Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(20)2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291192

RESUMEN

Saccharomyces cerevisiae Sub1 (ScSub1) has been defined as a transcriptional stimulatory protein due to its homology to the ssDNA binding domain (ssDBD) of human PC4 (hPC4). Recently, PC4/Sub1 orthologues have been elucidated in eukaryotes, prokaryotes, and bacteriophages with functions related to DNA metabolism. Additionally, ScSub1 contains a unique carboxyl-terminal region (CT) of unknown function up to date. Specifically, it has been shown that Sub1 is required for transcription activation, as well as other processes, throughout the transcription cycle. Despite the progress that has been made in understanding the mechanism underlying Sub1's functions, some questions remain unanswered. As a case in point: whether Sub1's roles in initiation and elongation are differentially predicated on distinct regions of the protein or how Sub1's functions are regulated. Here, we uncover some residues that are key for DNA-ScSub1 interaction in vivo, localized in the ssDBD, and required for Sub1 recruitment to promoters. Furthermore, using an array of genetic and molecular techniques, we demonstrate that the CT region is required for transcription elongation by RNA polymerase II (RNAPII). Altogether, our data indicate that Sub1 plays a dual role during transcription-in initiation through the ssDBD and in elongation through the CT region.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Biochem J ; 477(16): 3091-3104, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32857854

RESUMEN

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic - such as promoter structure - and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Asunto(s)
Empalme Alternativo , Cromatina/genética , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Transcripción Genética , Animales , Humanos , ARN Polimerasa II/genética
3.
J Eukaryot Microbiol ; 66(5): 719-729, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30730083

RESUMEN

It has been long thought that RNA Polymerase (Pol) II transcriptional regulation does not operate in trypanosomes. However, recent reports have suggested that these organisms could regulate RNA Pol II transcription by epigenetic mechanisms. In this paper, we investigated the role of TbRRM1 in transcriptional regulation of RNA Pol II-dependent genes by focusing both in genes located in a particular polycistronic transcription unit (PTU) and in the monocistronic units of the SL-RNA genes. We showed that TbRRM1 is recruited throughout the PTU, with a higher presence on genes than intergenic regions. However, its depletion leads both to the decrease of nascent RNA and to chromatin compaction only of regions located distal to the main transcription start site. These findings suggest that TbRRM1 facilitates the RNA Pol II transcriptional elongation step by collaborating to maintain an open chromatin state in particular regions of the genome. Interestingly, the SL-RNA genes do not recruit TbRRM1 and, after TbRRM1 knockdown, nascent SL-RNAs accumulate while the chromatin state of these regions remains unchanged. Although it was previously suggested that TbRRM1 could regulate RNA Pol II-driven genes, we provide here the first experimental evidence which involves TbRRM1 to transcriptional regulation.


Asunto(s)
Proteínas Protozoarias/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/metabolismo , Trypanosoma brucei brucei/metabolismo , Regulación de la Expresión Génica , Proteínas Protozoarias/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Transcripción Genética , Trypanosoma brucei brucei/genética
4.
Mol Cell ; 73(5): 1066-1074.e3, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661982

RESUMEN

Light makes carbon fixation possible, allowing plant and animal life on Earth. We have previously shown that light regulates alternative splicing in plants. Light initiates a chloroplast retrograde signaling that regulates nuclear alternative splicing of a subset of Arabidopsis thaliana transcripts. Here, we show that light promotes RNA polymerase II (Pol II) elongation in the affected genes, whereas in darkness, elongation is lower. These changes in transcription are consistent with elongation causing the observed changes in alternative splicing, as revealed by different drug treatments and genetic evidence. The light control of splicing and elongation is abolished in an Arabidopsis mutant defective in the transcription factor IIS (TFIIS). We report that the chloroplast control of nuclear alternative splicing in plants responds to the kinetic coupling mechanism found in mammalian cells, providing unique evidence that coupling is important for a whole organism to respond to environmental cues.


Asunto(s)
Empalme Alternativo/efectos de la radiación , Arabidopsis/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Plantas Modificadas Genéticamente/efectos de la radiación , ARN de Planta/efectos de la radiación , Elongación de la Transcripción Genética/efectos de la radiación , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oscuridad , Histonas/genética , Histonas/metabolismo , Cinética , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Planta/biosíntesis , ARN de Planta/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA