Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Microorganisms ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39065153

RESUMEN

The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.

2.
Sci Rep ; 14(1): 14242, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902430

RESUMEN

Cellular senescence plays a role in the development of aging-associated degenerative diseases. Cell therapy is recognized as a candidate treatment for degenerative diseases. To achieve the goal of cell therapy, the quality and good characteristics of cells are concerned. Cell expansion relies on two-dimensional culture, which leads to replicative senescence of expanded cells. This study aimed to investigate the effect of cell culture surface modification using fibronectin (FN) and vitronectin (VN) in adipose-derived stem cells (ADSCs) during long-term expansion. Our results showed that ADSCs cultured in FN and VN coatings significantly enhanced adhesion, proliferation, and slow progression of cellular senescence as indicated by lower SA-ß-gal activities and decreased expression levels of genes including p16, p21, and p53. The upregulation of integrin α5 and αv genes influences phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K), and AKT proteins. FN and VN coatings upregulated AKT and MDM2 leading to p53 degradation. Additionally, MDM2 inhibition by Nutlin-3a markedly elevated p53 and p21 expression, increased cellular senescence, and induced the expression of inflammatory molecules including HMGB1 and IL-6. The understanding of FN and VN coating surface influencing ADSCs, especially senescence characteristics, offers a promising and practical point for the cultivation of ADSCs for future use in cell-based therapies.


Asunto(s)
Senescencia Celular , Fibronectinas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-mdm2 , Transducción de Señal , Proteína p53 Supresora de Tumor , Vitronectina , Vitronectina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Fibronectinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Humanos , Células Cultivadas , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Técnicas de Cultivo de Célula/métodos
3.
Cell Biol Int ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654431

RESUMEN

Gestational diabetes mellitus (GDM) is a common disorder in the clinic, which may lead to severe detrimental outcomes both for mothers and infants. However, the underlying mechanisms for GDM are still not clear. In the present study, we performed label-free proteomics using placentas from GDM patients and normal controls. Vitronectin caused our attention among differentially expressed proteins due to its potential role in the pathological progression of GDM. Vitronectin was increased in the placentas of GDM patients, which was confirmed by Western blot analysis. Vitronectin represses insulin signal transduction in trophoblast cells, whereas the knockdown of vitronectin further potentiates insulin-evoked events. Neutralization of CD51/61 abolishes the repressed insulin signal transduction in vitronectin-treated trophoblast cells. Moreover, vitronectin activates JNK in a CD51/61-depedent manner. Inhibition of JNK rescues impaired insulin signal transduction induced by vitronectin. Overall, our data indicate that vitronectin binds CD51/61 in trophoblast cells to activate JNK, and thus induces insulin resistance. In this regard, increased expression of vitronectin is likely a risk factor for the pathological progression of GDM. Moreover, blockade of vitronectin production or its receptors (CD51/61) may have therapeutic potential for dealing with GDM.

4.
Anat Cell Biol ; 57(2): 305-315, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38575559

RESUMEN

Vitronectin (VN) is an extracellular matrix protein with a crucial role in regulating bone remodeling. In this study, we aimed to investigate the effect of VN deficiency in a mouse model of osteoporosis induced by ovariectomy (OVX). The findings revealed that the absence of VN led to an increase in the activity of tartrate-resistant acid phosphatase (TRAP), a marker for osteoclasts, in the plasma of OVX-operated mice. TRAP staining further demonstrated that VN deficiency resulted in a higher number of osteoclasts within the femurs of OVX-operated mice. X-ray micro-computed tomography analysis of the femurs in OVX-operated mice indicated that VN deficiency significantly suppressed the OVX-induced increase of marrow area and total volume of bone. Additionally, we assessed structural model index (SMI) and degree of anisotropy (DA) as indices of osteoporosis. The results showed that VN deficiency effectively attenuated the OVX-induced increase in SMI and DA among OVX-operated mice. In summary, our study demonstrates the vital role of VN in regulating osteoclastogenesis and bone remodeling in the mouse model of osteoporosis.

5.
Cancers (Basel) ; 16(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38473429

RESUMEN

Colorectal cancer metastasizes predominantly to the liver but also to the lungs and the peritoneum. The presence of extra-hepatic metastases limits curative (surgical) treatment options and is associated with very poor survival. The mechanisms governing multi-organ metastasis formation are incompletely understood. Here, we tested the hypothesis that the site of tumor growth influences extra-hepatic metastasis formation. To this end, we implanted murine colon cancer organoids into the primary tumor site (i.e., the caecum) and into the primary metastasis site (i.e., the liver) in immunocompetent mice. The organoid-initiated liver tumors were significantly more efficient in seeding distant metastases compared to tumors of the same origin growing in the caecum (intra-hepatic: 51 vs. 40%, p = 0.001; peritoneal cavity: 51% vs. 33%, p = 0.001; lungs: 30% vs. 7%, p = 0.017). The enhanced metastatic capacity of the liver tumors was associated with the formation of 'hotspots' of vitronectin-positive blood vessels surrounded by macrophages. RNA sequencing analysis of clinical samples showed a high expression of vitronectin in liver metastases, along with signatures reflecting hypoxia, angiogenesis, coagulation, and macrophages. We conclude that 'onward spread' from liver metastases is facilitated by liver-specific microenvironmental signals that cause the formation of macrophage-associated vascular hotspots. The therapeutic targeting of these signals may help to contain the disease within the liver and prevent onward spread.

6.
Heliyon ; 10(6): e27336, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501015

RESUMEN

Ovarian cancer (OC) is deadly, and likely arises from the fallopian tube epithelium (FTE). Despite the association of OC with ovulation, OC typically presents in post-menopausal women who are no longer ovulating. The goal of this study was to understand how ovulation and aging interact to impact OC progression from the FTE. Follicular fluid released during ovulation induces DNA damage in the FTE, however, the role of aging on FTE exposure to follicular fluid is unexplored. Follicular fluid samples were collected from 14 women and its effects on FTE cells was assessed. Follicular fluid caused DNA damage and lipid oxidation in an age-dependent manner, but instead induced cell proliferation in a dose-dependent manner, independent of age in FTE cells. Follicular fluid regardless of age disrupted FTE spheroid formation and stimulated attachment and growth on ultra-low attachment plates. Proteomics analysis of the adhesion proteins in the follicular fluid samples identified vitronectin, a glycoprotein responsible for FTE cell attachment and spreading.

7.
Cell Rep ; 43(2): 113799, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38367239

RESUMEN

Schlemm's canal (SC) functions to maintain proper intraocular pressure (IOP) by draining aqueous humor and has emerged as a promising therapeutic target for glaucoma, the second-leading cause of irreversible blindness worldwide. However, our current understanding of the mechanisms governing SC development and functionality remains limited. Here, we show that vitronectin (VTN) produced by limbal macrophages promotes SC formation and prevents intraocular hypertension by activating integrin αvß3 signaling. Genetic inactivation of this signaling system inhibited the phosphorylation of AKT and FOXO1 and reduced ß-catenin activity and FOXC2 expression, thereby causing impaired Prox1 expression and deteriorated SC morphogenesis. This ultimately led to increased IOP and glaucomatous optic neuropathy. Intriguingly, we found that aged SC displayed downregulated integrin ß3 in association with dampened Prox1 expression. Conversely, FOXO1 inhibition rejuvenated the aged SC by inducing Prox1 expression and SC regrowth, highlighting a possible strategy by targeting VTN/integrin αvß3 signaling to improve SC functionality.


Asunto(s)
Glaucoma , Hipertensión , Enfermedades del Nervio Óptico , Humanos , Anciano , Integrina alfaVbeta3 , Canal de Schlemm , Macrófagos
8.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256088

RESUMEN

Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Gliceraldehído-3-Fosfato Deshidrogenasas , Humanos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Plasminógeno/metabolismo , Vitronectina/metabolismo , Proteínas Fúngicas/metabolismo
9.
J Struct Biol ; 216(1): 108061, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185342

RESUMEN

The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.


Asunto(s)
Durapatita , Vitronectina , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular/métodos
10.
Biomater Adv ; 154: 213589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37598438

RESUMEN

Delivery of growth factors (GFs) is challenging for regulation of cell proliferation and differentiation due to their rapid inactivation under physiological conditions. Here, a bioactive polyelectrolyte multilayer (PEM) is engineered by the combination of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and glycosaminoglycans to be used as reservoir for GF storage. PNIPAM-grafted-chitosan (PChi) with two degrees of substitution (DS) are synthesized, namely LMW* (DS 0.14) and HMW (DS 0.03), by grafting low (2 kDa) and high (10 kDa) molecular weight of PNIPAM on the backbone of chitosan (Chi) to be employed as polycations to form PEM with the polyanion heparin (Hep) at pH 4. Subsequently, PEMs are chemically crosslinked to improve their stability at physiological pH 7.4. Resulting surface and mechanical properties indicate that PEM containing HMW is responsive to temperature at 20 °C and 37 °C, while LMW is not. More importantly, Hep as terminal layer combined with HMW allows not only a better retention of the adhesive protein vitronectin but also a sustained release of FGF-2 at 37 °C. With the synergistic effect of vitronectin and matrix-bound FGF-2, significant promotion on adhesion, proliferation, and migration of 3T3 mouse embryonic fibroblasts is achieved on HMW-containing PEM compared to Chi-containing PEM and exogenously added FGF-2. Thus, PEM containing PNIPAM in combination with bioactive glycosaminoglycans like Hep represents a versatile approach to fabricate a GF delivery system for efficient cell culture, which can be potentially served as cell culture substrate for production of (stem) cells and bioactive wound dressing for tissue regeneration.


Asunto(s)
Quitosano , Heparina , Animales , Ratones , Heparina/farmacología , Heparina/química , Quitosano/química , Quitosano/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Vitronectina/farmacología , Adhesión Celular , Fibroblastos , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacología
11.
Comput Biol Med ; 164: 107364, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37598482

RESUMEN

Digital pathology and artificial intelligence are promising emerging tools in precision oncology as they provide more robust and reproducible analysis of histologic, morphologic and topologic characteristics of tumor cells and the surrounding microenvironment. This study aims to develop digital image analysis workflows for therapeutic assessment in preclinical in vivo models. For this purpose, we generated pipelines that enable automatic detection and quantification of vitronectin and αvß3 in heterotopic high-risk neuroblastoma xenografts, demonstrating that digital analysis workflows can be used to provide robust detection of vitronectin secretion and αvß3 expression by malignant neuroblasts and to evaluate the possibility of combining traditional chemotherapy (etoposide) with extracellular matrix-targeted therapies (cilengitide). Digital image analysis added evidence for the relevance of territorial vitronectin as a therapeutic target in neuroblastoma, since its expression is modified after treatment, with a mean percentage of 60.44% in combined therapy tumors vs 45.08% in control ones. In addition, the present study revealed the efficacy of cilengitide for reducing αvß3 expression, with a mean αvß3 positivity of 34.17% in cilengitide treated material vs 66.14% in control and with less tumor growth when combined with etoposide, with a final mean volume of 0.04 cm3 in combined therapy vs 1.45 cm3 in control. The results of this work highlight the importance of extracellular matrix-focused therapies in preclinical studies to improve therapeutic assessment for high-risk neuroblastoma patients.


Asunto(s)
Neuroblastoma , Microambiente Tumoral , Humanos , Etopósido/farmacología , Etopósido/uso terapéutico , Inteligencia Artificial , Vitronectina , Flujo de Trabajo , Medicina de Precisión , Neuroblastoma/tratamiento farmacológico
12.
Theranostics ; 13(11): 3897-3913, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441594

RESUMEN

Background: Renal infiltration of inflammatory cells including macrophages is a crucial event in kidney fibrogenesis. However, how macrophage regulates fibroblast activation in the fibrotic kidney remains elusive. In this study, we show that macrophages promoted fibroblast activation by assembling a vitronectin (Vtn)-enriched, extracellular microenvironment. Methods: We prepared decellularized kidney tissue scaffold (KTS) from normal and fibrotic kidney after unilateral ischemia-reperfusion injury (UIRI) and carried out an unbiased quantitative proteomics analysis. NRK-49F cells were seeded on macrophage-derived extracellular matrix (ECM) scaffold. Genetic Vtn knockout (Vtn-/-) mice and chronic kidney disease (CKD) model with overexpression of Vtn were used to corroborate a role of Vtn/integrin αvß5/Src in kidney fibrosis. Results: Vtn was identified as one of the most upregulated proteins in the decellularized kidney tissue scaffold from fibrotic kidney by mass spectrometry. Furthermore, Vtn was upregulated in the kidney of mouse models of CKD and primarily expressed and secreted by activated macrophages. Urinary Vtn levels were elevated in CKD patients and inversely correlated with kidney function. Genetic ablation or knockdown of Vtn protected mice from developing kidney fibrosis after injury. Conversely, overexpression of Vtn exacerbated renal fibrotic lesions and aggravated renal insufficiency. We found that macrophage-derived, Vtn-enriched extracellular matrix scaffold promoted fibroblast activation and proliferation. In vitro, Vtn triggered fibroblast activation by stimulating integrin αvß5 and Src kinase signaling. Either blockade of αvß5 with neutralizing antibody or pharmacological inhibition of Src by Saracatinib abolished Vtn-induced fibroblast activation. Moreover, Saracatinib dose-dependently ameliorated Vtn-induced kidney fibrosis in vivo. These results demonstrate that macrophage induces fibroblast activation by assembling a Vtn-enriched extracellular microenvironment, which triggers integrin αvß5 and Src kinase signaling. Conclusion: Our findings uncover a novel mechanism by which macrophages contribute to kidney fibrosis via assembling a Vtn-enriched extracellular niche and suggest that disrupting fibrogenic microenvironment could be a therapeutic strategy for fibrotic CKD.


Asunto(s)
Insuficiencia Renal Crónica , Vitronectina , Ratones , Animales , Vitronectina/metabolismo , Riñón/patología , Insuficiencia Renal Crónica/metabolismo , Familia-src Quinasas/metabolismo , Macrófagos/metabolismo , Fibroblastos/metabolismo , Fibrosis
13.
Virulence ; 14(1): 2223060, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37326479

RESUMEN

Riemerella anatipestifer is an important bacterial pathogen in poultry. Pathogenic bacteria recruit host complement factors to resist the bactericidal effect of serum complement. Vitronectin (Vn) is a complementary regulatory protein that inhibits the formation of the membrane attack complex (MAC). Microbes use outer membrane proteins (OMPs) to hijack Vn for complement evasion. However, the mechanism by which R. anatipestifer achieves evasion is unclear. This study aimed to characterise OMPs of R. anatipestifer which interact with duck Vn (dVn) during complement evasion. Far-western assays and comparison of wild-type and mutant strains that were treated with dVn and duck serum demonstrated particularly strong binding of OMP76 to dVn. These data were confirmed with Escherichia coli strains expressing and not expressing OMP76. Combining tertiary structure analysis and homology modelling, truncated and knocked-out fragments of OMP76 showed that a cluster of critical amino acids in an extracellular loop of OMP76 mediate the interaction with dVn. Moreover, binding of dVn to R. anatipestifer inhibited MAC deposition on the bacterial surface thereby enhancing survival in duck serum. Virulence of the mutant strain ΔOMP76 was attenuated significantly relative to the wild-type strain. Furthermore, adhesion and invasion abilities of ΔOMP76 decreased, and histopathological changes showed that ΔOMP76 was less virulent in ducklings. Thus, OMP76 is a key virulence factor of R. anatipestifer. The identification of OMP76-mediated evasion of complement by recruitment of dVn contributes significantly to the understanding of the molecular mechanism by which R. anatipestifer escapes host innate immunity and provides a new target for the development of subunit vaccines.


Asunto(s)
Infecciones por Flavobacteriaceae , Enfermedades de las Aves de Corral , Animales , Virulencia , Patos , Proteínas de la Membrana , Vitronectina , Proteínas Bacterianas/metabolismo , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/prevención & control , Factores Inmunológicos , Proteínas del Sistema Complemento , Enfermedades de las Aves de Corral/microbiología
14.
Med Mycol J ; 64(2): 29-36, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258132

RESUMEN

Trichosporon asahii is an invasive pathogenic yeast that infects immunocompromised hosts. Several virulence factors contribute to the fungal infection; however, the factors that contribute to the occurrence of T. asahii infections remain unclear. Since adhesins are typical virulence factors reported for pathogenic fungi, we looked for host proteins that interact with the T. asahii cell surface. T. asahii and Candida albicans were used for screening using a pull-down assay with fetal bovine serum. Serum albumin and elongation factor 2 were identified as the yeast-binding serum proteins. Additionally, we investigated the interactions of the cell surface-associated molecules (CSM) of T. asahii with vitronectin (VTN), fibronectin, fetuin-A, and alpha-1antitrypsin (AAT). The surface plasmon resonance (SPR) method was used to examine the interaction between CSM and human proteins. On the other hand, the pull-down assay was used to examine the interaction between human proteins and the T. asahii cell surface. Serum albumin, AAT, and VTN were found to interact with T. asahii in both SPR and pull-down assays. This study identified several proteins that interact with T. asahii, suggesting that these proteins play a role in infection mechanisms.


Asunto(s)
Basidiomycota , Trichosporon , Tricosporonosis , Humanos , Proteínas Fúngicas , Albúmina Sérica , Factores de Virulencia , Antifúngicos , Tricosporonosis/microbiología
15.
IBRO Neurosci Rep ; 14: 253-263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36880055

RESUMEN

Rehabilitative exercise following a brain stroke has beneficial effects on the morphological plasticity of neurons. Particularly, voluntary running exercise after focal cerebral ischemia promotes functional recovery and ameliorates ischemia-induced dendritic spine loss in the peri-infarct motor cortex layer 5. Moreover, neuronal morphology is affected by changes in the perineuronal environment. Glial cells, whose phenotypes may be altered by exercise, are known to play a pivotal role in the formation of this perineuronal environment. Herein, we investigated the effects of voluntary running exercise on glial cells after middle cerebral artery occlusion. Voluntary running exercise increased the population of glial fibrillary acidic protein-positive astrocytes born between post-operative days (POD) 0 and 3 on POD15 in the peri-infarct cortex. After exercise, transcriptomic analysis of post-ischemic astrocytes revealed 10 upregulated and 70 downregulated genes. Furthermore, gene ontology analysis showed that the 70 downregulated genes were significantly associated with neuronal morphology. In addition, exercise reduced the number of astrocytes expressing lipocalin 2, a regulator of dendritic spine density, on POD15. Our results suggest that exercise modifies the composition of astrocytic population and their phenotype.

16.
Biomolecules ; 13(2)2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36830615

RESUMEN

Polyetheretherketone (PEEK) is a thermoplastic polymer that has been recently employed for bone tissue engineering as a result of its biocompatibility and mechanical properties being comparable to human bone. PEEK, however, is a bio-inert material and, when implanted, does not interact with the host tissues, resulting in poor integration. In this work, the surfaces of 3D-printed PEEK disks were functionalized with: (i) an adhesive peptide reproducing [351-359] h-Vitronectin sequence (HVP) and (ii) HVP retro-inverted dimer (D2HVP), that combines the bioactivity of the native sequence (HVP) with the stability toward proteolytic degradation. Both sequences were designed to be anchored to the polymer surface through specific covalent bonds via oxime chemistry. All functionalized PEEK samples were characterized by Water Contact Angle (WCA) measurements, Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS) to confirm the peptide enrichment. The biological results showed that both peptides were able to increase cell proliferation at 3 and 21 days. D2HVP functionalized PEEK resulted in an enhanced proliferation across all time points investigated with higher calcium deposition and more elongated cell morphology.


Asunto(s)
Polímeros , Vitronectina , Humanos , Polietilenglicoles/química , Cetonas/química , Péptidos , Propiedades de Superficie
17.
Front Immunol ; 14: 1078005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845099

RESUMEN

Microvascular immunothrombotic dysregulation is a critical process in the pathogenesis of severe systemic inflammatory diseases. The mechanisms controlling immunothrombosis in inflamed microvessels, however, remain poorly understood. Here, we report that under systemic inflammatory conditions the matricellular glycoproteinvitronectin (VN) establishes an intravascular scaffold, supporting interactions of aggregating platelets with immune cells and the venular endothelium. Blockade of the VN receptor glycoprotein (GP)IIb/IIIa interfered with this multicellular interplay and effectively prevented microvascular clot formation. In line with these experimental data, particularly VN was found to be enriched in the pulmonary microvasculature of patients with non-infectious (pancreatitis-associated) or infectious (coronavirus disease 2019 (COVID-19)-associated) severe systemic inflammatory responses. Targeting the VN-GPIIb/IIIa axis hence appears as a promising, already feasible strategy to counteract microvascular immunothrombotic dysregulation in systemic inflammatory pathologies.


Asunto(s)
COVID-19 , Vitronectina , Humanos , Plaquetas/fisiología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Microvasos
18.
Calcif Tissue Int ; 112(4): 463-471, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729140

RESUMEN

Periostin, also known as osteoblast-specific factor 2, is a matricellular protein predominantly expressed at the periosteum of bone. During growth and development, periostin contributes to periosteal expansion by facilitating osteoblast differentiation and mineralization. Later in life, periosteal expansion provides an adaptive strategy to increase tissue strength without requiring substantial increase in bone mass. However, the function of periostin past skeletal maturity and during advanced aging is relatively unknown. The objective of this study was to examine the function of periostin in maintaining bone mass and tissue strength across different ages. In periostin null mice (Postn-/-), periosteal bone formation was significantly reduced in young (3 months) and adult mice (9 months). The lack of bone formation resulted in reduced bone mass and ultimate strength. Conversely, periosteal bone formation increased at advanced ages in 18-month-old Postn-/- mice. The increase in periosteal mineralization at advanced ages coincides with increased expression of vitronectin and osteopontin. Periosteal progenitors from Postn-/- mice displayed an increased capacity to mineralize when cultured on vitronectin, but not type-1 collagen. Altogether, these findings demonstrate the unique role of periostin in regulating periosteal bone formation at different ages and the potential for vitronectin to compensate in the absence of periostin.


Asunto(s)
Osteogénesis , Vitronectina , Animales , Ratones , Vitronectina/metabolismo , Periostio , Ratones Noqueados , Envejecimiento
19.
Exp Cell Res ; 423(2): 113467, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634744

RESUMEN

To improve mesenchymal stem cell (MSC)-based therapy efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under microenvironmental stress conditions. We observed that human Wharton's jelly-derived MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion, with reduction in cellular migration under serum starvation stress. The changes in adhesion and migration characteristics were accompanied by formation of large number of super mature focal adhesions along with extensive stress fibres and altered ECM gene expression with notable induction in vitronectin (VTN) expression. NF-κß was found to be a positive regulator of VTN expression while ERK pathway regulated it negatively. Inhibition of these signalling pathways or knocking down of VTN under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in cell migration. VTN knockdown also resulted in reduction of super mature focal adhesions and extensive stress fibres, formed under serum starvation stress. Additionally, VTN induction was not detected in hypoxia-treated WJ-MSCs, and the MSCs showed no significant change in the adhesion or migration properties under hypoxia. VTN is established as a key player which possibly regulates the adhesion and migration properties of WJ-MSCs via focal adhesion signalling.


Asunto(s)
Vitronectina , Gelatina de Wharton , Humanos , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Hipoxia/metabolismo , Cordón Umbilical , Vitronectina/metabolismo , Gelatina de Wharton/metabolismo , Células Madre
20.
Tissue Cell ; 81: 102005, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36608640

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a common chronic and progressive lung disease. Fibulin-2 (FBLN2) is upregulated in patients with IPF; however, its exact role in IPF remains unclear. The present study aimed to investigate the role and the regulatory mechanism of FBLN2 in TGF-ß1-induced fibrogenesis using human lung fibroblast-derived MRC-5 cells. Cell transfection was performed to regulate FBLN2 expression. Reverse transcription-quantitative PCR and western blot analyses were performed to detect the expression levels of FBLN2 and vitronectin (VTN). Cell viability and migration were determined via the Cell Counting Kit-8 and wound healing assays, respectively. Immunofluorescence was performed to detect α-smooth muscle actin (α-SMA)-positive cells. The STRING database was used to predict the interaction between FBLN2 and VTN, which was verified via the protein immunoprecipitation assay. The results demonstrated that inhibition of FBLN2 notably inhibited TGF-ß1-induced proliferation and migration, as well as downregulating the protein expression levels of MMP2 and MMP9 in MRC-5 cells. In addition, inhibition of FBLN2 suppressed the expression levels of α-SMA, collagen type 1 α1 and fibronectin. FBLN2 was demonstrated to bind to VTN and negatively regulate its expression. Furthermore, overexpression of VTN partly abolished the inhibitory effects of FBLN2 knockdown on TGF-ß1-induced proliferation, migration and fibrosis, as well as the activity of focal adhesion kinase (FAK) signaling. Taken together, the results of the present study suggest that FBLN2 knockdown can attenuate TGF-ß1-induced fibrosis in MRC-5 cells by downregulating VTN expression via FAK signaling. Thus, FBLN2 may be a potential therapeutic target for IPF treatment.


Asunto(s)
Movimiento Celular , Proteínas de la Matriz Extracelular , Factor de Crecimiento Transformador beta1 , Vitronectina , Humanos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Vitronectina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA