Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000534

RESUMEN

In the frame of our diversity-oriented research on multitarget small molecule anticancer agents, utilizing convergent synthetic sequences terminated by Sonogashira coupling reactions, a preliminary selection of representative alkyne-tethered vindoline hybrids was synthesized. The novel hybrids with additional pharmacophoric fragments of well-documented anticancer agents, including FDA-approved tyrosine-kinase inhibitors (imatinib and erlotinib) or ferrocene or chalcone units, were evaluated for their antiproliferative activity on malignant cell lines MDA-MB-231 (triple negative breast cancer), A2780 (ovarian cancer), HeLa (human cervical cancer), and SH-SY5Y (neuroblastoma) as well as on human embryonal lung fibroblast cell line MRC-5, which served as a reference non-malignant cell line for the assessment of the therapeutic window of the tested hybrids. The biological assays identified a trimethoxyphenyl-containing chalcone-vindoline hybrid (36) as a promising lead compound exhibiting submicromolar activity on A2780 cells with a marked therapeutic window.


Asunto(s)
Alquinos , Antineoplásicos , Proliferación Celular , Vinblastina , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Alquinos/química , Alquinos/farmacología , Línea Celular Tumoral , Vinblastina/farmacología , Vinblastina/análogos & derivados , Vinblastina/química , Vinblastina/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Relación Estructura-Actividad
2.
Chem Biodivers ; 21(4): e202301928, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38409504

RESUMEN

This article describes the reaction of vindoline with formaldehyde and trimethyl orthoformate to prepare vindolicine, tris-vindolicinyl methane and higher molecular weight homologues. The synthesis of 10-formyl vindoline as an intermediate allowed further exploration of its chemistry, in particular the reaction with acetone which yielded a symmetrical dimer, which was further reacted with vindoline to give molecules containing three and four vindoline units. These molecules were characterized by NMR and for some of them (vindolicine, 10-formyl vindoline, 10-(1'-(but-1'-en-3'-one))-vindoline) by X-ray crystallography. Depending on the substitution and on the absence of axes of symmetry, the NMR spectra displayed non-equivalent spin systems for the vindoline moieties. The dimer formed from the double condensation of 10-formyl vindoline with acetone showed cytotoxic activity in the micromolar range.


Asunto(s)
Antineoplásicos , Alcaloides de la Vinca , Acetona , Alcaloides de la Vinca/química , Estructura Molecular
3.
Nutrients ; 15(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37447192

RESUMEN

Type 2 diabetes mellitus (T2DM) emerged as a major health care concern in modern society, primarily due to lifestyle changes and dietary habits. Obesity-induced insulin resistance is considered as the major pathogenic factor in T2DM. In this study, we investigated the effect of vindoline, an indole alkaloid of Catharanthus roseus on insulin resistance (IR), oxidative stress and inflammatory responses in dexamethasone (IR inducer)-induced dysfunctional 3T3-L1 adipocytes and high-glucose-induced insulin-resistant L6-myoblast cells. Results showed that dexamethasone-induced dysfunctional 3T3-L1 adipocytes treated with different concentrations of vindoline significantly enhanced basal glucose consumption, accompanied by increased expression of GLUT-4, IRS-1 and adiponectin. Similarly, vindoline-treated insulin-resistant L6 myoblasts exhibited significantly enhanced glycogen content accompanied with upregulation of IRS-1 and GLUT-4. Thus, in vitro studies of vindoline in insulin resistant skeleton muscle and dysfunctional adipocytes confirmed that vindoline treatment significantly mitigated insulin resistance in myotubes and improved functional status of adipocytes. These results demonstrated that vindoline has the potential to be used as a therapeutic agent to ameliorate obesity-induced T2DM-associated insulin resistance profile in adipocytes and skeletal muscles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Mioblastos Esqueléticos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células 3T3-L1 , Glucosa/metabolismo , Adipocitos , Dexametasona/farmacología , Mioblastos Esqueléticos/metabolismo
4.
Front Plant Sci ; 14: 1286584, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38223288

RESUMEN

NAC transcription factors (TFs) are crucial to growth and defense responses in plants. Though NACs have been characterized for their role in several plants, comprehensive information regarding their role in Catharanthus roseus, a perennial ornamental plant, is lacking. Homology modelling was employed to identify and characterize NACs in C. roseus. In-vitro propagation of C. roseus plants was carried out using cell suspension and nodal culture and were elicited with two auxin-antagonists, 5-fluoro Indole Acetic Acid (5-F-IAA) and α-(phenyl ethyl-2-oxo)-Indole-Acetic-Acid (PEO-IAA) for the enhanced production of monoterpenoid indole alkaloids (MIAs) namely catharanthine, vindoline, and vinblastine. Analyses revealed the presence of 47 putative CrNAC genes in the C. roseus genome, primarily localized in the nucleus. Phylogenetic analysis categorized these CrNACs into eight clusters, demonstrating the highest synteny with corresponding genes in Camptotheca acuminata. Additionally, at least one defense or hormone-responsive cis-acting element was identified in the promoter region of all the putative CrNACs. Of the two elicitors, 5-F-IAA was effective at 200 µM to elicit a 3.07-fold increase in catharanthine, 2.76-fold in vindoline, and 2.4-fold in vinblastine production in nodal culture. While a relatively lower increase in MIAs was recorded in suspension culture. Validation of RNA-Seq by qRT-PCR showed upregulated expression of stress-related genes (CrNAC-07 and CrNAC-24), and downregulated expression of growth-related gene (CrNAC-25) in elicited nodal culture of C. roseus. Additionally, the expression of genes involved in the biosynthesis of MIAs was significantly upregulated upon elicitation. The current study provides the first report on the role of CrNACs in regulating the biosynthesis of MIAs.

5.
FASEB J ; 36(11): e22589, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36197455

RESUMEN

Intestinal inflammation and intestinal barrier damage are important pathological changes in Crohn's disease (CD). Vindoline is a natural monomer with anti-inflammatory effects. We employed CD model mice to explore the effect of Vindoline on CD-like colitis and the possible mechanism. Il-10-deficient (Il-10-/- ) mice and wild-type (WT) mice (both aged 15 weeks, male) were used to explore the effect of Vindoline on colitis and intestinal barrier damage, as well as macrophage-mediated inflammation. Bone-marrow-derived macrophages (BMDMs) and colonic organoids from mice were used to explore the inhibitory effect of Vindoline on macrophage-mediated inflammation and the protective effect on inflammation-induced intestinal barrier damage as well as the possible mechanism. We found that Vindoline significantly ameliorated colitis in CD mice, as evidenced by increased weight change and colon length and decreased the colon macroscopic injury score, histological inflammatory score, and the expression of pro-inflammatory mediators. Vindoline also protected against intestinal barrier damage in CD mice. Furthermore, Vindoline inhibited macrophage-mediated inflammation and protected against inflammation-induced intestinal barrier damage in the coculture system. In addition, Vindoline ameliorated colitis in CD mice by protecting against inflammation-induced intestinal barrier damage, which may be caused by inhibition of MAPK signaling pathway. This protective effect suggests that Vindoline has potential value for clinical application in the treatment of CD.


Asunto(s)
Colitis , Enfermedad de Crohn , Animales , Antiinflamatorios/farmacología , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Colon/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Inflamación/patología , Mediadores de Inflamación/farmacología , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Vinblastina/análogos & derivados
6.
Front Genet ; 13: 867064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873460

RESUMEN

Catharanthus roseus produces terpenoid indole alkaloids (TIAs) of high medicinal importance. The current research focuses on finding an efficient production system such as cell suspension cultures for high TIA concentrations. Catharanthus roseus cambial meristematic cells (CMCs) offer multiple advantages over dedifferentiated cells (DDCs) regarding growth, homogeneity, and shear resistance. Our lab has established a CMC culture system induced by C. roseus cambium. We determined the concentrations of TIAs in CMCs and DDCs. CMCs produced significantly higher concentrations of total alkaloids, vindoline, vinblastine, catharanthine, and ajmalicine as compared to DDCs. We then performed Illumina HiSeq transcriptome sequencing of CMCs and DDCs and explored the differential transcriptomic signatures. Of the 96,004 unigenes, 9,564 were differentially expressed between the 2 cell suspension types. These differentially expressed genes (DEGs) were enriched in 137 KEGG pathways. Most importantly, genes from the indole alkaloid biosynthesis and the upstream pathways i.e., tryptophan metabolism, monoterpenoid biosynthesis, tropane, piperidine, and pyridine alkaloid biosynthesis, and terpenoid backbone biosynthesis showed differential transcriptomic signatures. Remarkably, the expression of genes associated with plant hormone biosynthesis, signaling, and MAPK signaling pathways was relatable to the different TIA concentrations in CMCs and DDCs. These results put forward multiple target genes, transcription factors, and regulators to develop a large-scale TIA production system using C. roseus CMCs.

7.
Biomed Chromatogr ; 36(8): e5409, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35562325

RESUMEN

A specific ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) method has been described for the simultaneous determination of the metabolites of tacrine, bupropion, diclofenac, dextromethorphan and midazolam, which are the five probe drugs of the five cytochrome P450 (CYP450) isoforms CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A4. The inhibition degree was determined by calculating the IC50 . The chromatographic separation was performed on a C18 column with a mobile phase consisting of 0.1% formic acid and acetonitrile. The mass spectrometric analysis was conducted in positive electrospray ionization mode. The IC50 values of CYP1A2, CYP2B, CYP2C11, CYP2D1 and CYP3A were 113.4, 83.78, 22.50, 9.081 and 52.76 µmol L-1 , respectively. The in vitro results demonstrated that vindoline could inhibit CYP2D1 activity in rats, and weak inhibitory effect on CYP2C11 and CYP3A, but had no obvious effects on CYP1A2 and CYP2B.


Asunto(s)
Citocromo P-450 CYP1A2 , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Isoformas de Proteínas , Ratas , Espectrometría de Masas en Tándem/métodos , Vinblastina/análogos & derivados
8.
Int. microbiol ; 25(2): 275-284, May. 2022. ilus
Artículo en Inglés | IBECS | ID: ibc-216031

RESUMEN

Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.(AU)


Asunto(s)
Humanos , Vincristina , Catharanthus , Alternaria , Hongos , Endófitos , Microbiología , Bacterias
9.
Mar Drugs ; 20(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35323487

RESUMEN

Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 µg/mL, 0.1 µg/mL, 1 µg/mL and 10 µg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 µg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 µg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 µg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.


Asunto(s)
Catharanthus/efectos de los fármacos , Quitosano/farmacología , Oligosacáridos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Antioxidantes/metabolismo , Catharanthus/genética , Catharanthus/crecimiento & desarrollo , Catharanthus/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxidorreductasas/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Vinblastina/análogos & derivados , Vinblastina/metabolismo , Alcaloides de la Vinca/metabolismo
10.
Protoplasma ; 259(3): 755-773, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34459997

RESUMEN

Vindoline is an important alkaloid produced in Catharanthus roseus leaves. It is the more important monomer of the scarce and costly anticancer bisindole alkaloids, vincristine, and vinblastine, as unlike catharanthine (the other monomer), its biosynthesis is restricted to the leaves. Here, biotic (bacterial endophyte, phytoplasma, virus) and abiotic (temperature, salinity, SA, MeJa) factors were studied for their effect on vindoline accumulation in C. roseus. Variations in vindoline pathway-related gene expression were reflected in changes in vindoline content. Since allene oxide cyclase (CrAOC) is involved in jasmonate biosynthesis and MeJa modulates many vindoline pathway genes, the correlation between CrAOC expression and vindoline content was studied. It was taken up for full-length cloning, tissue-specific expression profiling, in silico analyses, and upstream genomic region analysis for cis-regulatory elements. Co-expression analysis of CrAOC with vindoline metabolism-related genes under the influence of aforementioned abiotic/biotic factors indicated its stronger direct correlation with the tabersonine-to-vindoline genes (t16h, omt, t3o, t3r, nmt, d4h, dat) as compared to the pre-tabersonine genes (tdc, str, sgd). Its expression was inversely related to that of downstream-acting peroxidase (prx) (except under temperature stress). Direct/positive relationship of CrAOC expression with vindoline content established it as a key gene modulating vindoline accumulation in C. roseus.


Asunto(s)
Alcaloides , Catharanthus , Alcaloides/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas Intramoleculares , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Vinblastina/análogos & derivados , Vinblastina/metabolismo
11.
Chem Biodivers ; 19(1): e202100725, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34874114

RESUMEN

Vinca alkaloids are well-known microtubule targeting agents, which are used against some types of cancer. Vindoline is one of the monomeric Vinca alkaloids which does not have anti-tumor effect, although its derivatives have serious impact on the field of these indole alkaloids. Chrysin is a secondary plant metabolite, which has broad-spectrum biological activity, among others anticancer activity. Chrysin had shown synergic effect with several antiproliferative compounds (e. g., doxorubicin, cisplatin and ciglitazone), therefore, we attempted the synthesis of a novel vindoline-chrysin hybrid molecule. However, in the first case a diphenylamine structure was isolated. The mechanism of the unexpected reaction was studied, and then the originally targeted hybrid was synthesized by a reverse route coupling. A further hybrid was produced using a different site of the molecule. The antitumor activities were determined against 60 human tumor cell lines (NCI60), where the aimed hybrid showed low micromolar GI50 values on most of the cell lines.


Asunto(s)
Antineoplásicos/síntesis química , Flavonoides/química , Vinblastina/análogos & derivados , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Alcaloides Indólicos/química , Relación Estructura-Actividad , Vinblastina/química
12.
Int Microbiol ; 25(2): 275-284, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34622356

RESUMEN

Vincristine, one of the major vinca alkaloid of Catharanthus roseus (L.) G. Don. (Apocynaceae), was enhanced under in vitro callus culture of C. roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C. roseus. Vindoline, a precursor molecule for vincristine production, was detected for the first time in the fungal endophyte A. sesami which was used as a biotic elicitor in this study to enhance vincristine content in the C. roseus callus. It was identified using high-performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing the heat sterilized A. sesami endophytic fungal culture extract into the callus culture medium of C. roseus resulted in the enhancement of vincristine content in C. roseus callus by 21.717% after 105-day culture.


Asunto(s)
Catharanthus , Alternaria , Catharanthus/química , Extractos Vegetales , Vincristina
13.
Molecules ; 26(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34770804

RESUMEN

Vindoline and catharanthine are the major alkaloids of Catharanthus roseus and are extracted in large quantities to prepare the pharmaceutically important Vinca type alkaloids vincaleukoblastine, vincristine and navelbine. The higher yield of vindoline relative to catharanthine makes it an attractive substrate for developing new chemistry and adding value to the plant. In this context, we have reacted vindoline with a selection of electrophiles among which benzoquinone. Conditions were developed to optimize the synthesis of a mono-adduct, of five bis-adducts, and of tri-adducts and tetra-adducts, several of these adducts being mixtures of conformational isomers. Copper(II) was added to the reactions to promote reoxidation of the intermediate hydroquinones and simplify the reaction products. The structures were solved by spectroscopic means and by symmetry considerations. Among the bis-isomers, the 2,3-diadduct consists of three unseparable species, two major ones with an axis of symmetry, thus giving a single set of signals and existing as two different species with indistinguishable NMR spectra. The third and minor isomer has no symmetry and therefore exhibits nonequivalence in the signals of the two vindoline moieties. These isomers are designated as syn (minor) and anti (major) and there exists a high energy barrier between them making their interconversion difficult. DFT calculations on simplified model compounds demonstrate that the syn-anti interconversion is not possible at room temperature on the NMR chemical shift time scale. These molecules are not rigid and calculations showed a back-and-forth conrotatory motion of the two vindolines. This "windshield wiper" effect is responsible for the observation of exchange correlations in the NOESY spectra. The same phenomenon is observed with the higher molecular weight adducts, which are also mixtures of rotational isomers. The same lack of rotations between syn and anti isomers is responsible for the formation of four tri-adducts and of seven tetra-adducts. On a biological standpoint, the mono adduct displayed anti-inflammatory properties at the 5 µM level while the di-adducts and tri-adducts showed moderate cytotoxicity against Au565, and HeLa cancer cell lines.


Asunto(s)
Benzoquinonas/química , Modelos Químicos , Vinblastina/química , Cobre/química , Teoría Funcional de la Densidad , Espectroscopía de Resonancia Magnética , Oxidación-Reducción
14.
Physiol Mol Biol Plants ; 27(7): 1437-1453, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34366588

RESUMEN

The present study was carried out to silence the transcription factor genes ZCT1, ZCT2 and ZCT3 via lipofectamine based antisense LNA GapmeRs transfection into the protoplasts of established photomixotrophic cell suspensions. The photomixotrophic cell suspensions with a threshold of 0.5% sucrose were raised and established using two-tiered CO2 providing flasks kept under high light intensity. The photomixotrophic cell suspensions showed morphologically different thick-walled cells under scanning electron microscopic analysis in comparison to the simple thin-walled parenchymatous control cell suspensions. The LC-MS analysis registered the vindoline production (0.0004 ± 0.0001 mg/g dry wt.) in photomixotrophic cell suspensions which was found to be absent in control cell suspensions. The protoplasts were isolated from the photomixotrophic cell suspensions and subjected to antisense LNA GapmeRs silencing. Three lines, viz. Z1A, Z2C and Z3G were obtained where complete silencing of ZCT1, ZCT2 and ZCT3 genes, respectively, was observed. The Z3G line was found to show maximum production of vindoline (0.038 ± 0.001 mg/g dry wt.), catharanthine (0.165 ± 0.008 mg/g dry wt.) and vinblastine (0.0036 ± 0.0003 mg/g dry wt.). This was supported by the multifold increment in the gene expression of TDC, SLS, STR, SGD, d4h, dat, CrT16H and Crprx. The present work indicates the master regulation of ZCT3 knockdown among all three ZCTs transcription factors in C. roseus to enhance the terpenoid indole alkaloids production. The successful silencing of transcription repressor genes has been achieved in C. roseus plant system by using photomixotrophic cell cultures through GapmeR based silencing. The present study is a step towards metabolic engineering of the TIAs pathway using protoplast transformation in C. roseus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01017-y.

15.
Tetrahedron ; 872021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33994597

RESUMEN

A concise total synthesis of (-)-4-desacetoxy-1-oxovindoline is disclosed, bearing a single heteroatom exchange in the core structure of the natural product 4-desacetoxyvindoline. Central to the synthesis is powerful oxadiazole intramolecular [4+2]/[3+2] cycloaddition cascade that formed four C-C bonds, created three new rings, and established five contiguous stereocenters about the new formed central 6-membered ring.

16.
Front Pharmacol ; 12: 764598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095488

RESUMEN

Disruption of extracellular matrix (ECM) homeostasis and subchondral bone remodeling play significant roles in osteoarthritis (OA) pathogenesis. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, possesses anti-inflammatory properties. According to previous studies, inflammation is closely associated with osteoclast differentiation and the disorders of the homeostasis between ECM. Although Vin has demonstrated effective anti-inflammatory properties, its effects on the progression of OA remain unclear. We hypothesized that Vin may suppress the progress of OA by suppressing osteoclastogenesis and stabilizing ECM of articular cartilage. Therefore, we investigated the effects and molecular mechanisms of Vin as a treatment for OA in vitro and in vivo. In the present study, we found that Vin significantly suppressed RANKL-induced osteoclast formation and obviously stabilized the disorders of the ECM homeostasis stimulated by IL-1ß in a dose-dependent manner. The mRNA expressions of osteoclast-specific genes were inhibited by Vin treatment. Vin also suppressed IL-1ß-induced mRNA expressions of catabolism and protected the mRNA expressions of anabolism. Moreover, Vin notably inhibited the activation of RANKL-induced and IL-1ß-induced NF-κB and ERK pathways. In vivo, Vin played a protective role by inhibiting osteoclast formation and stabilizing cartilage ECM in destabilization of the medial meniscus (DMM)-induced OA mice. Collectively, our observations provide a molecular-level basis for Vin's potential in the treatment of OA.

17.
Heliyon ; 6(4): e03817, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32373734

RESUMEN

OBJECTIVE: The study evaluated the effects of vindoline on testicular and epididymal oxidative stress in diabetes-induced male Wistar rats. METHODS: Forty-eight (48), 6-week old male Wistar rats weighing between 190-230g were divided into 6 groups (n = 8) and used for this study. Group 1 was the normal control, group 2 comprised non-diabetic rats treated with vindoline, and group 3 was the non-diabetic group of rats treated with glibenclamide-the standard drug for the treatment of diabetes. Group 4 was the diabetic control, group 5 comprised diabetic rats treated with vindoline and group 6 was the diabetic rats treated with glibenclamide. Diabetes was induced in group 4, group 5 and group 6 rats by subjecting them to 10% fructose water over a period of 2 weeks, followed by administration of a single intraperitoneal injection of 40 mg/kg b.w streptozotocin (STZ). Testicular and epididymal lipid peroxidation levels, antioxidant enzymes, scavenging activity and total antioxidant capacity were measured. RESULTS: Diabetes-induced male Wistar rats demonstrated chronic hyperglycaemia, oxidative stress and reduced oxygen radical absorption capacity in both testicular and epididymal tissues. Short-term treatment of diabetic rats with vindoline for 5 weeks significantly reduced fasting blood glucose levels, minimise testicular oxidative stress, increased testicular and epididymal catalase and epididymal SOD and increase total antioxidant activity capacity. CONCLUSION: Treatment with vindoline showed protective effects against diabetes-induced oxidative stress in both testicular and epididymal tissues of male Wistar rats, hence can be considered potential agent in the management of diabetes-induced oxidative stress male sexual dysfunction.

18.
Molecules ; 25(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102414

RESUMEN

New Vinca alkaloid derivatives were synthesized to improve the biological activity of the natural alkaloid vindoline. To this end, experiments were performed to link vindoline with various structural units, such as amino acids, a 1,2,3-triazole derivative, morpholine, piperazine and N-methylpiperazine. The structure of the new compounds was characterized by NMR spectroscopy and mass spectrometry (MS). Several compounds exhibited in vitro antiproliferative activity against human gynecological cancer cell lines with IC50 values in the low micromolar concentration range.


Asunto(s)
Aminoácidos/química , Antineoplásicos Fitogénicos/síntesis química , Citotoxinas/síntesis química , Morfolinas/química , Piperazinas/química , Triazoles/química , Vinblastina/análogos & derivados , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Técnicas de Química Sintética , Citotoxinas/farmacología , Relación Dosis-Respuesta a Droga , Células HeLa , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Vinblastina/química
19.
Biomed Pharmacother ; 112: 108638, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30784928

RESUMEN

Vindoline, an indole alkaloid present in the leaves of Catharanthus roseus plant, has been recently reported to have insulotropic effects. This present study evaluated the possible hepatoprotective effects of vindoline in a type 2 diabetes mellitus rat model. Diabetes mellitus was induced by exposing rats to 10% fructose water for two weeks followed by a single intraperitoneal injection of 40 mg/kg body weight of streptozotocin (STZ). Rats were randomly divided into six groups (n = 8) and treated daily for 6 weeks with the vehicle via oral gavage, vindoline (20 mg/kg) or glibenclamide (5 mg/kg). Weekly fasting blood glucose (FBG) levels and body weight were measured and recorded. Administration of vindoline significantly (p < 0.05) reduced FBG by 15% when compared to the diabetic controls. Vindoline significantly (p < 0.05) decreased diabetes-induced hepatic injury shown by decreased levels of serum alanine transferase (ALT) (-42%), aspartate aminotransferase (AST) (-42%) and alkaline phosphatase (-62%) compared to the diabetic controls. The oxygen radical absorbance capacity and the activities of superoxide dismutase (SOD) and catalase (CAT) were also improved following treatment with vindoline. The results also showed decreased levels of pro-inflammatory cytokines such as TNF-ɑ by (-41%) and IL-6 (-28%) which may have also contributed to the reduction of serum triglycerides (-65%) in the diabetic group treated with vindoline. Histopathological findings showed improvement of both the hepatic and pancreatic tissues following vindoline treatment. Overall, these findings suggest that vindoline may protect the diabetic hepatic tissue from injury via antioxidant, anti-inflammatory and anti-hypertriglyceredemia mechanisms thereby retarding the development of diabetic complications.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Hepatitis/prevención & control , Hipertrigliceridemia/prevención & control , Hipoglucemiantes/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Vinblastina/análogos & derivados , Animales , Glucemia/análisis , Catharanthus/química , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gliburida/uso terapéutico , Hepatitis/inmunología , Hepatitis/metabolismo , Hepatitis/patología , Insulina/sangre , Pruebas de Función Hepática , Masculino , Páncreas/efectos de los fármacos , Páncreas/patología , Ratas Wistar , Vinblastina/uso terapéutico
20.
Front Pharmacol ; 10: 1587, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038256

RESUMEN

Osteolytic bone diseases, for example postmenopausal osteoporosis, arise from the imbalances between osteoclasts and osteoblasts in the bone remodeling process, whereby osteoclastic bone resorption greatly exceeds osteoblastic bone formation resulting in severe bone loss and deterioration in bone structure and microarchitecture. Therefore, the identification of agents that can inhibit osteoclast formation and/or function for the treatment of osteolytic bone disease has been the focus of bone and orthopedic research. Vindoline (Vin), an indole alkaloid extracted from the medicinal plant Catharanthus roseus, has been shown to possess extensive biological and pharmacological benefits, but its effects on bone metabolism remains to be documented. Our study demonstrated for the first time, that Vin could inhibit osteoclast differentiation from bone marrow macrophages (BMMs) precursor cells as well as mature osteoclastic bone resorption. We further determined that the underlying molecular mechanism of action of Vin is in part due to its inhibitory effect against the activation of MAPK including p38, JNK, and ERK and intracellular reactive oxygen species (ROS) production. This effect ultimately suppressed the induction of c-Fos and NFATc1, which consequently downregulated the expression of the genes required for osteoclast formation and bone resorption. Consistent with our in vitro findings, in vivo administration of Vin protected mice against ovariectomy (OVX)-induced bone loss and trabecular bone deterioration. These results provided promising evidence for the potential therapeutic application of Vin as a novel treatment option against osteolytic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA