Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
J Med Virol ; 96(7): e29802, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023095

RESUMEN

Irritable bowel syndrome (IBS), a chronic functional gastrointestinal disorder, is recognized for its association with alterations in the gut microbiome and metabolome. This study delves into the largely unexplored domain of the gut virome in IBS patients. We conducted a comprehensive analysis of the fecal metagenomic data set from 277 IBS patients and 84 healthy controls to characterize the gut viral community. Our findings revealed a distinct gut virome in IBS patients compared to healthy individuals, marked by significant variances in between-sample diversity and altered abundances of 127 viral operational taxonomic units (vOTUs). Specifically, 111 vOTUs, predominantly belonging to crAss-like, Siphoviridae, Myoviridae, and Quimbyviridae families, were more abundant in IBS patients, whereas the healthy control group exhibited enrichment of 16 vOTUs from multiple families. We also investigated the interplay between the gut virome and bacteriome, identifying a correlation between IBS-enriched bacteria like Klebsiella pneumoniae, Fusobacterium varium, and Ruminococcus gnavus, and the IBS-associated vOTUs. Furthermore, we assessed the potential of gut viral signatures in predicting IBS, achieving a notable area under the receiver operator characteristic curve (AUC) of 0.834. These findings highlight significant shifts in the viral diversity, taxonomic distribution, and functional composition of the gut virome in IBS patients, suggesting the potential role of the gut virome in IBS pathogenesis and opening new avenues for diagnostic and therapeutic strategies targeting the gut virome in IBS management.


Asunto(s)
Heces , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Metagenómica , Viroma , Humanos , Síndrome del Colon Irritable/virología , Síndrome del Colon Irritable/microbiología , Microbioma Gastrointestinal/genética , Heces/virología , Heces/microbiología , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación , Adulto , Masculino , Femenino , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma
2.
ISME J ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023219

RESUMEN

Arms races between mobile genetic elements and prokaryotic hosts are major drivers of ecological and evolutionary change in microbial communities. Prokaryotic defense systems such as CRISPR-Cas have the potential to regulate microbiome composition by modifying the interactions among bacteria, plasmids, and phages. Here, we used longitudinal metagenomic data from 130 healthy and diseased individuals to study how the interplay of genetic parasites and CRISPR-Cas immunity reflects on the dynamics and composition of the human gut microbiome. Based on the coordinated study of 80 000 CRISPR-Cas loci and their targets, we show that CRISPR-Cas immunity effectively modulates bacteriophage abundances in the gut. Acquisition of CRISPR-Cas immunity typically leads to a decrease in the abundance of lytic phages but does not necessarily cause their complete disappearance. Much smaller effects are observed for lysogenic phages and plasmids. Conversely, phage-CRISPR interactions shape bacterial microdiversity by producing weak selective sweeps that benefit immune host lineages. We also show that distal (and chronologically older) regions of CRISPR arrays are enriched in spacers that are potentially functional and target crass-like phages and local prophages. This suggests that exposure to reactivated prophages and other endemic viruses is a major selective pressure in the gut microbiome that drives the maintenance of long-lasting immune memory.

3.
Front Pediatr ; 12: 1396408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957777

RESUMEN

The human urinary bladder hosts a complex microbial community of low biomass referred to as the urobiome. While the composition of the urobiome has been investigated in adults for over a decade now, only a few studies have considered the presence and composition of the urobiome in children. It is critical to explore how the urobiome develops throughout the life span and how it changes in the presence of various health conditions. Therefore, we set to review the available data on pediatric urobiome composition and its development with age and disease. In addition, we focused on identifying and reporting specific gaps in our knowledge of the pediatric urobiome that we hope will be addressed by future studies in this swiftly developing field with fast-improving methods and consensus.

4.
J Med Virol ; 96(7): e29781, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961767

RESUMEN

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.


Asunto(s)
Artritis Reumatoide , Bacterias , Heces , Microbioma Gastrointestinal , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/microbiología , Enfermedades Pulmonares Intersticiales/virología , Artritis Reumatoide/complicaciones , Artritis Reumatoide/microbiología , Heces/microbiología , Heces/virología , Femenino , Masculino , Persona de Mediana Edad , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Anciano , Viroma , Micobioma , Adulto , Virus/clasificación , Virus/aislamiento & purificación , Virus/genética , Hongos/aislamiento & purificación , Hongos/clasificación
5.
Biomed Pharmacother ; 177: 117065, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971010

RESUMEN

Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.

6.
Microbiol Spectr ; : e0065624, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980019

RESUMEN

European foulbrood (EFB) is a prevalent disease in the European honey bee (Apis mellifera) in the United States, which can lead to colony decline and collapse. The bacterial components of EFB are well-studied, but the diversity of viral infections within infected colonies has not been explored. In this study, we use meta-transcriptomics sequencing of 12 honey bee hives, symptomatic (+, n = 6) and asymptomatic (-, n = 6) for EFB, to investigate viral infection associated with the disease. We assembled 41 viral genomes, belonging to three families (Iflaviridae, Dicistroviridae, and Sinhaliviridae), all previously reported in honey bees, including Lake Sinai virus, deformed wing virus, sacbrood virus, Black queen cell virus, and Israeli acute paralysis virus. In colonies with severe EFB, we observed a higher occurrence of viral genomes (34 genomes) in contrast to fewer recovered from healthy colonies (seven genomes) and a complete absence of Dicistroviridae genomes.We observed specific Lake Sinai virus clades associated exclusively with EFB + or EFB - colonies, in addition to EFB-afflicted colonies that exhibited an increase in relative abundance of sacbrood viruses. Multivariate analyses highlighted that a combination of site and EFB disease status influenced RNA virome composition, while EFB status alone did not significantly impact it, presenting a challenge for comparisons between colonies kept in different yards. These findings contribute to the understanding of viral dynamics in honey bee colonies compromised by EFB and underscore the need for future investigations to consider viral composition when investigating EFB.IMPORTANCEThis study on the viromes of honey bee colonies affected by European foulbrood (EFB) sheds light on the dynamics of viral populations in bee colonies in the context of a prevalent bacterial brood disease. The identification of distinct Lake Sinai virus and sacbrood virus clades associated with colonies affected by severe EFB suggests a potential connection between viral composition and disease status, emphasizing the need for further investigation into the role of viruses during EFB infection. The observed increase in sacbrood viruses during EFB infection suggests a potential viral dysbiosis, with potential implications for honey bee brood health. These findings contribute valuable insights related to beekeeping practices, offering a foundation for future research aimed at understanding and mitigating the impact of bacterial and viral infection in commercial honey bee operations and the management of EFB.

7.
Arch Microbiol ; 206(8): 346, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976078

RESUMEN

This review offers a comprehensive analysis of the intricate relationship between the gut virome and diabetes, elucidating the mechanisms by which the virome engages with both human cells and the intestinal bacteriome. By examining a decade of scientific literature, we provide a detailed account of the distinct viral variations observed in type 1 diabetes (T1D) and type 2 diabetes (T2D). Our synthesis reveals that the gut virome significantly influences the development of both diabetes types through its interactions, which indirectly modulate immune and inflammatory responses. In T1D, the focus is on eukaryotic viruses that stimulate the host's immune system, whereas T2D is characterized by a broader spectrum of altered phage diversities. Promisingly, in vitro and animal studies suggest fecal virome transplantation as a potential therapeutic strategy to alleviate symptoms of T2D and obesity. This study pioneers a holistic overview of the gut virome's role in T1D and T2D, its interplay with host immunity, and the innovative potential of fecal transplantation therapy in clinical diabetes management.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Viroma , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/virología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/virología , Animales , Bacteriófagos/genética , Bacteriófagos/fisiología , Virus/genética , Virus/clasificación
8.
Infect Genet Evol ; 123: 105637, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986824

RESUMEN

Viral gastroenteritis is commonly reported in dogs and involves a great diversity of enteric viruses. In this research, viral diversity was investigated in dogs with diarrhea in Northern Brazil using shotgun metagenomics. Furthermore, the presence of norovirus (NoV) was investigated in 282 stool/rectal swabs of young/adult dogs with or without diarrhea from two public kennels, based on one-step reverse transcription polymerase chain reaction (RT-PCR) for genogroup VI and VII (GVI and GVII) and real-time RT-PCR for GI, GII, and GIV. Thirty-one viral families were identified, including bacteriophages. Phylogenetic analyses showed twelve complete or nearly complete genomes belonging to the species of Protoparvovirus carnivoran1, Mamastrovirus 5, Aichivirus A2, Alphacoronavirus 1, and Chipapillomavirus 1. This is the first description of the intestinal virome of dogs in Northern Brazil and the first detection of canine norovirus GVII in the country. These results are important for helping to understand the viral groups that circulate in the canine population.

9.
JID Innov ; 4(4): 100278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994235

RESUMEN

Most viral infections can be self-limited, with no requirement for medical intervention. However, the same viruses can cause severe diseases in patients with compromised immunity due to single-gene diseases, acquired immune deficiency syndrome, or hematologic malignancies or those receiving immunosuppressive drugs. Occasionally, these immunocompromised patients harbor >1 infectious agent, requiring several concomitant diagnostic tests. We have developed, to our knowledge, a previously unreported whole-transcriptome sequencing-based pipeline that allows virome profiling, quantitation, and expression pattern analysis of 926 distinct viruses by sequencing of RNA isolated from a single lesional skin biopsy. This pipeline can also explore host genetics if there is a Mendelian predisposition to infection. We applied this pipeline to 6 Iranian patients with viral-induced skin lesions associated with immune deficiency secondary to HIV, human T-lymphotropic virus 1, chronic lymphocytic leukemia, and post transplant immunosuppression. In 5 cases, definitive human papillomavirus infections were identified, some caused by multiple viral types. In addition to human papillomavirus, coinfection with other viruses (Merkle cell polyomavirus, cytomegalovirus, and human herpesvirus 4) was detected in some lesions. In 1 case, whole-transcriptome sequencing validated the clinical diagnosis of adult T-cell leukemia/lymphoma in a patient with an initial diagnosis of mycosis fungoides/Sézary syndrome. These findings attest to the power of whole-transcriptome sequencing in profiling the cutaneous virome in the context of compromised immunity.

10.
J Med Virol ; 96(7): e29809, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016466

RESUMEN

Pancreatic cancer (PC) is a highly aggressive malignancy with a poor prognosis, making early diagnosis crucial for improving patient outcomes. While the gut microbiome, including bacteria and viruses, is believed to be essential in cancer pathogenicity, the potential contribution of the gut virome to PC remains largely unexplored. In this study, we conducted a comparative analysis of the gut viral compositional and functional profiles between PC patients and healthy controls, based on fecal metagenomes from two publicly available data sets comprising a total of 101 patients and 82 healthy controls. Our results revealed a decreasing trend in the gut virome diversity of PC patients with disease severity. We identified significant alterations in the overall viral structure of PC patients, with a meta-analysis revealing 219 viral operational taxonomic units (vOTUs) showing significant differences in relative abundance between patients and healthy controls. Among these, 65 vOTUs were enriched in PC patients, and 154 were reduced. Host prediction revealed that PC-enriched vOTUs preferentially infected bacterial members of Veillonellaceae, Enterobacteriaceae, Fusobacteriaceae, and Streptococcaceae, while PC-reduced vOTUs were more likely to infect Ruminococcaceae, Lachnospiraceae, Clostridiaceae, Oscillospiraceae, and Peptostreptococcaceae. Furthermore, we constructed random forest models based on the PC-associated vOTUs, achieving an optimal average area under the curve (AUC) of up to 0.879 for distinguishing patients from controls. Through additional 10 public cohorts, we demonstrated the reproducibility and high specificity of these viral signatures. Our study suggests that the gut virome may play a role in PC development and could serve as a promising target for PC diagnosis and therapeutic intervention. Future studies should further explore the underlying mechanisms of gut virus-bacteria interactions and validate the diagnostic models in larger and more diverse populations.


Asunto(s)
Heces , Microbioma Gastrointestinal , Metagenómica , Neoplasias Pancreáticas , Viroma , Humanos , Neoplasias Pancreáticas/virología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/microbiología , Microbioma Gastrointestinal/genética , Metagenómica/métodos , Heces/virología , Heces/microbiología , Virus/aislamiento & purificación , Virus/genética , Virus/clasificación , Metagenoma , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Persona de Mediana Edad , Masculino , Femenino , Anciano , Estudios de Casos y Controles
11.
Braz J Microbiol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014291

RESUMEN

Water buffalo (Bubalus bubalis) farming is increasing in many regions of the world due to the species' ability to thrive in environments where bovine cattle would struggle. Despite water buffaloes being known for their resistance to diseases, there is a lack of data about the diversity of the microbiome of the species. In this study, we examined the virome diversity in palatine tonsils collected from animals from the island of Marajó, northern Pará state, Brazil, which harbors the largest bubaline flock in the country. Tonsil fragments from 60 clinically healthy bubalines were randomly selected from a sample of 293 animals. The samples were purified, extracted, and randomly amplified with phi29 DNA polymerase. After amplification, the products were purified and sequenced. Circular DNA viruses were predominant in the tonsils' virome. Sequences of genome segments representative of members of the genera Alphapolyomavirus (including a previously unreported bubaline polyomavirus genome) and Gemycircularvirus were identified, along with other not yet classified circular virus genomes. As the animals were clinically healthy at the time of sampling, such viruses likely constitute part of the normal tonsillar virome of water buffaloes inhabiting the Ilha do Marajó biome.

12.
Front Cell Infect Microbiol ; 14: 1380708, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006745

RESUMEN

Introduction: The escalating occurrence of infectious disease outbreaks in humans and animals necessitates innovative, effective, and integrated research to better comprehend their transmission and dynamics. Viral infection in livestock has led to profound economic losses globally. Pneumonia is the prevalent cause of death in sheep. However, very few studies exist regarding virus-related pathogens in sheep. Metagenomics sequencing technologies in livestock research hold significant potential to elucidate these contingencies and enhance our understanding. Methods: Therefore, this study aims to characterize respiratory viromes in paired nasal swabs from Inner Mongolian feedlot sheep in China using metaviromic sequencing. Through deep sequencing, de novo assembly, and similarity searches using translated protein sequences, several previously uncharacterized and known viruses were identified in this study. Results: Among these discoveries, a novel Bovine Rhinitis B Virus (BRBV) (BRBV-sheep) strain was serendipitously detected in the nasal swabs of domestic sheep (Ovis aries). To facilitate further molecular epidemiological studies, the entire genome of BRBV-sheep was also determined. Owing to the unique sequence characteristics and phylogenetic position of BRBV-sheep, genetically distinct lineages of BRBV in sheep may exist. A TaqMan-based qRT-PCR assay targeting the 3D polymerase gene was developed and used to screen 592 clinical sheep specimens. The results showed that 44.59% of the samples (264/592) were positive. These findings suggest that BRBV sheep are widespread among Inner Mongolian herds. Conclusion: This discovery marks the initial identification of BRBV in sheep within Inner Mongolia, China. These findings contribute to our understanding of the epidemiology and genetic evolution of BRBV. Recognizing the presence of BRBV in sheep informs strategies for disease management and surveillance and the potential development of targeted interventions to control its spread.


Asunto(s)
Filogenia , Enfermedades de las Ovejas , Animales , China/epidemiología , Ovinos , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/epidemiología , Oveja Doméstica , Nariz/virología , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica/métodos
13.
mSphere ; : e0043924, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012105

RESUMEN

Companion animals such as cats and dogs harbor diverse microbial communities that can potentially impact human health due to close and frequent contact. To better characterize their total infectomes and assess zoonotic risks, we characterized the overall infectomes of companion animals (cats and dogs) and evaluated their potential zoonotic risks. Meta-transcriptomic analyses were performed on 239 samples from cats and dogs collected across China, identifying 24 viral species, 270 bacterial genera, and two fungal genera. Differences in the overall microbiome and infectome composition were compared across different animal species (cats or dogs), sampling sites (rectal or oropharyngeal), and health status (healthy or diseased). Diversity analyses revealed that viral abundance was generally higher in diseased animals compared to healthy ones, while differences in microbial composition were mainly driven by sampling site, followed by animal species and health status. Disease association analyses validated the pathogenicity of known pathogens and suggested potential pathogenic roles of previously undescribed bacteria and newly discovered viruses. Cross-species transmission analyses identified seven pathogens shared between cats and dogs, such as alphacoronavirus 1, which was detected in both oropharyngeal and rectal swabs albeit with differential pathogenicity. Further analyses showed that some viruses, like alphacoronavirus 1, harbored multiple lineages exhibiting distinct pathogenicity, tissue, or host preferences. Ultimately, a systematic evolutionary screening identified 27 potential zoonotic pathogens in this sample set, with far more bacterial than viral species, implying potential health threats to humans. Overall, our meta-transcriptomic analysis reveals a landscape of actively transcribing microorganisms in major companion animals, highlighting key pathogens, those with the potential for cross-species transmission, and possible zoonotic threats. IMPORTANCE: This study provides a comprehensive characterization of the entire community of infectious microbes (viruses, bacteria, and fungi) in companion animals like cats and dogs, termed the "infectome." By analyzing hundreds of samples from across China, the researchers identified numerous known and novel pathogens, including 27 potential zoonotic agents that could pose health risks to both animals and humans. Notably, some of these zoonotic pathogens were detected even in apparently healthy pets, highlighting the importance of surveillance. The study also revealed key microbial factors associated with respiratory and gastrointestinal diseases in pets, as well as potential cross-species transmission events between cats and dogs. Overall, this work sheds light on the complex microbial landscapes of companion animals and their potential impacts on animal and human health, underscoring the need for monitoring and management of these infectious agents.

14.
J Vet Med Sci ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880612

RESUMEN

Coltiviruses, belonging to the genus Coltivirus within the family Spinareoviridae, are predominantly tick-borne viruses. Some of these species have been implicated in human diseases; however, their diversity, geographical distribution, and evolutionary dynamics remain inadequately. Therefore, this study was undertaken to explore the phylogenetic evolution of coltiviruses and related viruses. Our results revealed the detection of novel coltivirus-related sequences in adult female Haemaphysalis megaspinosa ticks collected from Kanagawa Prefecture, Japan. Molecular phylogenetic analysis revealed a close association between the sequences and the genome sequences of known coltivirus-related viruses, namely Qinghe tick reovirus and Fennes virus. The putative coltivirus-related virus was tentatively designated the Nakatsu tick virus. This study provides insights into the phylogenetic evolution of coltiviruses and related viruses.

15.
Front Microbiol ; 15: 1390726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881659

RESUMEN

Freshwater availability is essential, and its maintenance has become an enormous challenge. Due to population growth and climate changes, freshwater sources are becoming scarce, imposing the need for strategies for its reuse. Currently, the constant discharge of waste into water bodies from human activities leads to the dissemination of pathogenic bacteria, negatively impacting water quality from the source to the infrastructure required for treatment, such as the accumulation of biofilms. Current water treatment methods cannot keep pace with bacterial evolution, which increasingly exhibits a profile of multidrug resistance to antibiotics. Furthermore, using more powerful disinfectants may affect the balance of aquatic ecosystems. Therefore, there is a need to explore sustainable ways to control the spreading of pathogenic bacteria. Bacteriophages can infect bacteria and archaea, hijacking their host machinery to favor their replication. They are widely abundant globally and provide a biological alternative to bacterial treatment with antibiotics. In contrast to common disinfectants and antibiotics, bacteriophages are highly specific, minimizing adverse effects on aquatic microbial communities and offering a lower cost-benefit ratio in production compared to antibiotics. However, due to the difficulty involving cultivating and identifying environmental bacteriophages, alternative approaches using NGS metagenomics in combination with some bioinformatic tools can help identify new bacteriophages that can be useful as an alternative treatment against resistant bacteria. In this review, we discuss advances in exploring the virome of freshwater, as well as current applications of bacteriophages in freshwater treatment, along with current challenges and future perspectives.

16.
Microbiol Spectr ; 12(7): e0080224, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860816

RESUMEN

The diversity of birds in most parts of the world is very high, and thus, they may carry different types of highly differentiated and unknown viruses. Thanks to advanced sequencing technologies, studies on the diversity of bird-associated viruses have increased over the past few years. In this study, a large-scale viral metagenomics survey was performed on cloacal swabs of 2,990 birds from nine provinces of the Chinese mainland. To detect undescribed RNA viruses in birds, more than 1,800 sequences sharing relatively low (<60%) amino acid sequence identity with the best match in the GenBank database were screened. Potentially novel viruses related to vertebrates have been identified, and several potential recombination signals were found. Additionally, hundreds of RNA viral sequences related to plants, fungi, and insects were detected, including previously unknown viruses. Furthermore, we investigated the novelty, functionality, and classification of the phages examined in this study. These viruses occupied topological positions on the evolutionary trees to a certain extent and might form novel putative families, genera, or species, thus providing information to fill the phylogenetic gaps of related viruses. These findings provided new insights into bird-associated viruses, but the interactions among these viruses remain unknown and require further investigation.IMPORTANCEStudying the diversity of RNA viruses in birds and mammals is crucial due to their potential impact on human health and the global ecosystem. Many RNA viruses, such as influenza and coronaviruses, have been shown to cross the species barrier and cause zoonotic diseases. In this metagenomics study involving 2,990 birds from at least 82 species, we identified over 1,800 RNA sequences with distant relationships to known viruses, some of which are rare in birds. The study highlights the scope and diversity of RNA viruses in birds, providing data to predict disease risks and monitor potential viral threats to wildlife, livestock, and human health. This information can aid in the development of strategies for disease prevention and control.


Asunto(s)
Bacteriófagos , Aves , Metagenómica , Filogenia , Virus ARN , Animales , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Aves/virología , Bacteriófagos/genética , Bacteriófagos/clasificación , Bacteriófagos/aislamiento & purificación , China , Genoma Viral/genética , Cloaca/virología
17.
Virus Genes ; 60(4): 423-433, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833150

RESUMEN

White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.


Asunto(s)
Crinivirus , Dioscorea , Genoma Viral , Filogenia , Enfermedades de las Plantas , Potyvirus , Dioscorea/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Potyvirus/clasificación , Etiopía , Enfermedades de las Plantas/virología , Crinivirus/genética , Crinivirus/aislamiento & purificación , Crinivirus/clasificación , Genoma Viral/genética , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Coinfección/virología
18.
BMC Ecol Evol ; 24(1): 81, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872095

RESUMEN

BACKGROUND: New Zealand is home to over 120 native endemic species of skinks and geckos that radiated over the last 20-40 million years, likely driven by the exploitation of diverse habitats formed during the Miocene. The recent radiation of animal hosts may facilitate cross-species virus transmission, likely reflecting their close genetic relationships and therefore relatively low barriers for viruses to emerge in new hosts. Conversely, as animal hosts adapt to new niches, even within specific geographic locations, so too could their viruses. Consequently, animals that have niche-specialised following radiations may be expected to harbour genetically distinct viruses. Through a metatranscriptomic analysis of eight of New Zealand's native skink and gecko species, as well as the only introduced lizard species, the rainbow skink (Lampropholis delicata), we aimed to reveal the diversity of viruses in these hosts and determine whether and how the radiation of skinks and geckos in New Zealand has impacted virus diversity and evolution. RESULTS: We identified a total of 15 novel reptilian viruses spanning 11 different viral families, across seven of the nine species sampled. Notably, we detected no viral host-switching among the native animals analysed, even between those sampled from the same geographic location. This is compatible with the idea that host speciation has likely resulted in isolated, niche-constrained viral populations that have prevented cross-species transmission. Using a protein structural similarity-based approach, we further identified a highly divergent bunya-like virus that potentially formed a new family within the Bunyavirales. CONCLUSIONS: This study has broadened our understanding of reptilian viruses within New Zealand and illustrates how niche adaptation may limit viral-host interactions.


Asunto(s)
Lagartos , Animales , Lagartos/virología , Nueva Zelanda , Virus/aislamiento & purificación , Virus/genética , Filogenia
19.
J Transl Med ; 22(1): 564, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872164

RESUMEN

BACKGROUND/PURPOSE(S): The gut microbiota and its metabolites play crucial roles in pathogenesis of arthritis, highlighting gut microbiota as a promising avenue for modulating autoimmunity. However, the characterization of the gut virome in arthritis patients, including osteoarthritis (OA) and gouty arthritis (GA), requires further investigation. METHODS: We employed virus-like particle (VLP)-based metagenomic sequencing to analyze gut viral community in 20 OA patients, 26 GA patients, and 31 healthy controls, encompassing a total of 77 fecal samples. RESULTS: Our analysis generated 6819 vOTUs, with a considerable proportion of viral genomes differing from existing catalogs. The gut virome in OA and GA patients differed significantly from healthy controls, showing variations in diversity and viral family abundances. We identified 157 OA-associated and 94 GA-associated vOTUs, achieving high accuracy in patient-control discrimination with random forest models. OA-associated viruses were predicted to infect pro-inflammatory bacteria or bacteria associated with immunoglobulin A production, while GA-associated viruses were linked to Bacteroidaceae or Lachnospiraceae phages. Furthermore, several viral functional orthologs displayed significant differences in frequency between OA-enriched and GA-enriched vOTUs, suggesting potential functional roles of these viruses. Additionally, we trained classification models based on gut viral signatures to effectively discriminate OA or GA patients from healthy controls, yielding AUC values up to 0.97, indicating the clinical utility of the gut virome in diagnosing OA or GA. CONCLUSION: Our study highlights distinctive alterations in viral diversity and taxonomy within gut virome of OA and GA patients, offering insights into arthritis etiology and potential treatment and prevention strategies.


Asunto(s)
Artritis Gotosa , Microbioma Gastrointestinal , Osteoartritis , Viroma , Humanos , Artritis Gotosa/virología , Artritis Gotosa/microbiología , Masculino , Osteoartritis/virología , Osteoartritis/microbiología , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Metagenómica , Heces/virología , Heces/microbiología
20.
Viruses ; 16(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38932180

RESUMEN

Viral diseases pose a significant threat to tomato crops (Solanum lycopersicum L.), one of the world's most economically important vegetable crops. The limited genetic diversity of cultivated tomatoes contributes to their high susceptibility to viral infections. To address this challenge, tomato breeding programs must harness the genetic resources found in native populations and wild relatives. Breeding efforts may aim to develop broad-spectrum resistance against the virome. To identify the viruses naturally infecting 19 advanced lines, derived from native tomatoes, high-throughput sequencing (HTS) of small RNAs and confirmation with PCR and RT-PCR were used. Single and mixed infections with tomato mosaic virus (ToMV), tomato golden mosaic virus (ToGMoV), and pepper huasteco yellow vein virus (PHYVV) were detected. The complete consensus genomes of three variants of Mexican ToMV isolates were reconstructed, potentially forming a new ToMV clade with a distinct 3' UTR. The absence of reported mutations associated with resistance-breaking to ToMV suggests that the Tm-1, Tm-2, and Tm-22 genes could theoretically be used to confer resistance. However, the high mutation rates and a 63 nucleotide insertion in the 3' UTR, as well as amino acid mutations in the ORFs encoding 126 KDa, 183 KDa, and MP of Mexican ToMV isolates, suggest that it is necessary to evaluate the capacity of these variants to overcome Tm-1, Tm-2, and Tm-22 resistance genes. This evaluation, along with the characterization of advanced lines using molecular markers linked to these resistant genes, will be addressed in future studies as part of the breeding strategy. This study emphasizes the importance of using HTS for accurate identification and characterization of plant viruses that naturally infect tomato germplasm based on the consensus genome sequences. This study provides crucial insights to select appropriate disease management strategies and resistance genes and guide breeding efforts toward the development of virus-resistant tomato varieties.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Enfermedades de las Plantas , Virus de Plantas , Solanum lycopersicum , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , Virus de Plantas/clasificación , Genoma Viral/genética , Filogenia , Resistencia a la Enfermedad/genética , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...