistar rats. After a healing period of four and eight weeks, the new bone of blank, M-PCL, and M-PCL/TG-BG groups were harvested and assessed. Micro-computed tomography, histological, biochemical, and biomechanical analyses, gene expression, and bone matrix formation were used to assess bone regeneration. The micro-computed tomography results showed that the M-PCL/TG-BG scaffolds not only induced bone tissue formation within the bone defect but also increased BMD and BV/TV compared to blank and M-PCL groups. According to the histological analysis, there was no evidence of bony union in the calvarial defect regions of blank groups, while in M-PCL/TG-BG groups bony integration and repair were observed. The M-PCL/TG-BG scaffolds promoted the Runx2 and collagen type I expression as compared with blank and M-PCL groups. Besides, the bone regeneration in M-PCL/TG-BG groups correlated with TG-BG incorporation. Moreover, the use of M-PCL/TG-BG scaffolds promoted the biomechanical properties in the bone remodeling process. These data demonstrated that the M-PCL/TG-BG scaffolds serve as a highly promising platform for the development of bone grafts, supporting bone regeneration with bone matrix formation, and osteogenic features. Our results exhibited that the 3D-printed M-PCL/TG-BG scaffolds are a promising strategy for successful bone regeneration.


Asunto(s)
Regeneración Ósea , Vidrio , Osteogénesis , Poliésteres , Impresión Tridimensional , Ratas Wistar , Cráneo , Andamios del Tejido , Animales , Poliésteres/química , Andamios del Tejido/química , Ratas , Regeneración Ósea/efectos de los fármacos , Cráneo/efectos de los fármacos , Cráneo/patología , Cráneo/lesiones , Cráneo/diagnóstico por imagen , Osteogénesis/efectos de los fármacos , Femenino , Vidrio/química , Tragacanto/química , Microtomografía por Rayos X , Ingeniería de Tejidos/métodos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
10.
Int J Biol Macromol ; 268(Pt 1): 131600, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631575

RESUMEN

Hereunder, we pioneered the synthesis of Copper Oxide nanoparticles (CuO NPs) utilizing Tragacanth gum (TG). The NPs were characterized using advanced techniques and assessed for different pharmaceutical and environmental perspectives. The successful formation of a colloidal NPs solution was confirmed by the appearance of a distinct black color and a distinct peak at 260 nm in UV-Visible spectrophotometry. The FTIR analysis unveiled a spectrum of functional groups responsible for the reduction and stabilization of CuO NPs. Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM) revealed size of NPs as 36.24 nm and 28 ± 04 nm respectively. Energy Dispersive X-ray (EDX) Analysis indicated weight percentages of 70.38 % for Cu and 18.88 % for O, with corresponding atomic percentages. The X-ray Diffraction (XRD) analysis revealed the orthorhombic crystal structure of the prepared CuO NPs. Antimicrobial assessments through disc-diffusion assays demonstrated significant zones of inhibition (ZOI) against gram-positive bacterial strains (Bacillus Halodurans and Micrococcus leutus) and a gram-negative bacterial strain (E. coli). Against the fungal strain Aspergillus niger, a ZOI of 18.5 ± 0.31 mm was observed. The NPs exhibited remarkable antioxidant potential determined through 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and H2O2 scavenging assays. At a concentration of 3 mg/mL, the NPs demonstrated biofilm inhibition rates of 96 %, 90 %, 89.60 %, and 72.10 % against Micrococcus luteus, Bacillus halodurans, MRSA and E.coli respectively. Furthermore, the CuO NPs showed a high photocatalytic potential towards the degradation of safranin dye under sunlight irradiation. In conclusion, the findings underline the promising multifunctional properties of TG-based CuO NPs for different practical applications.


Asunto(s)
Biopelículas , Cobre , Nanopartículas del Metal , Tragacanto , Cobre/química , Tragacanto/química , Biopelículas/efectos de los fármacos , Catálisis , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Aspergillus niger/efectos de los fármacos , Procesos Fotoquímicos
11.
Environ Res ; 252(Pt 2): 118893, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604485

RESUMEN

Pesticides can have harmful impacts on the environment and living organisms. Thus, removing them from polluted water is crucial. In this study, a bionanocomposite of carboxymethyl tragacanth-grafted-poly(3-aminophenol)/zinc oxide@iron oxide (CMT-g-P3AP/ZnO@Fe3O4) synthesized by in situ copolymerization as an efficient adsorbent to eliminate the acetamiprid pesticide from polluted water. The CMT-g-P3AP/ZnO@Fe3O4 magnetic nanocomposite was analyzed utilizing various techniques including FTIR, EDX, FESEM, XRD, BET, CHNSO, and TGA. The results displayed that the resulting nanocomposite with maximum adsorption capacity (Qmax) successfully removed the acetamiprid pesticide from polluted water under optimal conditions such as pH of 7.00, 5.00 mg of adsorbent, 20.0 min duration, and 400 mg/L acetamiprid concentration. According to the linear Langmuir isotherm, the Qmax of the biosorbent was 833 mg/g. The experimental adsorption data fitted well with Temkin's nonlinear isotherm model. The adsorption kinetic data were closely related to the Weber-Morris intraparticle diffusion nonlinear model. After three repetitive cycles, CMT-g-P3AP/ZnO@Fe3O4 can be outstandingly renewed and recycled without significant reduction in its adsorption efficacy, as evidenced by the adsorption-desorption experiments. In addition, the CMT-g-P3AP/ZnO@Fe3O4 displayed the good antibacterial activity against E. coli and S. aureus.


Asunto(s)
Antibacterianos , Neonicotinoides , Contaminantes Químicos del Agua , Óxido de Zinc , Contaminantes Químicos del Agua/química , Óxido de Zinc/química , Adsorción , Antibacterianos/química , Neonicotinoides/química , Tragacanto/química , Nanocompuestos/química , Purificación del Agua/métodos , Plaguicidas/química
12.
Sci Rep ; 14(1): 8166, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589455

RESUMEN

This study involves the development of a new nanocomposite material for use in biological applications. The nanocomposite was based on tragacanth hydrogel (TG), which was formed through cross-linking of Ca2+ ions with TG polymer chains. The utilization of TG hydrogel and silk fibroin as natural compounds has enhanced the biocompatibility, biodegradability, adhesion, and cell growth properties of the nanobiocomposite. This advancement makes the nanobiocomposite suitable for various biological applications, including drug delivery, wound healing, and tissue engineering. Additionally, Fe3O4 magnetic nanoparticles were synthesized in situ within the nanocomposite to enhance its hyperthermia efficiency. The presence of hydrophilic groups in all components of the nanobiocomposite allowed for good dispersion in water, which is an important factor in increasing the effectiveness of hyperthermia cancer therapy. Hemolysis and 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays were conducted to evaluate the safety and efficacy of the nanobiocomposite for in-vivo applications. Results showed that even at high concentrations, the nanobiocomposite had minimal hemolytic effects. Finally, the hyperthermia application of the hybrid scaffold was evaluated, with a maximum SAR value of 41.2 W/g measured in the first interval.


Asunto(s)
Fibroínas , Hipertermia Inducida , Tragacanto , Andamios del Tejido , Hidrogeles , Fenómenos Magnéticos
13.
Int J Biol Macromol ; 265(Pt 1): 130758, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462106

RESUMEN

Diclofenac sodium (DCF) was reported as an important emerging environmental pollutant and its removal from wastewater is very urgent. In this study, different alkyl substituted ionic liquids (1-alkyl -3-vinyl- imidazolium bromide [CnVIm]Br, n = 4, 6, 8, 10, 12) functionalized tragacanth gum (TG-CnBr) are prepared by radiation induced grafting and crosslinking polymerization. The adsorption behaviors of ionic liquids functionalized tragacanth gum for diclofenac sodium from aqueous solutions are examined. The adsorption capacity of TG-CnBr for diclofenac sodium increases with the increasing of alkyl chain length of the imidazolium cation and the hydrophobicity of the hydrogels. The maximum adsorption capacity by TG-C12Br for diclofenac sodium at 30, 40 and 50 °C were 327.87, 310.56 and 283.29 mg/g, respectively. The adsorption of TG-C12Br towards diclofenac sodium was little decreased with NaCl increasing. The removal efficiency was still remained 94.55 % within 5 adsorption-desorption cycles by 1 M HCl. Also, the adsorption mechanism including electrostatic attraction, hydrophobic interaction, hydrogen bonding, and π - π interaction was proposed.


Asunto(s)
Líquidos Iónicos , Tragacanto , Contaminantes Químicos del Agua , Diclofenaco/química , Tragacanto/química , Hidrogeles/química , Agua , Adsorción , Contaminantes Químicos del Agua/química
14.
J Food Sci Technol ; 61(3): 481-490, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38327862

RESUMEN

The development of green materials for active packaging applications is a research hotspot due to setbacks of petrochemical derived plastics. Thus, the present study aims to develop ternary blend films by doping different wt% of Tragacanth gum (TG) to Poly(vinyl alcohol)/Chitosan (PC) blend using solvent evaporation technique. Further, their various physicochemical properties were evaluated systematically. Differential scanning calorimetry studies revealed excellent compatibility and thermal stability of PC blend was significantly reinforced with 15 wt% of TG. UV-visible spectroscopy study demonstrated the excellent shielding efficacy of UV radiation by ternary blend films. Moreover, overall migration results confirmed the limited release of film constituents into food simulants and swelling ratio analysis indicated the good swelling resistance at higher wt% of TG. The ternary films exhibited tremendous chemical resistance against extreme acidic and basic environments and these green biofilms could be considered for active packaging applications.

15.
Int J Biol Macromol ; 257(Pt 1): 128343, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38007020

RESUMEN

Herein, glutamic acid, lysine, arginine and glycine grafted tragacanth gum (TG) were synthesized and designated as TG-Glu, TG-Lys, TG-Arg, and TG-Gly, respectively. The corresponding degrees of substitution (DS) were 0.212, 0.255, 0.394, and 0.169. Thermal, antioxidant, and antibacterial properties of synthesized amino acid-grafted tragacanth gum (ATG) were investigated. The results suggested that the grafting of amino acids onto TG has the potential to alter its thermal properties. When compared with TG and amino acid alone, ATG exhibited significantly enhanced antioxidant and antibacterial properties, with these properties being concentration-dependent. At a concentration of 2 mg/mL for TG-Glu and 3 mg/mL for TG-Arg, TG-Gly, and TG-Lys, the scavenging rate for 2,2'-hypoazido-3-ethylbenzothiazoline sulfonate (ABTS) radical reached 100 %. On the other hand, the scavenging rate of TG-Glu for hydroxyl radical achieved 100 % even at a concentration as low as 1 mg/mL. These properties were accompanied by an increase in reducing force and a notable improvement in the ability to scavenge superoxide anion (O2-). Moreover, the combination of amino acids and TG represents a promising approach to enhance the antimicrobial activities of TG, with the bacteriostatic rate reaching 100 %. Consequently, ATG shows promise as a novel agent for both antioxidation and antimicrobial applications.


Asunto(s)
Antiinfecciosos , Tragacanto , Antioxidantes/farmacología , Tragacanto/química , Aminoácidos/metabolismo , Antiinfecciosos/farmacología , Antibacterianos/farmacología
16.
Int J Biol Macromol ; 254(Pt 2): 127974, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949273

RESUMEN

A new and green development in the field of food packaging is the use of colorimetric films containing anthocyanins, which not only can respond to food spoilage but also have no environmental risk and help the environment full of unacceptable and polluted substances created by humans. In this research, a completely natural film (GCNG) was made using natural materials including tragacanth gummifer (G), chitosan nanoparticles (C), and an extract containing anthocyanins of a type of wild grape called Sardasht black (G) with Alumina nanoparticles (N) for use in food packaging. This biodegradable film (GCNG) presented relatively wide color differences from red to blue in different buffer solutions (pH 2-12), which was clearly observed by the naked eye. Sardasht black grape extract contains large amounts of anthocyanins and antioxidants that can be extracted and used in the preparation of packaging films. The properties of prepared films, including mechanical properties, permeability to water vapor, solubility, swelling, as well as antimicrobial properties were checked by measuring the diameter of the diffusion area by agar disk test. GCNG films showed strong antioxidant activity and good antibacterial activity against E. coli and S. aureus. The results suggested this film has promising potential as an active and smart packaging material for applications in the food industry.


Asunto(s)
Quitosano , Nanopartículas , Vitis , Humanos , Quitosano/química , Embalaje de Alimentos/métodos , Antocianinas/farmacología , Antocianinas/química , Vitis/química , Astragalus gummifer , Escherichia coli , Staphylococcus aureus , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Nanopartículas/química
17.
Eur J Pharm Sci ; 192: 106657, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040098

RESUMEN

Periodontitis consists a group of dental disorders that affect about 70 % of the world population. The therapy mainly relies on mechanical removing bacterial biofilm, nevertheless, local or systemic antibacterial agents play a key role in treating the acute conditions. Secnidazole is a newer derivative of commonly used metronidazole with high safety profile and broad spectrum of antimicrobial activity. The aim of the study was to evaluate the applicability of polyelectrolyte complex-based hydrogels composed of anionic tragacanth with addition of xanthan gum and cationic chitosan as carriers for buccal/intra pocket delivery of secnidazole. Prepared hydrogels with 5 % and 10 % (w/w) drug content were evaluated pharmaceutically towards inter alia physicomechanical, rheological and thermal properties, drug release kinetics, swelling behavior or antimicrobial activity. Cytotoxicity against human primary umbilical vein endothelial cells was also assessed with two independent method. Stable compositions with secnidazole were obtained, however, various miscibility of the drug with the polymers was noted. By adding chitosan, antibacterial activity and swelling performance of the gels were improved, nevertheless, drop of the mucoadhesiveness was also recorded. Hydrogels with 5 % secnidazole were selected as effective antimicrobial compositions with the highest cytocompatibility. They might be considered as promising for oromucosal application with special attention given to SEC as an alternative locally administered antimicrobial agent.


Asunto(s)
Quitosano , Tragacanto , Humanos , Metronidazol/farmacología , Células Endoteliales , Antibacterianos/farmacología , Hidrogeles
18.
Gels ; 9(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38131945

RESUMEN

Biomaterials-based adsorbents have emerged as a sustainable and promising solution for water purification, owing to their eco-friendly nature and remarkable adsorption capacities. In this study, a biocomposite hydrogel was prepared by the incorporation of activated carbon derived from pomegranate peels (PPAC) in tragacanth gum (TG). The hydrogel biocomposite (PPAC/TG) showed a porous structure, a negative surface charge at a pH of more than 4.9, and good stability in aqueous media. The adsorption properties of the PPAC/TG hydrogel biocomposite were assessed for the removal of crystal violet dye (CV) from aqueous solutions using a batch adsorption. The equilibrium adsorption data followed the Sips isotherm model, as supported by the calculated R2 (>0.99), r-χ2 (<64), and standard error values (<16). According to the Sips model, the maximum values of the adsorption capacity of PPAC/TG were 455.61, 470.86, and 477.37 mg/g at temperatures of 25, 30, and 35 °C, respectively. The adsorption kinetic of CV onto the PPAC/TG hydrogel biocomposite was well described by the pseudo-second-order model with R2 values more than 0.999 and r-χ2 values less than 12. Thermodynamic studies confirmed that the CV dye adsorption was spontaneous and endothermic. Furthermore, the prepared hydrogel exhibited excellent reusability, retaining its adsorption capacity even after being used more than five times. Overall, this study concludes that the prepared PPAC/TG exhibited a significant adsorption capacity for cationic dyes, indicating its potential as an effective and eco-friendly adsorbent for water treatment.

19.
Front Nutr ; 10: 1258282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941767

RESUMEN

Introduction: The urge of designing new safe and natural functional foods to control blood lipids and dispensable without the need of physician supervision, has increased especially after the coming into effect of the recent EU Commission regulation 2022/860, that regulates the consumption of "red yeast rice," made by fermentation of rice with Monascus purpureus, and perceived as a natural functional food, due to a health risk for frail consumers. The results of the present work are a part of the systematic study we are carrying out of the binding ability of some soluble dietary fibers (SDF) from different natural sources toward selected bile salts (BS). Methods: Measurements were carried out by isothermal titration calorimetry (ITC) with the idea to shed light on the mechanism, if any, by which they show cholesterol-lowering activity. Results and discussion: Epidemiological studies are sometimes conflicting and offer only hypothesis about the mechanism of action, the most accredited being the reduction of reabsorption of BS in the gut. Previous measurements done on negatively charged pectin and alginate, showed specific binding interaction with monomer NaDC for pectin and no interaction at all for alginate. Chitosan, positively charged and soluble only at low pH, in 100 mM acetate buffer at pH = 3 shows strong exothermic interactions with NaTC and NaTDC. Here we considered two plant exudates (Arabic gum and tragacanth gum) and guar gum, extracted from guar beans, and their interaction with the same bile salts. ITC measurements do not evidence specific interactions between gums and the studied BS, so that their cholesterol lowering ability, if any, is due to a different mechanism very probably bound to the viscosity increase. Moreover, the addition of NaC, the most abundant BS in the bile, at very low concentration (under the cmc) causes a structural change of the solution. The obtained results seem to corroborate the hypothesis that the cholesterol lowering activity is related to the increase in viscosity of guar solution favored by NaC, the major component of the bile.

20.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38004400

RESUMEN

Photodynamic therapy using delta-aminolevulinic acid is considered a promising option in the treatment of oral lichen planus. In the present work, three emulgel compositions prepared from natural polysaccharide gums, tragacanth, xanthan and gellan, were preliminarily tested for oromucosal delivery of delta-aminolevulinic acid. Apart from cytotoxicity studies in two gingival cell lines, the precise goal was to investigate whether the presence of the drug altered the rheological and mucoadhesive behavior of applied gelling agents and to examine how dilution with saliva fluid influenced the retention of the designed emulgels by oromucosal tissue. Ex vivo mucoadhesive studies revealed that a combination of xanthan and gellan gum enhanced carrier retention by buccal tissue even upon dilution with the saliva. In turn, the incorporation of delta-aminolevulinic acid favored interactions with mucosal tissue, particularly formulations comprised of tragacanth. The designed preparations had no significant impact on the cell viability after a 24 h incubation in the tested concentration range. Cytotoxicity studies demonstrated that tragacanth-based and gellan/xanthan-based emulgels might exert a protective effect on the metabolic activity of human gingival fibroblasts and keratinocytes. Overall, the presented data show the potential of designed emulgels as oromucosal platforms for delta-aminolevulinic acid delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA