Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Intervalo de año de publicación
1.
Brain ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39183150

RESUMEN

Monogenic diseases are well-suited paradigms for the causal analysis of disease-driving molecular patterns. Spinal Muscular Atrophy (SMA) is one such monogenic model caused by mutation or deletion of the Survival of motor neuron 1 (SMN1) gene. Although several functions of the SMN protein have been studied, single functions and pathways alone do not allow to identify critical disease-driving molecules. Here, we analyzed the systemic characteristics of SMA employing proteomics, phosphoproteomics, translatomics and interactomics from two mouse models with different disease-severities and genetics. This systems approach revealed sub-networks and proteins characterizing commonalities and differences of both models. To link the identified molecular networks with the disease-causing SMN protein, we combined SMN-interactome data with both proteomes creating a comprehensive representation of SMA. By this approach, disease hubs and bottlenecks between SMN and downstream pathways could be identified. Linking a disease-causing molecule with widespread molecular dysregulations via multiomics is a concept for analyses of monogenic diseases.

2.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063227

RESUMEN

Regulation of translation is a crucial step in gene expression. Developmental signals and environmental stimuli dynamically regulate translation via upstream small open reading frames (uORFs) and ribosome pausing. Recent studies have revealed many plant genes that are specifically regulated by uORF translation following changes in growth conditions, but ribosome-pausing events are less well understood. In this study, we performed ribosome profiling (Ribo-seq) of etiolated maize (Zea mays) seedlings exposed to light for different durations, revealing hundreds of genes specifically regulated at the translation level during the early period of light exposure. We identified over 400 ribosome-pausing events in the dark that were rapidly released after illumination. These results suggested that ribosome pausing negatively regulates translation from specific genes, a conclusion that was supported by a non-targeted proteomics analysis. Importantly, we identified a conserved nucleotide motif downstream of the pausing sites. Our results elucidate the role of ribosome pausing in the control of gene expression in plants; the identification of the cis-element at the pausing sites provides insight into the mechanisms behind translation regulation and potential targets for artificial control of plant translation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Proteínas de Plantas , Biosíntesis de Proteínas , Ribosomas , Plantones , Zea mays , Zea mays/genética , Zea mays/metabolismo , Ribosomas/metabolismo , Plantones/genética , Plantones/metabolismo , Plantones/efectos de la radiación , Plantones/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas de Lectura Abierta/genética , Luz , Oscuridad , Proteómica/métodos
3.
Sci Rep ; 14(1): 12295, 2024 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811812

RESUMEN

Intramuscular fat (IMF) in pork holds significant importance for economic performance within the pig industry and dietary calcium supplementation enhances the accumulation of intramuscular fat. Additionally, calcium ions inhibit translation and reduce protein synthesis. However, the mechanism by which calcium regulates IMF deposition in muscle through translation remains largely unknown. In this study, we compared the ribosome profiles of the longissimus dorsi muscles of Duroc × Landrace × Large white pigs from the normal calcium (NC) group or calcium supplement (HC) group by Ribo-seq, and RNA-seq. By integrating multiple-omics analysis, we further discovered 437 genes that were transcriptionally unchanged but translationally altered and these genes were significantly enriched in the oxidative phosphorylation signaling pathway. Furthermore, experimental data showed that inhibiting the expression of COX10 and mtND4L increased triglyceride accumulation in C2C12 cells, providing new targets for intramuscular fat deposition. Finally, this work links dietary calcium, translation regulation and IMF deposition, providing a new strategy for both meat quality and economic performance within the pig industry.


Asunto(s)
Calcio de la Dieta , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Porcinos , Calcio de la Dieta/metabolismo , Tejido Adiposo/metabolismo , Suplementos Dietéticos , Ratones , Biosíntesis de Proteínas/efectos de los fármacos , Triglicéridos/metabolismo , Calcio/metabolismo
4.
Biomark Res ; 12(1): 11, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273337

RESUMEN

Neoplastic cells need to adapt their gene expression pattern to survive in an ever-changing or unfavorable tumor microenvironment. Protein synthesis (or mRNA translation), an essential part of gene expression, is dysregulated in cancer. The emergence of distinct translatomic technologies has revolutionized oncological studies to elucidate translational regulatory mechanisms. Ribosome profiling can provide adequate information on diverse aspects of translation by aiding in quantitatively analyzing the intensity of translating ribosome-protected fragments. Here, we review the primary currently used translatomics techniques and highlight their advantages and disadvantages as tools for translatomics studies. Subsequently, we clarified the areas in which ribosome profiling could be applied to better understand translational control. Finally, we summarized the latest advances in cancer studies using ribosome profiling to highlight the extensive application of this powerful and promising translatomic tool.

5.
Viruses ; 15(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38140587

RESUMEN

Avian reovirus (ARV) infection is prevalent in farmed poultry and causes viral arthritis and severe immunosuppression. The spleen plays a very important part in protecting hosts against infectious pathogens. In this research, transcriptome and translatome sequencing technology were combined to investigate the mechanisms of transcriptional and translational regulation in the spleen after ARV infection. On a genome-wide scale, ARV infection can significantly reduce the translation efficiency (TE) of splenic genes. Differentially expressed translational efficiency genes (DTEGs) were identified, including 15 upregulated DTEGs and 396 downregulated DTEGs. These DTEGs were mainly enriched in immune regulation signaling pathways, which indicates that ARV infection reduces the innate immune response in the spleen. In addition, combined analyses revealed that the innate immune response involves the effects of transcriptional and translational regulation. Moreover, we discovered the key gene IL4I1, the most significantly upregulated gene at both the transcriptional and translational levels. Further studies in DF1 cells showed that overexpression of IL4I1 could inhibit the replication of ARV, while inhibiting the expression of endogenous IL4I1 with siRNA promoted the replication of ARV. Overexpression of IL4I1 significantly downregulated the mRNA expression of IFN-ß, LGP2, TBK1 and NF-κB; however, the expression of these genes was significantly upregulated after inhibition of IL4I1, suggesting that IL4I1 may be a negative feedback effect of innate immune signaling pathways. In addition, there may be an interaction between IL4I1 and ARV σA protein, and we speculate that the IL4I1 protein plays a regulatory role by interacting with the σA protein. This study not only provides a new perspective on the regulatory mechanisms of the innate immune response after ARV infection but also enriches the knowledge of the host defense mechanisms against ARV invasion and the outcome of ARV evasion of the host's innate immune response.


Asunto(s)
Pollos , Orthoreovirus Aviar , Animales , Transcriptoma , Orthoreovirus Aviar/genética , Bazo , Inmunidad Innata , Transducción de Señal , Perfilación de la Expresión Génica
6.
BMC Genomics ; 24(1): 720, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017403

RESUMEN

BACKGROUND: Numerous factors influence the growth and development of cashmere. Existing research on cashmere has predominantly emphasized a single omics level. Integrating multi-omics analyses can offer a more comprehensive understanding by encompassing the entire spectrum. This study more accurately and comprehensively identified the key factors influencing cashmere fineness using multi-omics analysis. METHODS: This study used skin tissues of coarse cashmere type (CT_LCG) and fine cashmere type Liaoning cashmere goats (FT_LCG) for the analysis. This study employed an integrated approach involving transcriptomics, translatomics, proteomics, and metabolomics to identify substances associated with cashmere fineness. The findings were validated using parallel reaction monitoring (PRM) and multiple reaction monitoring (MRM) techniques. RESULTS: The GO functional enrichment analysis identified three common terms: multicellular organismal process, immune system process, and extracellular region. Furthermore, the KEGG enrichment analysis uncovered the involvement of the arachidonic acid metabolic pathway. Protein expression trends were verified using PRM technology. The expression trends of KRT79, as confirmed by PRM, were consistent with those observed in TMT proteomics and exhibited a positive regulatory effect on cashmere fineness. Metabolite expression trends were confirmed using MRM technology. The expression trends of 9 out of 15 validated metabolites were in agreement with those identified in the non-targeted metabolomics analysis. CONCLUSIONS: This study employed multi-omics analysis to identify key regulators of cashmere fineness, including PLA2G12A, KRT79, and prostaglandin B2. The findings of this study offer valuable data and establish a theoretical foundation for conducting comprehensive investigations into the molecular regulatory mechanisms and functional aspects of cashmere fineness.


Asunto(s)
Multiómica , Piel , Animales , Piel/metabolismo , Cabras/genética
7.
Mol Ther Nucleic Acids ; 34: 102037, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37808922

RESUMEN

Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.

8.
J Pharm Anal ; 13(6): 625-639, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37440912

RESUMEN

In non-small cell lung cancer (NSCLC), the heterogeneity promotes drug resistance, and the restricted expression of programmed death-ligand 1 (PD-L1) limits the immunotherapy benefits. Based on the mechanisms related to translation regulation and the association with PD-L1 of methyltransferase-like 3 (METTL3), the novel small-molecule inhibitor STM2457 is assumed to be useful for the treatment of NSCLC. We evaluated the efficacy of STM2457 in vivo and in vitro and confirmed the effects of its inhibition on disease progression. Next, we explored the effect of STM2457 on METTL3 and revealed its effects on the inhibition of catalytic activity and upregulation of METTL3 protein expression. Importantly, we described the genome-wide characteristics of multiple omics data acquired from RNA sequencing, ribosome profiling, and methylated RNA immunoprecipitation sequencing data under STM2457 treatment or METTL3 knockout. We also constructed a model for the regulation of the translation of METTL3 and PD-L1. Finally, we found PD-L1 upregulation by STM2457 in vivo and in vitro. In conclusion, STM2457 is a potential novel suppressor based on its inhibitory effect on tumor progression and may be able to overcome the heterogeneity based on its impact on the translatome. Furthermore, it can improve the immunotherapy outcomes based on PD-L1 upregulation in NSCLC.

9.
Adv Sci (Weinh) ; 10(26): e2301538, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401155

RESUMEN

Abnormal resumption of meiosis and decreased oocyte quality are hallmarks of maternal aging. Transcriptional silencing makes translational control an urgent task during meiosis resumption in maternal aging. However, insights into aging-related translational characteristics and underlying mechanisms are limited. Here, using multi-omics analysis of oocytes, it is found that translatomics during aging is related to changes in the proteome and reveals decreased translational efficiency with aging phenotypes in mouse oocytes. Translational efficiency decrease is associated with the N6-methyladenosine (m6A) modification of transcripts. It is further clarified that m6A reader YTHDF3 is significantly decreased in aged oocytes, inhibiting oocyte meiotic maturation. YTHDF3 intervention perturbs the translatome of oocytes and suppress the translational efficiency of aging-associated maternal factors, such as Hells, to affect the oocyte maturation. Moreover, the translational landscape is profiled in human oocyte aging, and the similar translational changes of epigenetic modifications regulators between human and mice oocyte aging are observed. In particular, due to the translational silence of YTHDF3 in human oocytes, translation activity is not associated with m6A modification, but alternative splicing factor SRSF6. Together, the findings profile the specific translational landscapes during oocyte aging in mice and humans, and uncover non-conservative regulators on translation control in meiosis resumption and maternal aging.


Asunto(s)
Multiómica , Oocitos , Humanos , Ratones , Animales , Anciano , Meiosis/genética , Adenosina , Factores de Empalme Serina-Arginina , Fosfoproteínas
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-991170

RESUMEN

In non-small cell lung cancer(NSCLC),the heterogeneity promotes drug resistance,and the restricted expression of programmed death-ligand 1(PD-L1)limits the immunotherapy benefits.Based on the mechanisms related to translation regulation and the association with PD-L1 of methyltransferase-like 3(METTL3),the novel small-molecule inhibitor STM2457 is assumed to be useful for the treat-ment of NSCLC.We evaluated the efficacy of STM2457 in vivo and in vitro and confirmed the effects of its inhibition on disease progression.Next,we explored the effect of STM2457 on METTL3 and revealed its effects on the inhibition of catalytic activity and upregulation of METTL3 protein expression.Importantly,we described the genome-wide characteristics of multiple omics data ac-quired from RNA sequencing,ribosome profiling,and methylated RNA immunoprecipitation sequencing data under STM2457 treatment or METTL3 knockout.We also constructed a model for the regulation of the translation of METTL3 and PD-L1.Finally,we found PD-Ll upregulation by STM2457 in vivo and in vitro.In conclusion,STM2457 is a potential novel suppressor based on its inhibitory effect on tumor progression and may be able to overcome the heterogeneity based on its impact on the translatome.Furthermore,it can improve the immunotherapy outcomes based on PD-L1 upregulation in NSCLC.

11.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806391

RESUMEN

Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Vesículas Extracelulares/metabolismo , Humanos , Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética
12.
Wiley Interdiscip Rev RNA ; 13(4): e1707, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34979593

RESUMEN

The high-throughput sequencing of cellular RNAs has underscored a broad effect of isoform diversification through alternative splicing on the transcriptome. Moreover, the differential production of transcript isoforms from gene loci has been recognized as a critical mechanism in cell differentiation, organismal development, and disease. Yet, the extent of the impact of alternative splicing on protein production and cellular function remains a matter of debate. Multiple experimental and computational approaches have been developed in recent years to address this question. These studies have unveiled how molecular changes at different steps in the RNA processing pathway can lead to differences in protein production and have functional effects. New and emerging experimental technologies open exciting new opportunities to develop new methods to fully establish the connection between messenger RNA expression and protein production and to further investigate how RNA variation impacts the proteome and cell function. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing Translation > Regulation RNA Evolution and Genomics > Computational Analyses of RNA.


Asunto(s)
Empalme Alternativo , Proteoma , Empalme Alternativo/genética , Isoformas de Proteínas , Proteoma/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo
13.
Front Nutr ; 8: 727785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796193

RESUMEN

Liver is an important organ for fat metabolism. Excessive intake of a high-fat/energy diet is a major cause of hepatic steatosis and its complications such as non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Supplementation with lycopene, a natural compound, is effective in lowering triglyceride levels in the liver, although the underlying mechanism at the translational level is unclear. In this study, mice were fed a high-fat diet (HFD) to induce hepatic steatosis and treated with or without lycopene. Translation omics and transcriptome sequencing were performed on the liver to explore the regulatory mechanism of lycopene in liver steatosis induced by HFD, and identify differentially expressed genes (DEGs). We identified 1,358 DEGs at the translational level. Through transcriptomics and translatomics joint analysis, we narrowed the range of functional genes to 112 DEGs and found that lycopene may affect lipid metabolism by regulating the expression of LPIN1 at the transcriptional and translational levels. This study provides a powerful tool for translatome and transcriptome integration and a new strategy for the screening of candidate genes.

14.
Front Cell Neurosci ; 15: 686722, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248504

RESUMEN

Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.

15.
Trends Plant Sci ; 26(10): 996-998, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34284955

RESUMEN

The plant root is a crucial organ for adaptation to dynamic environments, but to date the degree of functional conservation of root developmental programs has remained unknown. A recent report by Kajala et al. sheds light on the cross-species conservation and repurposing of root gene functions in a manner pertinent to attempts to ensure future yield stability.


Asunto(s)
Raíces de Plantas , Solanum lycopersicum , Aclimatación , Adaptación Fisiológica , Genes de Plantas , Raíces de Plantas/genética
16.
Biol Psychiatry ; 89(12): 1116-1126, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722387

RESUMEN

Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping-particularly in response to severe or repeated stressors-can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.


Asunto(s)
Alostasis , Adaptación Psicológica , Amígdala del Cerebelo , Hipocampo , Homeostasis , Estrés Fisiológico , Estrés Psicológico
17.
Front Genet ; 12: 775499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096002

RESUMEN

Cashmere fineness is an important index to evaluate cashmere quality. Liaoning Cashmere Goat (LCG) has a large cashmere production and long cashmere fiber, but its fineness is not ideal. Therefore, it is important to find genes involved in cashmere fineness that can be used in future endeavors aiming to improve this phenotype. With the continuous advancement of research, the regulation of cashmere fineness has made new developments through high-throughput sequencing and genome-wide association analysis. It has been found that translatomics can identify genes associated with phenotypic traits. Through translatomic analysis, the skin tissue of LCG sample groups differing in cashmere fineness was sequenced by Ribo-seq. With these data, we identified 529 differentially expressed genes between the sample groups among the 27197 expressed genes. From these, 343 genes were upregulated in the fine LCG group in relation to the coarse LCG group, and 186 were downregulated in the same relationship. Through GO enrichment analysis and KEGG enrichment analysis of differential genes, the biological functions and pathways of differential genes can be found. In the GO enrichment analysis, 491 genes were significantly enriched, and the functional region was mainly in the extracellular region. In the KEGG enrichment analysis, the enrichment of the human papillomavirus infection pathway was seen the most. We found that the COL6A5 gene may affect cashmere fineness.

18.
RNA Biol ; 18(6): 863-874, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32967529

RESUMEN

Translational regulation plays a critical role in gene expression. However, there are few genome-wide studies on translational regulation in non-alcoholic fatty liver disease (NAFLD), which is a severe non-communicable epidemic worldwide. In this study, we performed RNC-mRNA (mRNAs bound to ribosome-nascent chain complex) sequencing and mRNA sequencing to probe the translation status of high-fat-diet (HFD) induced mouse fatty liver. Generally, in the HFD group compared to the control group, changes of translation ratios and changes in mRNA abundance had a negative correlation. The relative abundance of RNC-mRNAs and mRNAs were positively correlated, yet the former changed more slowly than the latter. However, the rate of change became more balanced when it came to the livers of mice that were fed the HFD plus lycopene, an antioxidant. This indicated relatively independent roles of translational modulation and transcriptional regulation. Furthermore, many genes were differentially regulated at the transcriptional or translational levels, suggesting a new screening strategy for functional genes. In conclusion, our analysis revealed the different and correlated role of translational control with transcriptional regulation in the HFD-induced mouse fatty liver relative to the control, which indicates critical roles of translational control for liver steatosis; thus, adding a new dimension towards a better understanding and improvement of treatment for NAFLD.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Enfermedad del Hígado Graso no Alcohólico/genética , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Animales , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Metilación , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Triglicéridos/metabolismo
19.
Front Genet ; 11: 599548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408739

RESUMEN

Most neurological disorders are caused by abnormal gene translation. Generally, dysregulation of elements involved in the translational process disrupts homeostasis in neurons and neuroglia. Better understanding of how the gene translation process occurs requires detailed analysis of transcriptomic and proteomic profile data. However, a lack of strictly direct correlations between mRNA and protein levels limits translational investigation by combining transcriptomic and proteomic profiling. The much better correlation between proteins and translated mRNAs than total mRNAs in abundance and insufficiently sensitive proteomics approach promote the requirement of advances in translatomics technology. Translatomics which capture and sequence the mRNAs associated with ribosomes has been effective in identifying translational changes by genetics or projections, ribosome stalling, local translation, and transcript isoforms in the nervous system. Here, we place emphasis on the main three translatomics methods currently used to profile mRNAs attached to ribosome-nascent chain complex (RNC-mRNA). Their prominent applications in neurological diseases including glioma, neuropathic pain, depression, fragile X syndrome (FXS), neurodegenerative disorders are outlined. The content reviewed here expands our understanding on the contributions of aberrant translation to neurological disease development.

20.
Front Synaptic Neurosci ; 12: 615059, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469427

RESUMEN

A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA