Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.858
Filtrar
1.
J Pharm Biomed Anal ; 249: 116395, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116505

RESUMEN

Multiloop splitter-based non-cryogenic artificial trapping (M-SNAT) modulation technique was developed, miniaturized and applied in comprehensive two-dimensional gas chromatography (GC×GC) for analysis of cannabis samples. The approach employed deactivated fuse silica (DFS) columns configured into multiple loop splitter system halving the perimeters of the progressively upstream loops. This splitter device was located between the first (1D) semi-nonpolar column outlet and a microfluidic Deans switch (DS). Each splitter loop splits a peak into two subpeaks having the same area with different void times. Three loops were then applied resulting in the number of the split subpeaks (nsplit) of 8 for each peak, and retention time differences between any two adjacent subpeaks (∆tR,split) were the same. By applying periodic heartcut event (H/C) within every artificial modulation period (PAM) of nsplit×∆tR,split, comprehensive split-and-trapped modulation profiles of analytes could be selectively transferred onto the second (2D) polar column (30 m) without cryogen consumption. This artificial modulation system was applied for analysis of cannabis samples with enhanced 2D peak capacity (2nc∼15). The established method was applied to analyse cannabis extracts using vegetable oils with or without frying process. This reveals 454 different peaks with 76, 92, 35 and 70 specific components specifically observed by using olive oil extraction (OE), fried OE, coconut oil extraction (CE) and fried CE, respectively.

2.
Food Chem ; 460(Pt 3): 140758, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121775

RESUMEN

To unlock the potential of indigenous non-Saccharomyces cerevisiae and develop novel starters to enhance the aromatic complexity of kiwifruit wine, Zygosaccharomyces rouxii, Pichia kudriavzevii and Meyerozyma guilliermondii were pairwise combined and then used in sequential fermentation with Saccharomyces cerevisiae. The impact of different starter cultures on the chemical composition and flavor profile of the kiwifruit wines was comprehensively analyzed, and the aroma evolution during alcoholic fermentation was investigated by examining the changes in key volatiles and their loss rates. Compared with Saccharomyces cerevisiae, mixed starter cultures not only improve antioxidant capacity but also increase esters and alcohols yields, presenting intense floral and fruity aromas with high sensory acceptability. The results indicated that sequential inoculation of non-Saccharomyces cerevisiae combination and Saccharomyces cerevisiae promoted the development of volatiles while maintaining the stability of key aroma compounds in the winemaking environment and reducing the aroma loss rates during alcoholic fermentation.

3.
Environ Pollut ; : 124697, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122175

RESUMEN

This study describes the use of passive sampling followed by pressurised liquid extraction and gas chromatography-mass spectrometry for monitoring high production volume chemicals (HPVCs), such as benzothiazoles, benzesulfonamides, phthalate esters (PAEs), organophosphate esters, ultraviolet stabilizers, and phenolic antioxidants and polycyclic aromatic hydrocarbons (PAHs) in urban atmospheres close to a petrochemical area. To obtain accurate results when applying passive sampling, the uptake rates of each target compound for the sampling time applied must be known. Firstly, passive sampling was calibrated for two months and uptake rates of HPVCs and PAHs in an urban atmosphere determined using active sampling as the reference method. The obtained results showed experimental diffusive uptake rates between 1.6 m3 day-1 and 27 m3 day-1 for 32 of the target compounds that will allow enable cost-effective long-term monitoring campaigns of HPVCs to be performed. Secondly, the experimentally obtained uptake rates were used to monitor the concentrations of HPVCs and PAHs at six urban sampling sites close to the two petrochemicals parks in Tarragona (Spain) during a period the two months. Regardless of the sampling campaign, PAEs and PAHs were the families of compounds found at the highest concentration levels, with a sum of their mean values of 23 ng m-3 and 20 ng m-3, respectively.

4.
J Exp Bot ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126232

RESUMEN

Plant viruses exist in a broader ecological community, with key components include non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivores infestation on the virus transmission by vector insects on the neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of Tomato yellow leaf curl virus (TYLCV) transmitted by the whitefly (Bemisia tabaci) in the neighboring plants. Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and JA signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-ß-Ocimene and MeSA were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemic of multiple herbivores and viruses in the agroecosystem, ultimately to manage pest and virus outbreaks.

5.
Plants (Basel) ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39124130

RESUMEN

Non-insecticidal control strategies using entomopathogens, nematodes, and endophytes provide sustainable and safer alternatives for managing crop pests. This study investigated the potential of different fungal endophytes, specifically Beauveria bassiana strains, in colonizing cotton plants and their efficacy against tarnished plant bug, Lygus lineolaris. The effect of endophytes on plant growth parameters and cotton yield were measured during different plant growth stages. The entomopathogenicity of these fungi was studied in diet cup bioassays using L. lineolaris adults. The behavior of adult males and females toward endophytic cotton squares was analyzed using olfactometer assays. The experiments showed that the fungal endophytes colonized the plant structures of cotton plants, which resulted in an increase in the number of cotton squares, plant height, and weight compared to control plants. B. bassiana strains/isolates such as GHA, NI-8, and JG-1 caused significant mortality in Lygus adults compared to controls. Also, male and female Lygus adults exhibited repellence behavior towards endophytic cotton squares containing JG-1 isolate of B. bassiana and to other B. bassiana strains such as NI-8, GHA, and SPE-120. No differences were observed in the survival and development of L. lineolaris second-instar nymphs on endophytic cotton, and no yield differences were observed in the field experiments.

6.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124193

RESUMEN

This study explores the chemical composition of essential oils from two Serbian Bupleurum species (Apiaceae), Bupleurum praealtum L. and Bupleurum affine L., traditionally recognized in Chinese medicine for their therapeutic potential but less studied for their essential oils. Through GC-MS analysis, we identified 230 constituents, revealing distinct profiles between the species. Perillyl 2-methylbutanoate was identified in B. affine oil for the first time, confirmed using synthetic approaches and characterized by advanced spectroscopic techniques, including two-dimensional NMR and spin-simulation of 1H NMR spectra. Additionally, new natural compounds, including tentatively identified 4-decyl acetate and 4-undecyl acetate, were discovered. The study also reports five stereoisomeric esters of tetradeca-5,7,9,11-tetraen-1-ol. These findings significantly contribute to the understanding of the phytochemical diversity within the genus Bupleurum and underscore potential differences in ecological adaptations or biosynthetic pathways among species.

7.
Biomed Pharmacother ; 178: 117245, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39111079

RESUMEN

BACKGROUND: Olfactory stimulation with mastic resin, derived from the Pistacia lentiscus tree, demonstrated a bona fide sialagogic effect in healthy volunteers [1]. Its main volatile compound, α-pinene, also showed this effect. The current study aimed to validate the effect of mastic resin volatiles in chronic dry mouth patients with confirmed decreased saliva secretion. METHODS: 41 chronic dry mouth patients with decreased unstimulated saliva secretion (<0.25 mL/min) were exposed to mastic resin volatiles as part of the diagnostic routine at the Saliva Clinic of Academic Centre for Dentistry Amsterdam. During their visit, dry-mouth questionnaires were conducted and samples of unstimulated whole saliva, chew-stimulated saliva, acid-stimulated saliva and mastic resin stimulated saliva were collected. Saliva flow rate, spinnbarkeit, pH, ion composition, MUC5B and MUC7 levels in all samples were analyzed. RESULTS: Salivary flow rates increased by all stimuli when compared to the baseline unstimulated saliva (P<0.001). During olfactory mastic resin stimulation, the salivary spinnbarkeit (P<0.001) and sodium concentration (P<0.01) were increased compared to unstimulated saliva. MUC5B and MUC7 levels were increased during olfactory mastic resin stimulation compared to chew-stimulated saliva (P=0.016 and P<0.001, respectively). Spinnbarkeit correlated positively with MUC5B (R=0.399, P=0.002) and MUC7 levels (R=0.375, P=0.004). Results of dry-mouth questionnaires indicated reduced posterior palate dryness shortly after olfactory mastic resin stimulation (P=0.04). CONCLUSIONS: Olfactory mastic resin stimulation increased mucous saliva secretion and reduced posterior palate dryness in a group of chronic dry mouth patients. These findings, validated in patients, underscore mastic resin scent as a beneficial and non-invasive sialagogic treatment for clinical applications.

8.
Vitam Horm ; 125: 149-182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997163

RESUMEN

The century old Maillard reactions continue to draw the interest of researchers in the fields of Food Science and Technology, and Health and Medical Sciences. This chapter seeks to simplify and update this highly complicated, multifaceted topic. The simple nucleophilic attack of an amine onto a carbonyl group gives rise to a series of parallel and subsequent reactions, occurring simultaneously, resulting into a vast array of low and high mass compounds. Recent research has focused on: (1) the formation and transformation of α-dicarbonyl compounds, highly reactive intermediates which are essential in the development of the desired color and flavor of foods, but also lead to the production of the detrimental advanced glycation end products (AGEs); (2) elucidation of the structures of melanoidins in different foods and their beneficial effects on human health; and (3) harmful effects of AGEs on human health. Considering that MRs have both positive and negative consequences, their control to accentuate the former and to mitigate the latter, is also being conscientiously investigated with the use of modern techniques and technology.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Productos Finales de Glicación Avanzada/química , Polímeros/química , Animales
9.
Inflammopharmacology ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039347

RESUMEN

Ayapana triplinervis (M.Vahl) R.M.King & H.Rob. (Asteraceae), popularly known as japana, is a tropical, aromatic subshrub widely used as tea to combat some diseases. The essential oil was obtained from the leaves by hydrodistillation (3 h), and the chemical composition was analyzed by gas chromatography coupled to mass spectrometry. For in vivo assays, Mus musculus/Swiss mice were used to evaluate oral acute toxicological (at dose of 2000 mg/kg); peripheral and central analgesic for abdominal contortion (doses of 6.25, 12.5, 25, 50 and 100 mg/kg), hot plate test (12.5, 25, 50, and 100 mg/kg) and formalin (25, 50 and 100 mg/kg); open field test (100 mg/kg); and anti-inflammatory by ear swelling induced by xylene (6.25,12.5, 25, 50, and 100 mg/kg). The yield of A. triplinervis essential oil (AtEO) was 4.6%, and the oxygenated monoterpene 2,5-dimethoxy-p-cymene was the major compound in this study (63.6%). AtEO at a dose of 2,000 mg/kg orally did not change the behavior patterns or mortality of the animals; liver and kidney biochemical levels were similar to the control group, indicating no liver and kidney toxicity. Moreover, AtEO, at doses of 6.25, 12.5, 25, 50, and 100 mg/kg, reduced abdominal contortions by 21%, 54%, 91%, 58%, and 55%, respectively. In the hot plate test, AtEO showed a significant increase in latency time in the 60-min interval at doses of 25 mg/kg (11.3 ± 3.3 s) and 100 mg/kg (11.9 ± 0.9 s). In the first phase of the formalin test, AtEO decreased paw licking time at doses of 25, 50, and 100 mg/kg, with inhibition of 22%, 38%, and 83%; in the second phase, the same doses, decreased licking time with inhibition of 24%, 34%, and 76%. AtEO did not present a significant change in the spontaneous locomotor activity of the animals. Doses of 6.25, 12.5, 25, 50, and 100 mg/kg significantly reduced ear edema induced by topical application of xylene with percentages of 40%, 39%, 54%, 45%, and 45%, respectively. So, AtEO demonstrated low acute oral toxicity and exhibited significant antinociceptive and anti-inflammatory actions, consistent with the use of A. triplinervis in traditional medicine.

10.
Food Chem ; 460(Pt 1): 140560, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047484

RESUMEN

The intensity of green tea's floral and sweet flavors was enhanced after being scented by osmanthus (OSGT). However, the mechanism of flavor enhancement by key volatiles remains unknown. Here, the role of key volatiles in OSGT on aroma and taste was explored by sensory experiment-guided flavor analysis. Binary mixed models of (E)-ß-ionone, dihydro-ß-ionone, and α-ionone showed additive interactions on floral aroma enhancement, the interactions were increased with increasing concentrations. At the concentration in OSGT, binary mixed models of (E)-ß-ionone, geraniol, linalool, and γ-decalactone showed additive interactions on sweet aroma enhancement. (E)-ß-ionone, geraniol, linalool, and γ-decalactone all significantly increased the perceived intensity of sweetness of sucrose solutions. Additionally, molecular docking revealed the perception mechanism of olfactory and taste receptors to the above characterized volatiles, with hydrogen bonding and hydrophobic interactions being the main interactions. This study highlights the importance of characteristic volatiles in enhancing the flavor of OSGT.

11.
FEMS Microbiol Ecol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049462

RESUMEN

Bacteria have been suggested as being partially responsible for avian-nest odours and, thus, volatiles from their metabolism could influence the intensity of selection pressures due to parasites detecting olfactory cues of their hosts. Here, we tested this hypothesis by exploring intra- and interspecific variability in microbial environments, volatile profiles, and intensity of ectoparasitism by Carnus hemapterus in nests of ten avian species. As expected, we found that (i) alpha and beta diversity of microbial and volatile profiles associated to each other. Moreover, (ii) alpha diversity of bacteria and volatiles of nest environment, as well as some particular bacteria and volatiles, associated with intensity of parasitism at early and late stage of the nestling period. Finally, (iii) alpha diversity of the nest microbiota, as well as some particular bacteria and volatiles, was correlated to fledging success. When considering them together, the results support the expected links between microbial environment and nest odours in different bird species, and between microbial environment and both ectoparasitism intensity and fledging success. Relative abundances of particular volatiles and bacteria predicted ectoparasitism and/or fledging success. Future research should prioritize experimental approaches directed to determine the role of bacteria and volatiles in the outcomes of host-ectoparasite interactions.

12.
Front Microbiol ; 15: 1341646, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056012

RESUMEN

In northeast China, the invasive woodwasp., Sirex noctilio, attacks Pinus sylvestris var. mongolica Litv and often shares habitat with native Sirex nitobei. Previous research showed that S. noctilio can utilize the volatiles from its symbiotic fungus (A. areolatum IGS-BD) to locate host trees. Consequently, symbiotic fungi (A. areolatum IGS-D and A. chailletii) carried by S. nitobei may influence the behavioral selection of S. noctilio. This study aimed to investigate the impact of fungal odor sources on S. noctilio's behavior in laboratory and field experiments. Our observations revealed that female woodwasps exhibited greater attraction toward the fungal volatiles of 14-day-old Amylostereum IGS-D in a "Y"-tube olfactometer and wind tunnel. When woodwasps were released into bolts inoculated separately with three strains in the field, females of S. noctilio exhibited a preference for those bolts pre-inoculated with A. areolatum IGS-BD. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the volatiles emitted by the two genotypes of A. areolatum were similar yet significantly distinct from those of Ampelopsis chailletii. Hence, we postulate that the existence of native A. areolatum IGS-D could potentially facilitate the colonization of S. noctilio in scenarios with minimal or no A. areolatum IGS-BD present in the host.

13.
Insects ; 15(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39057244

RESUMEN

The intricate relationships between plants and insects are essential for understanding ecological dynamics. Among these interactions, HIPVs serve as a pivotal defense mechanism. Our findings reveal the highly conserved nature of the GOX gene within the Lepidoptera order, highly expressed in the salivary glands of S. frugiperda, and its role in mediating maize's defense responses. Notably, salivary GOX activity expression significantly decreases subsequent gene knockout. The presence of GOX in the saliva of S. frugiperda significantly modulates the emission of HIPVs during maize consumption. This research delineates that GOX selectively inhibits the emission of certain green leaf volatiles (GLVs) while concurrently enhancing the release of terpene volatiles. This study unveils a novel mechanism whereby S. frugiperda utilizes GOX proteins in OS to modulate volatile emissions from maize, offering fresh perspectives on the adaptive evolution of phytophagous insects and their interactions with their preferred host plants.

14.
J Chem Ecol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38949747

RESUMEN

Plant responses to damage by insectivorous herbivores are well-documented in mature leaves. The resulting herbivore-induced plant volatiles (HIPVs) protect the plant by attracting carnivorous arthropods and even some insectivorous vertebrates, to parasitize or consume the plant invaders. However, very little is known about plant production of HIPVs in developing buds, particularly when herbivorous insects are too small to be considered a prey item. It is additionally unclear whether plants respond differently to generalist and specialist chewing insects that overlap in distribution. Therefore, we compared HIPV production of Downy oak (Quercus pubescens Willd.) buds infested with freshly hatched caterpillars of Tortrix viridana (specialist) and Operophtera brumata (generalist), against uninfested buds. Of the compounds identified in both years of the experiment, we found that (Z)-hex-3-enyl acetate, (E)-ß-ocimene, acetophenone, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, α-copaene, α-humulene, (E)-caryophyllene, and (E,E)-α-farnesene appeared to be higher in infested buds compared to controls. We found no difference in HIPV production between the specialist and the generalist herbivores. Production of HIPVs was also associated with leaf damage, with higher HIPV production in more severely attacked buds. Thus, our study shows that oak trees already start responding to insect herbivory before leaves are developed, by producing compounds similar to those found in damaged mature leaves. Future work should focus on how Downy oak may benefit from initiating alarm cues at a time when carnivorous arthropods and insectivorous vertebrates are unable to use herbivorous insects as host or food.

15.
Foods ; 13(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063313

RESUMEN

Honeydew honey is produced by bees (Apis mellifera) foraging and collecting secretions produced by certain types of aphids on various parts of plants. In addition to exhibiting organoleptic characteristics that distinguish them from nectar honey, these honeys are known for their functional properties, such as strong antioxidant and anti-inflammatory activities. Despite their importance, they remain poorly characterized in comparison with flower honeys, as most studies on this subject are not only carried out on too few samples but also still focused on traditional chemical-physical parameters, such as specific rotation, major sugars, or melissopalynological information. Since mass spectrometry has consistently been a primary tool for the characterization and authentication of honeys, this review will focus on the application of these methods to the characterization of the minor fraction of honeydew honey. More specifically, this review will attempt to highlight what progress has been made so far in identifying markers of the authenticity of the botanical and/or geographical origin of honeydew honeys by mass spectrometry-based approaches. Furthermore, strategies devoted to the determination of contaminants and toxins in honeydew honeys will be addressed. Such analyses represent a valuable tool for establishing the level of food safety associated with these products. A critical analysis of the presented studies will identify their limitations and critical issues, thereby describing the current state of research on the topic.

16.
Waste Manag ; 186: 345-354, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959618

RESUMEN

Stale bread is a waste product with a potential to be recycled. One way to manage this waste material is to process it by fermentation for the purpose of food production. This paper proposes the use of stale wheat and rye bread as ingredients in amazake, a liquid dessert traditionally obtained from rice by fermentation with the koji mould Aspergillus oryzae, followed by liquefaction by the action of fungal enzymes. The stale bread was introduced instead of rice at both the koji stage (wheat bread) and the liquefaction stage (wheat and rye bread). The resulting products had an extended volatile compound profile, from 5 to 15 compounds identified, and modified sensory parameters, compared to the traditional version. Amazake containing bread had an increased protein content, from 1.10 to 6.4 g/100 g, and were more abundant in dietary fibre (up to a maximum of 1.8 g/100 g), additionally enriched with a soluble fraction. The proposed procedure of obtaining of new formula amazake can be directly applied in households to reduce the amount of discarded bread. Due to its simplicity, it also has the potential for further modification in terms of production scale and product parameters.


Asunto(s)
Pan , Reciclaje , Triticum , Pan/análisis , Reciclaje/métodos , Fermentación , Aspergillus oryzae/metabolismo , Fibras de la Dieta/análisis , Valor Nutritivo , Oryza , Residuos/análisis , Gusto
17.
Curr Res Food Sci ; 9: 100794, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021608

RESUMEN

Rice aroma, one of the most important qualities of rice, was the comprehensive result of volatiles in rice and human sense. In this study, the main volatile compounds in rice were analyzed by using gas chromatography-mass spectrometry and gas chromatography-olfactometry, and their correlations with sensory score were investigated. A total of eighty-five volatiles were found in rice samples. By combining odor activity value and correlation analysis, nine volatiles were considered as potential characteristic volatiles in rice aroma, namely hexanal, 2-pentylfuran, octanal, 2-acetyl-1-pyrroline (2-AP), 1-octen-3-ol, trans-2-octenal, decanal, trans-2-nonenal and trans, trans-2,4-decadienal. It was found that the volatiles negatively correlated with sensory scores were positively correlated with hexanal. It indicated that hexanal might be a representative of the negative volatiles of rice aroma. The effects of the nine potential characteristic volatiles on rice aroma were investigated by using sensory analysis. The results showed that the odor intensity and preference level of 2-AP, hexanal, and 1-octen-3-ol were significantly affected by the content. Furthermore, the aroma of cooked rice was significantly different after adding 2-AP, hexanal or trans, trans-2,4-decadienal. Rice aroma was increased by adding 2-AP and deteriorated by adding hexanal or trans, trans-2,4-decadienal, indicating that 2-AP contributed positively to rice aroma while hexanal and trans, trans-2,4-decadienal contributed negatively to rice aroma. Hexanal, 2-AP, and trans, trans-2,4-decadienal were suggested to be the key characteristic volatiles for future aroma evaluation.

18.
Food Chem X ; 23: 101568, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022788

RESUMEN

Pomelo flowers emit a strong fragrance and give aromatic odors. Volatile compounds from pomelo flowers were analyzed at three developmental stages and in the main organs by molecular sensory science. A total of 134 volatiles including 25 odorants, were analyzed by gas chromatography-mass spectrometry/pulsed flame photometric detector (GC-MS/PFPD) and multidimensional GC-MS/olfactory (MDGC-MS/O). The total volatile content varied among pomelo flowers at different developmental stages (stage-III > stage-II > stage-I) and among different organs of pomelo flowers (petal > pistil > stamen). Linalool was an important odorant with a high OAV, and floral/fruity comprised the predominant aroma profile. Four odorants, ethyl 2-methylbutanoate, linalool, ß-myrcene, and 2-butenal, were selected based on variable importance in projection (VIP) values and contributed mainly to the discrimination of pomelo flowers at three different developmental stages. Linalool, ß-myrcene, d-limonene, and ethyl hexanoate were potential markers for evaluating flavor differences in pomelo floral organs.

19.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999145

RESUMEN

Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.


Asunto(s)
Codonopsis , Metabolómica , Fitoquímicos , Hojas de la Planta , Tallos de la Planta , Tubérculos de la Planta , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Metabolómica/métodos , Fitoquímicos/análisis , Fitoquímicos/metabolismo , Tubérculos de la Planta/química , Tubérculos de la Planta/metabolismo , Codonopsis/química , Codonopsis/metabolismo , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Metaboloma , Terpenos/metabolismo , Terpenos/análisis , Plantas Medicinales/metabolismo , Plantas Medicinales/química
20.
Plants (Basel) ; 13(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999572

RESUMEN

As a new vector insect of pine wood nematodes in China, the Monochamus saltuarius (Coleoptera: Cerambycidae) vectors pine wilt nematodes into healthy pine trees through feeding and oviposition, resulting in huge economic losses to forestry. A promising control strategy is to develop safe and efficient attractants. This study aims to screen for the key active volatiles of Pinus koraiensis (Pinales: Pinaceae), Pinus tabuliformis (Pinales: Pinaceae), and Picea asperata (Pinales: Pinaceae) that can attract M. saltuarius, and to study the synergistic attraction of the main attractant plant volatiles with ethanol and insect aggregation pheromones. The preference of M. saltuarius for three hosts is P. koraiensis > P. tabuliformis > Picea asperata. We detected 18 organic volatiles from three host plants. Through EAG assays and indoor Y-tube behavioral experiments, 3-carene, (-)-camphor, ß-pinene, α-phellandrene, terpinolene, α-pinene, D-limonene, and myrcene were screened to have attractive effects on M. saltuarius. We found that 3-carene, ß-pinene, and α-pinene are the most attractive kairomones in field experiments, which may play a crucial role in the host localization of M. saltuarius. Ethanol has a synergistic effect on the attractant activity of 3-carene and ß-pinene, and the synergistic effect on ß-pinene is the best. The mixture of ethanol, 2-undecyloxy-1-ethanol, and ipsdienol can significantly enhance the attraction effect of ß-pinene on M. saltuarius. These new findings provide a theoretical basis for the development of attractants for adult M. saltuarius and contribute to the green control of M. saltuarius.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA