Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 38: 101692, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38571553

RESUMEN

In capsaicin biosynthesis, vanillin aminotransferase (VAMT; EC 2.6.1.119) catalyzes the conversion of vanillin (V) to vanillylamine (VA). In vitro analysis of the recombinant VAMT enzyme has been reported; however, this enzyme catalyzed only the V-forming reaction and not the VA-forming reaction, which is inconsistent with the postulated pathway for capsaicin biosynthesis. In this study, we expressed, purified, and characterized functional recombinant VAMT of Capsicum chinense cv. Habanero from an Escherichia coli strain. The enzyme catalyzed reversible transamination between V and VA, and its VA-forming activity was high when γ-aminobutyric acid (GABA) was used as an amino donor. The enzyme exhibited maximum activity at pH 8.0 and 55 °C, and was stable up to 60 °C over a pH range from 4.5 to 8.0. The enzyme was stable in the presence of various chemicals and metal ions. The enzyme accepted several 4-8-carbon long primary amines and ω-amino acids with carbon chains longer than 4 as amino donors despite the narrow specificity of the amino acceptor. Based on its kinetic attributes and localization, VAMT appears to have evolved from GABA-aminotransferase to catalyze reversible transamination between V and VA, and is responsible for VA biosynthesis using GABA as an amino donor in the cytosol of capsicum fruit cells.

2.
Plant J ; 117(5): 1453-1465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38117481

RESUMEN

Pungent capsaicinoid is synthesized only in chili pepper (Capsicum spp.). The production of vanillylamine from vanillin is a unique reaction in the capsaicinoid biosynthesis pathway. Although putative aminotransferase (pAMT) has been isolated as the vanillylamine synthase gene, it is unclear how Capsicum acquired pAMT. Here, we present a phylogenetic overview of pAMT and its homologs. The Capsicum genome contained 5 homologs, including pAMT, CaGABA-T1, CaGABA-T3, and two pseudogenes. Phylogenetic analysis indicated that pAMT is a member of the Solanaceae cytoplasmic GABA-Ts. Comparative genome analysis found that multiple copies of GABA-T exist in a specific Solanaceae genomic region, and the cytoplasmic GABA-Ts other than pAMT are located in the region. The cytoplasmic GABA-T was phylogenetically close to pseudo-GABA-T harboring a plastid transit peptide (pseudo-GABA-T3). This suggested that Solanaceae cytoplasmic GABA-Ts occurred via duplication of a chloroplastic GABA-T ancestor and subsequent loss of the plastid transit signal. The cytoplasmic GABA-T may have been translocated from the specific Solanaceae genomic region during Capsicum divergence, resulting in the current pAMT locus. A recombinant protein assay demonstrated that pAMT had higher vanillylamine synthase activity than those of other plant GABA-Ts. pAMT was expressed exclusively in the placental septum of mature green fruit, whereas tomato orthologs SlGABA-T2/4 exhibit a ubiquitous expression pattern in plants. These findings suggested that both the increased catalytic efficiency and transcriptional changes in pAMT may have contributed to establish vanillylamine synthesis in the capsaicinoid biosynthesis pathway. This study provides insights into the establishment of pungency in the evolution of chili peppers.


Asunto(s)
Bencilaminas , Capsicum , Solanaceae , Embarazo , Femenino , Humanos , Capsicum/metabolismo , Capsaicina/metabolismo , Transaminasas/metabolismo , Filogenia , Placenta/metabolismo , Solanaceae/genética , Solanaceae/metabolismo , Óxido Nítrico Sintasa/genética , Ácido gamma-Aminobutírico/metabolismo , Frutas/genética , Frutas/metabolismo
3.
Biochem Biophys Res Commun ; 680: 86-92, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37729777

RESUMEN

Some Capsicum synthesize a unique pungent alkaloid called capsaicin in their fruits. In the synthetic pathway of capsaicin, vanillylamine is produced from vanillin in a reaction catalyzed by a putative aminotransferase (pAMT). Therefore, the capsaicinoids content in the fruits is thought to partially depend on the characteristics of pAMT. Comparing Yume-matsuri (yume), C. annuum variety, and red habanero (RH), C. chinense variety, the vanillylamine synthesis activity of the placental extract was higher in yume than in RH. When each recombinant pAMT (rpAMT) was generated using the Escherichia coli expression system and their activities were compared, yume rpAMT synthesized 14-fold more vanillylamine than RH rpAMT. The amino acid sequence of yume and RH pAMT deduced from the cDNAs revealed that only 7 of 459 residues differed. When a single amino acid residue-substituted rpAMT was generated in which the 56th amino acid was swapped with one other, the amount of vanillylamine synthesis of yume and RH rpAMTs was inverted. Furthermore, it was suggested that the 56th amino acid contributed to the affinity for the coenzyme pyridoxal phosphate. Differences in the vanillylamine synthesis activity of pAMT may also lead to differences in the amount of capsaicin synthesis that accumulates in the fruit. Since capsaicin is a compound with commercial value, this finding may provide new insights into the creation of a variety that can synthesize more capsaicin.

4.
Bioresour Technol ; 385: 129453, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37406835

RESUMEN

Vanillylamine, as an important drug precursor and fine chemical intermediate, has great economic value. By constructing a strategy of double enzyme co-expression, one newly constructed recombinant E. coli HNIQLE-AlaDH expressing ω-transaminase from Aspergillus terreus and alanine dehydrogenase from Bacillus subtilis was firstly used aminate lignin-derived vanillin to vanillylamine by using a relatively low dosage of amine donors (vanillin:L-alanine:isopropylamine = 1:1:1, mol/mol/mol). In addition, in a two-phase system (water:petroleum ether = 80:20 v/v), the bioconversion of vanillin to vanillylamine was catalyzed by HNIQLE-AlaDH cell under the ambient condition, and the vanillylamine yield was 71.5%, respectively. This double-enzyme HNIQLE-AlaDH catalytic strategy was applied to catalyze the bioamination of furfural and 5-hydroxymethylfurfural with high amination efficiency. It showed that the double-enzyme catalytic strategy in this study promoted L-alanine to replace D-alanine to participate in bioamination of vanillin and its derivatives, showing a great prospect in the green biosynthesis of biobased chemicals from biomass.


Asunto(s)
Alanina-Deshidrogenasa , Escherichia coli , Escherichia coli/genética , Lignina , Transaminasas/genética , Agua , Alanina
5.
Bioresour Technol ; 384: 129292, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295479

RESUMEN

Lignin is a critical biopolymer for creating a large number of highly valuable biobased compounds. Vanillin, one of lignin-derived aromatics, can be used to synthesize vanillylamine that is a key fine chemical and pharmaceutical intermediate. To produce vanillylamine, a productive whole-cell-catalyzed biotransformation of vanillin was developed in deep eutectic solvent - surfactant - H2O media. One newly created recombinant E. coli 30CA cells expressing ω-transaminase and L-alanine dehydrogenase was employed to transform 50 mM and 60 mM vanillin into vanillylamine in the yield of 82.2% and 8.5% under 40 °C, respectively. The biotransamination efficiency was enhanced by introducing surfactant PEG-2000 (40 mM) and deep eutectic solvent ChCl:LA (5.0 wt%, pH 8.0), and the highest vanillylamine yield reached 90.0% from 60 mM vanillin. Building an effective bioprocess was utilized for transamination of lignin-derived vanillin to vanillylamine with newly created bacteria in an eco-friendly medium, which had potential application for valorization of lignin to value-added compounds.


Asunto(s)
Escherichia coli , Lignina , Disolventes Eutécticos Profundos , Escherichia coli/metabolismo , Lignina/química , Solventes/metabolismo
6.
Microb Cell Fact ; 21(1): 106, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643562

RESUMEN

BACKGROUND: Capsaicinoids are produced by plants in the Capsicum genus and are the main reason for the pungency of chili pepper fruits. They are strong agonists of TRPV1 (the transient receptor potential cation channel subfamily V member 1) and used as active ingredients in pharmaceuticals for the treatment of pain. The use of bioengineered microorganisms in a fermentation process may be an efficient route for their preparation, as well as for the discovery of (bio-)synthetic capsaicinoids with improved or novel bioactivities. RESULTS: Saccharomyces cerevisiae was engineered to over-express a selection of amide-forming N-acyltransferase and CoA-ligase enzyme cascades using a combinatorial gene assembly method, and was screened for nonivamide production from supplemented vanillylamine and nonanoic acid. Data from this work demonstrate that Tyramine N-hydroxycinnamoyl transferase from Capsicum annuum (CaAT) was most efficient for nonivamide formation in yeast, outcompeting the other candidates including AT3 (Pun1) from Capsicum spp. The CoA-ligase partner with highest activity from the ones evaluated here were from Petunia hybrida (PhCL) and Spingomonas sp. Ibu-2 (IpfF). A yeast strain expressing CaAT and IpfF produced 10.6 mg L-1 nonivamide in a controlled bioreactor setup, demonstrating nonivamide biosynthesis by S. cerevisiae for the first time. CONCLUSIONS: Baker's yeast was engineered for production of nonivamide as a model capsaicinoid, by expressing N-acyltransferases and CoA-ligases of plant and bacterial origin. The constructed yeast platform holds potential for in vivo biocatalytic formation of capsaicinoids and could be a useful tool for the discovery of novel drugs.


Asunto(s)
Capsicum , Saccharomyces cerevisiae , Aciltransferasas/genética , Capsaicina/análogos & derivados , Capsicum/genética , Coenzima A , Frutas , Ligasas , Saccharomyces cerevisiae/genética
7.
Biotechnol Adv ; 59: 107989, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623491

RESUMEN

Capsaicinoids are bioactive alkaloids produced by the chili pepper fruit and are known to be the most potent agonists of the human pain receptor TRPV1 (Transient Receptor Potential Cation Channel Subfamily V Member 1). They are currently produced by extraction from chili pepper fruit or by chemical synthesis. Transfer of the biosynthetic route to a microbial host could enable more efficient capsaicinoid production by fermentation and may also enable the use of synthetic biology to create a diversity of new compounds with potentially improved properties. This review summarises the current state of the art on the biosynthesis of capsaicinoid precursors in baker's yeast, Saccharomyces cerevisiae, and discusses bioengineering strategies for achieving total synthesis from sugar.


Asunto(s)
Capsicum , Saccharomyces cerevisiae , Capsaicina/análisis , Capsaicina/química , Capsaicina/farmacología , Capsicum/química , Frutas/química , Humanos , Saccharomyces cerevisiae/genética
8.
Biosci Biotechnol Biochem ; 78(7): 1242-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25229865

RESUMEN

Long-chain N-vanillyl-acylamides (LCNVAs) were generated from plant oils and vanillylamine (VA) by nucleophilic amidation without any catalytic reagents. The resulting LCNVAs varied according to the fatty acid composition of the plant oil used. Therefore, the LCNVAs contained in Capsicum oleoresins were products that were spontaneously generated from the oleoresin during storage.


Asunto(s)
Amidas/química , Aceites de Plantas/química , Aceite de Soja/química , Bencilaminas/química , Capsaicina/análogos & derivados , Capsaicina/química , Aceite de Oliva , Trioleína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA