Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
J Environ Manage ; 366: 121630, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986381

RESUMEN

The coupling of microscale zero-valent iron (mZVI) and anaerobic bacteria (AB) has gained increasing attention due to its ability to enhance dechlorination efficiency by combining the advantages of chemical and microbial reduction. However, the implementation of these coupling technologies at the field scale is challenging in terms of sustainability goals due to the coexistence of various natural electron acceptors in groundwater, which leads to limited electron selectivity and increased secondary risk. Therefore, this study used trichloroethylene (TCE) as a probe contaminant and nitrate (NO3-) as a typical co-occurring natural electron acceptor to optimize the overall sustainable remediation performance of an mZVI/AB coupled system by adjusting the mZVI particle size and dosage. Results revealed that mZVI particles of different sizes exhibit different microorganism activation capabilities. In contrast to its 2 µm and 7 µm counterparts, the 30 µm mZVI/AB system demonstrated a strong dosage-dependency in TCE removal and its product selectivity. Finally, multi-criteria analysis (MCA) methods were established to comprehensively rank the alternatives, and 30 µm mZVI (15 g/L dosage) was determined to be the best remediation strategy with the highest total sustainability score under all studied hydro-chemical conditions when equal weights were applied to technical, environmental, and economic indicators. Our work provides a paradigm for comprehensively assessing the sustainable remediation performance of chlorinated aliphatic hydrocarbons polluted groundwater in practical applications.

2.
Mov Disord ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988230

RESUMEN

BACKGROUND: We recently reported an increased risk of Parkinson's disease (PD) in service members who resided at Marine Base Camp Lejeune, North Carolina, when water supplies were contaminated with trichloroethylene and other volatile organic compounds (VOCs). Prior studies suggest that environmental exposures may affect PD phenotype or progression, but this has not been reported for VOCs. OBJECTIVE: The objective of this study was to test whether PD progression is faster in individuals exposed to VOCs in water at Camp Lejeune. METHODS: A cohort of 172,128 marines residing at Camp Lejeune between 1975 and 1985 was previously assembled. We identified individuals with PD in Veterans Health Administration and Medicare databases between 2000 and 2021. Using estimates derived by the US Agency for Toxic Substances and Disease Registry, we classified individuals as exposed or unexposed to VOCs in residential water. We used Kaplan-Meier and Cox regression models to test differences between exposed and unexposed groups in the time from PD diagnosis until psychosis, fracture, fall, or death. RESULTS: Among 270 persons with PD, 177 (65.6%) were exposed to VOCs in residential water. Median cumulative exposure was 4970 µg/L-months, >50-fold the permissible level. Time until psychosis, fracture, and fall were all shorter in the exposed group, with adjusted hazard ratios (HRs) exceeding 2: psychosis HR, 2.19 (95% confidence interval [CI]: 0.99-4.83); fracture HR, 2.44 (95% CI: 0.91-6.55); and fall HR, 2.64 (95% CI: 0.97-7.21). A significant dose response was observed for time to fall (P trend, 0.032). No differences were observed for time until death. CONCLUSIONS: PD progression may be faster in persons exposed to trichloroethylene and other VOCs in water decades earlier. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

3.
Environ Health ; 23(1): 61, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961410

RESUMEN

BACKGROUND: Drinking water at U.S. Marine Corps Base (MCB) Camp Lejeune, North Carolina was contaminated with trichloroethylene and other industrial solvents from 1953 to 1985. METHODS: A cohort mortality study was conducted of Marines/Navy personnel who, between 1975 and 1985, began service and were stationed at Camp Lejeune (N = 159,128) or MCB Camp Pendleton, California (N = 168,406), and civilian workers employed at Camp Lejeune (N = 7,332) or Camp Pendleton (N = 6,677) between October 1972 and December 1985. Camp Pendleton's drinking water was not contaminated with industrial solvents. Mortality follow-up was between 1979 and 2018. Proportional hazards regression was used to calculate adjusted hazard ratios (aHRs) comparing mortality rates between Camp Lejeune and Camp Pendleton cohorts. The ratio of upper and lower 95% confidence interval (CI) limits, or CIR, was used to evaluate the precision of aHRs. The study focused on underlying causes of death with aHRs ≥ 1.20 and CIRs ≤ 3. RESULTS: Deaths among Camp Lejeune and Camp Pendleton Marines/Navy personnel totaled 19,250 and 21,134, respectively. Deaths among Camp Lejeune and Camp Pendleton civilian workers totaled 3,055 and 3,280, respectively. Compared to Camp Pendleton Marines/Navy personnel, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for cancers of the kidney (aHR = 1.21, 95% CI: 0.95, 1.54), esophagus (aHR = 1.24, 95% CI: 1.00, 1.54) and female breast (aHR = 1.20, 95% CI: 0.73, 1.98). Causes of death with aHRs ≥ 1.20 and CIR > 3, included Parkinson disease, myelodysplastic syndrome and cancers of the testes, cervix and ovary. Compared to Camp Pendleton civilian workers, Camp Lejeune had aHRs ≥ 1.20 with CIRs ≤ 3 for chronic kidney disease (aHR = 1.88, 95% CI: 1.13, 3.11) and Parkinson disease (aHR = 1.21, 95% CI: 0.72, 2.04). Female breast cancer had an aHR of 1.19 (95% CI: 0.76, 1.88), and aHRs ≥ 1.20 with CIRs > 3 were observed for kidney and pharyngeal cancers, melanoma, Hodgkin lymphoma, and chronic myeloid leukemia. Quantitative bias analyses indicated that confounding due to smoking and alcohol consumption would not appreciably impact the findings. CONCLUSION: Marines/Navy personnel and civilian workers likely exposed to contaminated drinking water at Camp Lejeune had increased hazard ratios for several causes of death compared to Camp Pendleton.


Asunto(s)
Agua Potable , Personal Militar , Exposición Profesional , Humanos , Masculino , Personal Militar/estadística & datos numéricos , Adulto , Femenino , Estudios de Cohortes , North Carolina/epidemiología , Agua Potable/análisis , Exposición Profesional/efectos adversos , Persona de Mediana Edad , Adulto Joven , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/efectos adversos , Tricloroetileno/análisis , Mortalidad
4.
Environ Res ; 258: 119457, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906444

RESUMEN

Mud volcanoes are dynamic geological features releasing methane (CH4), carbon dioxide (CO2), and hydrocarbons, harboring diverse methane and hydrocarbon-degrading microbes. However, the potential application of these microbial communities in chlorinated hydrocarbons bioremediation purposes such as trichloroethylene (TCE) has not yet been explored. Hence, this study investigated the mud volcano's microbial diversity functional potentiality in TCE degradation as well as their eco-physiological profiling using metabolic activity. Geochemical analysis of the mud volcano samples revealed variations in pH, temperature, and oxidation-reduction potential, indicating diverse environmental conditions. The Biolog Ecoplate™ carbon substrates utilization pattern showed that the Tween 80 was highly consumed by mud volcanic microbial community. Similarly, MicroResp® analysis results demonstrated that presence of additive C-substrates condition might enhanced the cellular respiration process within mud-volcanic microbial community. Full-length 16 S rRNA sequencing identified Proteobacteria as the dominant phylum, with genera like Pseudomonas and Hydrogenophaga associated with chloroalkane degradation, and methanotrophic bacteria such as Methylomicrobium and Methylophaga linked to methane oxidation. Functional analysis uncovered diverse metabolic functions, including sulfur and methane metabolism and hydrocarbon degradation, with specific genes involved in methane oxidation and sulfur metabolism. These findings provide insights into the microbial diversity and metabolic capabilities of mud volcano ecosystems, which could facilitate their effective application in the bioremediation of chlorinated compounds.

5.
Environ Res ; 255: 119193, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777296

RESUMEN

The biodegradation of Trichloroethylene (TCE) is limited by low microbial metabolic capacity but can be enhanced through biostimulation strategies. This study explored the physiological effects and potential molecular mechanisms of the yeast Yarrowia lipolytica extracellular metabolites (YEMs) on the degradation of TCE by Acinetobacter LT1. Results indicated that YEMs stimulated the efficiency of strain LT1 by 50.28%. At the physiological level, YEMs exhibited protective effects on cell morphology, reduced oxidative stress, lessened membrane damage, and enhanced energy production and conversion. Analysis of omics results revealed that the regulation of various metabolic pathways by YEMs improved the degradation of TCE. Furthermore, RT-qPCR showed that the genes encoding YhhW protein in TCE stress and YEMs stimulation groups were 1.72 and 3.22 times the control group, respectively. Molecular docking results showed that the conformation of YhhW after binding to TCE changed into a more active form, which enhanced enzyme activity. Therefore, it is speculated that YhhW is the primary degradative enzyme involved in the process of YEMs stimulating strain LT1 to degrade TCE. These results reveal how YEMs induce strain LT1 to enhance TCE degradation.


Asunto(s)
Biodegradación Ambiental , Tricloroetileno , Yarrowia , Tricloroetileno/metabolismo , Yarrowia/metabolismo , Yarrowia/genética , Acinetobacter/metabolismo , Acinetobacter/genética , Simulación del Acoplamiento Molecular
6.
Ecotoxicol Environ Saf ; 278: 116433, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714087

RESUMEN

Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Factor 1 Regulador del Interferón , Interferón gamma , Tricloroetileno , Factor de Necrosis Tumoral alfa , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Riñón/efectos de los fármacos , Tricloroetileno/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , Femenino , Ratones Endogámicos BALB C
7.
Cell Biol Int ; 48(8): 1148-1159, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38800986

RESUMEN

Trichloroethylene (TCE) is a commonly used organic solvent in industry. Our previous studies have found that TCE can cause liver injury accompanied by macrophage polarization, but the specific mechanism is unclear. The epigenetic regulation of macrophage polarization is mainly focused on histone modification. Histone lysine demethylase 4A (KDM4A) is involved in the activation of macrophages. In this study, we used a mouse model we investigated the role of KDM4A in the livers of TCE-drinking mice and found that the expression of KDM4A, M1-type polarization indicators, and related inflammatory factors in the livers of TCE-drinking mice. In the study, BALB/c mice were randomly divided into four groups: 2.5 mg/mL TCE dose group and 5.0 mg/mL TCE dose group, the vehicle control group, and the blank control group. We found that TCE triggered M1 polarization of mouse macrophages, characterized by the expression of CD11c and robust production of inflammatory cytokines. Notably, exposure to TCE resulted in markedly increased expression of KDM4A in macrophages. Functionally, the increased expression of KDM4A significantly impaired the expression of H3K9me3 and H3K9me2 and increased the expression of H3K9me1. In addition, KDM4A potentially represents a novel epigenetic modulator, with its upregulation connected to ß-catenin activation, a signal critical for the pro-inflammatory activation of macrophages. Furthermore, KDM4A inhibitor JIB-04 treatment resulted in a decrease in ß-catenin expression and prevented TCE-induced M1 polarization and the expression of the pro-inflammatory cytokines TNF-α and IL-1ß. These results suggest that the association of KDM4A and Wnt/ß-catenin cooperatively establishes the activation and polarization of macrophages and global changes in H3K9me3/me2/me1. Our findings identify KDM4A as an essential regulator of the polarization of macrophages and the expression of inflammatory cytokines, which might serve as a potential target for preventing and treating liver injury caused by TCE.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji , Macrófagos , Ratones Endogámicos BALB C , Tricloroetileno , Animales , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Tricloroetileno/toxicidad , Activación de Macrófagos/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Citocinas/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Histona Demetilasas
8.
Bull Environ Contam Toxicol ; 112(5): 70, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676752

RESUMEN

Trichloroethylene (TCE) poses a potentially toxic threat to humans and the environment and widely exists in contaminated sites. White rot fungi effectively degrade refractory pollutants, while a few research studies use white rot fungi to degrade TCE. In this study, we investigated TCE biodegradation by white rot fungi and the potential influencing factors in the environment and attempted to research the effect of TCE on the physiological characteristics of white rot fungi. White rot fungi (Trametes versicolor, Pseudotrametes gibbosa, Pycnoporus sanguines and Pleurotus ostreatus) were added to the liquid medium for shock culture. The results revealed that T. versicolor exhibited the most pronounced efficacy in removing TCE, with a degradation rate of 81.10% within a 7 d period. TCE induces and is degraded by cytochrome P450 enzymes. High pH and Cr(VI) adversely affected the effectiveness of the biodegradation of TCE, but the salinity range of 0-1% had less effect on biodegradation. Overall, the effectiveness of degradation of TCE by T. versicolor has been demonstrated, and it provides a reference for the application prospects of white rot fungi in TCE-contaminated soils.


Asunto(s)
Biodegradación Ambiental , Tricloroetileno , Tricloroetileno/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Polyporaceae/metabolismo
9.
Int J Neurosci ; : 1-18, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38598315

RESUMEN

AIM: The current investigation's goals are to pharmacologically evaluate the neurotherapeutic role of the bioactive compound Alpha Pinene (ALP)-loaded Self-emulsifying nano-formulation (SENF) in neurotoxin (Rotenone and the Industrial Solvent Trichloroethylene)- induced dopaminergic loss. It is believed that these models simulate important aspects of the molecular pathogenesis of Parkinson's disease. MATERIAL AND METHODS: The ALP-nano-formulation's anti-Parkinson's activity was compared to ALP suspension in Wistar rats after rotenone and trichloro ethylene-induced dopaminergic loss. Neurobehavioral and motor performances were measured on the 14th, 21st, and 28th day in the rotenone model. However, in the trichloroethylene model, it was measured from the 4th to the 8th week. RESULTS: Significant neurobehavioral improvement has been found in ALP-SENF treated animals then untreated and animals treated with plain ALP suspension. Furthermore, biochemical tests reveal marked expression of catalase, glutathione, and superoxide dismutase, which significantly combat the (Oxidative stress) OS-induced neurodegeneration. CONCLUSION: The antioxidant effect of ALP-SENF likely includes free radicals neutralization and the activation of enzymes associated with antioxidant activity, leading to the enhancement of neurobehavioral abnormalities caused by rotenone and trichloroethylene.

10.
J Parkinsons Dis ; 14(3): 363-381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38607765

RESUMEN

The brain- and body-first models of Lewy body disorders predict that aggregated alpha-synuclein pathology usually begins in either the olfactory system or the enteric nervous system. In both scenarios the pathology seems to arise in structures that are closely connected to the outside world. Environmental toxicants, including certain pesticides, industrial chemicals, and air pollution are therefore plausible trigger mechanisms for Parkinson's disease and dementia with Lewy bodies. Here, we propose that toxicants inhaled through the nose can lead to pathological changes in alpha-synuclein in the olfactory system that subsequently spread and give rise to a brain-first subtype of Lewy body disease. Similarly, ingested toxicants can pass through the gut and cause alpha-synuclein pathology that then extends via parasympathetic and sympathetic pathways to ultimately produce a body-first subtype. The resulting spread can be tracked by the development of symptoms, clinical assessments, in vivo imaging, and ultimately pathological examination. The integration of environmental exposures into the brain-first and body-first models generates testable hypotheses, including on the prevalence of the clinical conditions, their future incidence, imaging patterns, and pathological signatures. The proposed link, though, has limitations and leaves many questions unanswered, such as the role of the skin, the influence of the microbiome, and the effects of ongoing exposures. Despite these limitations, the interaction of exogenous factors with the nose and the gut may explain many of the mysteries of Parkinson's disease and open the door toward the ultimate goal -prevention.


Asunto(s)
Exposición a Riesgos Ambientales , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/etiología , Exposición a Riesgos Ambientales/efectos adversos , Encéfalo/patología , Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , alfa-Sinucleína/metabolismo
11.
Water Res ; 256: 121573, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608618

RESUMEN

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Asunto(s)
Hidrógeno , Hierro , Hidrógeno/química , Hierro/química , Oxidación-Reducción
12.
Water Sci Technol ; 89(8): 1981-1995, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678403

RESUMEN

Biochar (BC) was used to remove trichloroethylene (TCE) from soil and water phases, and BC modification changed the sorption behavior of pollutants. Microplastics are emerging pollutants in the soil and water phases. Whether microplastics can affect the sorption of TCE by modified BC is not clear. Thus, batch sorption kinetics and isotherm experiments were conducted to elucidate the sorption of TCE on BC, and BC combined with polyethylene (PE) or polystyrene (PS). The results showed that HCl and NaOH modification increased TCE sorption on BC, while HNO3 modification inhibited TCE sorption on BC. When PE/PS and BC coexisted, the TCE sorption capacity decreased significantly on BC-CK + PE, BC-HCl + PE, BC-HNO3 + PE, BC-NaOH + PE, and BC-NaOH + PS, which was likely due to the preferential sorption of PE/PS on BC samples. We concluded that microplastics can change TCE sorption behavior and inhibit TCE sorption on BC samples. Thus, the interaction of BC and microplastics should be considered when BC is used for TCE removal in soil and water remediation.


Asunto(s)
Carbón Orgánico , Microplásticos , Tricloroetileno , Tricloroetileno/química , Carbón Orgánico/química , Adsorción , Microplásticos/química , Contaminantes Químicos del Agua/química , Cinética , Polietileno/química
13.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615641

RESUMEN

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Asunto(s)
ADN Mitocondrial , Hepatocitos , Estrés Oxidativo , Receptor Toll-Like 9 , Tricloroetileno , Animales , Ratones , Hepatocitos/efectos de los fármacos , Tricloroetileno/toxicidad , Receptor Toll-Like 9/metabolismo , Estrés Oxidativo/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células RAW 264.7 , Enfermedad Hepática Inducida por Sustancias y Drogas , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
14.
Toxicol Sci ; 199(2): 289-300, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38518092

RESUMEN

Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.


Asunto(s)
Metilación de ADN , Células TH1 , Tricloroetileno , Animales , Tricloroetileno/toxicidad , Metilación de ADN/efectos de los fármacos , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Femenino , Masculino , Ratones , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Ratones Endogámicos MRL lpr , Regulación de la Expresión Génica/efectos de los fármacos , Interferón gamma/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/inducido químicamente , Enfermedades Autoinmunes/genética , Epigénesis Genética/efectos de los fármacos , Autoinmunidad/efectos de los fármacos
15.
Sci Total Environ ; 923: 171378, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447712

RESUMEN

Trichloroethylene (TCE) is a common environmental contaminant that can cause a severe allergic reaction called TCE hypersensitivity syndrome, which often implicates the patient's kidneys. Our previous study revealed that C5b-9-induced tubular ferroptosis is involved in TCE-caused kidney damage. However, the study did not explain how tubule-specific C5b-9 causes free iron overload, a key event in ferroptosis. Here, we aimed to explore the role of NCOA4-mediated ferritinophagy in C5b-9-induced iron overload and ferroptosis in TCE-sensitized mice. Our results showed that TCE sensitization does not affect iron import or export, but does affect iron storage, causing ferritin degradation and free iron overload. In addition, mitochondrial ROS was upregulated, and these changes were blocked by C5b-9 inhibition. Interestingly, TCE-induced ferritin degradation and ferroptosis were significantly antagonized by the application of the mitochondrial ROS inhibitor, Mito-TEMPO. Moreover, all of these modes of action were further verified in C5b-9-attack signalling HK-2 cells. Further investigation demonstrated that C5b-9-upregulated mitochondrial ROS induced a marked increase in nuclear receptor coactivator 4 (NCOA4), a master regulator of ferritinophagy. In addition, the application of NCOA4 small interfering RNA not only significantly reversed ferritinophagy caused by C5b-9 but also reduced C5b-9-induced ferroptosis in HK-2 cells. Taken together, these results suggest that tubule-specific C5b-9 deposition activates NCOA4 through the upregulation of mitochondrial ROS, causing ferritin degradation and elevated free iron, which ultimately leads to tubular epithelial cell ferroptosis and kidney injury in TCE-sensitized mice.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Tricloroetileno , Animales , Ratones , Humanos , Tricloroetileno/toxicidad , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hierro/toxicidad , Hierro/metabolismo , Ferritinas/metabolismo , Células Epiteliales
16.
Chemosphere ; 355: 141726, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521105

RESUMEN

Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Carboximetilcelulosa de Sodio , Hierro , Azufre , Polímeros
17.
Chemosphere ; 354: 141634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462189

RESUMEN

The complexity of the subsurface contaminated by chlorinated solvents such as trichloroethylene (TCE) makes it challenging to gain a complete understanding of contamination distribution and establish a conceptual site model (CSM). High-resolution vertical contaminant concentration profiling across both the unsaturated zone and the saturated aquifer is desirable for mapping the distribution of contamination. A Fick's law-based polydimethylsiloxane (PDMS) dialysis passive sampler was developed and evaluated on a field scale for its potential application. This study tests the passive sampler at two TCE contaminated sites, and the sampling results were compared with the results from different sampling methods based on the relative percent difference. The PDMS dialysis passive sampler obtained more representative soil gas concentrations in the unsaturated zone than a portable monitoring and sampling device, which caused soil gas flow disturbance by soil gas pumping during sample collection. In the saturated aquifer sampling, the results obtained by the PDMS dialysis passive sampler correlated well with those obtained by a commercial polyethylene passive diffusion bag, and exhibited higher sensitivity under low TCE concentration conditions. Furthermore, the PDMS dialysis passive samplers were densely deployed inside each monitoring well at multiple depths, at two sites, to achieve high-resolution monitoring across the unsaturated zone and saturated aquifer. Based on the PDMS dialysis sampler data, a more comprehensive three-dimensional CSM was systematically established.


Asunto(s)
Tricloroetileno , Contaminantes Químicos del Agua , Solventes/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Diálisis Renal , Tricloroetileno/análisis , Dimetilpolisiloxanos , Suelo
18.
Biochem Pharmacol ; : 116181, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38556029

RESUMEN

The tripeptide glutathione (GSH) possesses two key structural features, namely the nucleophilic sulfur and the γ-glutamyl isopeptide bond. The former allows GSH to serve as a critical antioxidant and anti-electrophile. The latter allows GSH to translocate throughout the systemic circulation without being degraded. The kidneys exhibit several unique processes for handling GSH. This includes the extraction of 80% of plasma GSH, in part by glomerular filtration but mostly by transport across the basolateral plasma membrane. Studies on the protective effect of exogenous GSH are summarized, showing the different inherent susceptibility of proximal tubular and distal tubular cells and the impact on pathological or disease states, including hypoxia, diabetic nephropathy, and compensatory renal growth associated with uninephrectomy. Studies on mitochondrial GSH transport show the coordination between the citric acid cycle and oxidative phosphorylation in generating driving forces for both plasma membrane and mitochondrial carriers. The strong protective effects of increasing expression and activity of these carriers against oxidants and mitochondrial toxicants are summarized. Although GSH plays a cytoprotective role in most situations, two distinct exceptions to this are presented. In contrast to expectations, overexpression of the mitochondrial 2-oxoglutarate carrier markedly increased cell death from exposure to the nephrotoxic chemotherapeutic drug cisplatin (CDDP). Another key example of GSH serving a bioactivation role in the kidneys, rather than a detoxification role, is the metabolism of halogenated alkenes such as trichloroethylene (TCE). Although considerable research has gone into this topic, unanswered questions and emerging topics remain and are discussed.

19.
Ecotoxicol Environ Saf ; 274: 116174, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471344

RESUMEN

Trichloroethylene (TCE)-induced hypersensitivity syndrome (THS) has been a concern for many researchers in the field of environmental and occupational health. Currently, there is no specific treatment for THS, leaving patients to contend with severe infections arising from extensive skin lesions, consequently leading to serious adverse effects. However, the pathogenesis of severe skin damage in THS remains unclear. This study aims to investigate the specific danger signals and mechanisms underlying skin damage in THS through in vivo and in vitro experiments. We identified that cell supernatant containing 15 kDa granulysin (GNLY), released from activated CD3-CD56+NK cells or CD3+CD56+NKT cells in PBMC induced by TCE or its metabolite, promoted apoptosis in HaCaT cells. The apoptosis level decreased upon neutralization of GNLY in the supernatant by a GNLY-neutralizing antibody in HaCaT cells. Subcutaneous injection of recombinant 15 kDa GNLY exacerbated skin damage in the THS mouse model and better mimicked patients' disease states. Recombinant 15 kDa GNLY could directly induce cellular communication disorders, inflammation, and apoptosis in HaCaT cells. In addition to its cytotoxic effects, GNLY released from TCE-activated NK cells and NKT cells or synthesized GNLY alone could induce aberrant expression of the E3 ubiquitin ligase PDZRN3, causing dysregulation of the ubiquitination of the cell itself. Consequently, this resulted in the persistent opening of gap junctions composed of connexin43, thereby intensifying cellular inflammation and apoptosis through the "bystander effect". This study provides experimental evidence elucidating the mechanisms of THS skin damage and offers a novel theoretical foundation for the development of effective therapies targeting severe dermatitis induced by chemicals or drugs.


Asunto(s)
Tricloroetileno , Ubiquitina-Proteína Ligasas , Animales , Ratones , Conexina 43/metabolismo , Hipersensibilidad/genética , Hipersensibilidad/metabolismo , Inflamación/patología , Células Asesinas Naturales , Leucocitos Mononucleares , Enfermedades de la Piel/inducido químicamente , Enfermedades de la Piel/genética , Tricloroetileno/toxicidad , Ubiquitina-Proteína Ligasas/metabolismo , Humanos
20.
Food Chem Toxicol ; 187: 114594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485042

RESUMEN

Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.


Asunto(s)
Tricloroetileno , Humanos , Animales , Ratones , Tricloroetileno/toxicidad , Tricloroetileno/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Solventes , Uniones Comunicantes/metabolismo , Inflamación/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA