Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Digit Imaging ; 36(4): 1608-1623, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37012446

RESUMEN

Segmentation of tumor regions in H &E-stained slides is an important task for a pathologist while diagnosing different types of cancer, including oral squamous cell carcinoma (OSCC). Histological image segmentation is often constrained by the availability of labeled training data since labeling histological images is a highly skilled, complex, and time-consuming task. Thus, data augmentation strategies become essential to train convolutional neural networks models to overcome the overfitting problem when only a few training samples are available. This paper proposes a new data augmentation strategy, named Random Composition Augmentation (RCAug), to train fully convolutional networks (FCN) to segment OSCC tumor regions in H &E-stained histological images. Given the input image and their corresponding label, a pipeline with a random composition of geometric, distortion, color transfer, and generative image transformations is executed on the fly. Experimental evaluations were performed using an FCN-based method to segment OSCC regions through a set of different data augmentation transformations. By using RCAug, we improved the FCN-based segmentation method from 0.51 to 0.81 of intersection-over-union (IOU) in a whole slide image dataset and from 0.65 to 0.69 of IOU in a tissue microarray images dataset.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Carcinoma de Células Escamosas/diagnóstico por imagen , Neoplasias de la Boca/diagnóstico por imagen , Redes Neurales de la Computación
2.
Int J Comput Assist Radiol Surg ; 13(3): 331-342, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29330658

RESUMEN

PURPOSE: Intraoperative ultrasound (iUS) imaging is commonly used to support brain tumor operation. The tumor segmentation in the iUS images is a difficult task and still under improvement because of the low signal-to-noise ratio. The success of automatic methods is also limited due to the high noise sensibility. Therefore, an alternative brain tumor segmentation method in 3D-iUS data using a tumor model obtained from magnetic resonance (MR) data for local MR-iUS registration is presented in this paper. The aim is to enhance the visualization of the brain tumor contours in iUS. METHODS: A multistep approach is proposed. First, a region of interest (ROI) based on the specific patient tumor model is defined. Second, hyperechogenic structures, mainly tumor tissues, are extracted from the ROI of both modalities by using automatic thresholding techniques. Third, the registration is performed over the extracted binary sub-volumes using a similarity measure based on gradient values, and rigid and affine transformations. Finally, the tumor model is aligned with the 3D-iUS data, and its contours are represented. RESULTS: Experiments were successfully conducted on a dataset of 33 patients. The method was evaluated by comparing the tumor segmentation with expert manual delineations using two binary metrics: contour mean distance and Dice index. The proposed segmentation method using local and binary registration was compared with two grayscale-based approaches. The outcomes showed that our approach reached better results in terms of computational time and accuracy than the comparative methods. CONCLUSION: The proposed approach requires limited interaction and reduced computation time, making it relevant for intraoperative use. Experimental results and evaluations were performed offline. The developed tool could be useful for brain tumor resection supporting neurosurgeons to improve tumor border visualization in the iUS volumes.


Asunto(s)
Algoritmos , Neoplasias Encefálicas/diagnóstico , Imagenología Tridimensional/métodos , Procedimientos Neuroquirúrgicos , Cirugía Asistida por Computador/métodos , Ultrasonografía/métodos , Neoplasias Encefálicas/cirugía , Humanos , Reproducibilidad de los Resultados
3.
Acad Radiol ; 22(5): 653-661, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770633

RESUMEN

RATIONALE AND OBJECTIVES: Accurate segmentation of brain tumors, and quantification of tumor volume, is important for diagnosis, monitoring, and planning therapeutic intervention. Manual segmentation is not widely used because of time constraints. Previous efforts have mainly produced methods that are tailored to a particular type of tumor or acquisition protocol and have mostly failed to produce a method that functions on different tumor types and is robust to changes in scanning parameters, resolution, and image quality, thereby limiting their clinical value. Herein, we present a semiautomatic method for tumor segmentation that is fast, accurate, and robust to a wide variation in image quality and resolution. MATERIALS AND METHODS: A semiautomatic segmentation method based on the geodesic distance transform was developed and validated by using it to segment 54 brain tumors. Glioblastomas, meningiomas, and brain metastases were segmented. Qualitative validation was based on physician ratings provided by three clinical experts. Quantitative validation was based on comparing semiautomatic and manual segmentations. RESULTS: Tumor segmentations obtained using manual and automatic methods were compared quantitatively using the Dice measure of overlap. Subjective evaluation was performed by having human experts rate the computerized segmentations on a 0-5 rating scale where 5 indicated perfect segmentation. CONCLUSIONS: The proposed method addresses a significant, unmet need in the field of neuro-oncology. Specifically, this method enables clinicians to obtain accurate and reproducible tumor volumes without the need for manual segmentation.


Asunto(s)
Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Carga Tumoral , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA