Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(40): 12433-12441, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39351960

RESUMEN

There is an increasing demand for p-type semiconductors with scalable growth, excellent device performance, and back-end-of-line (BEOL) compatibility. Recently, tellurium (Te) has emerged as a promising candidate due to its appealing electrical properties and potential low-temperature production. So far, nearly all of the scalable production and integration of Te with complementary metal oxide semiconductor (CMOS) technology have been based on physical vapor deposition. Here we demonstrate wafer-scale atomic layer-deposited (ALD) TeOx/Te heterostructure thin-film transistors with high uniformity and integration compatibility. The wafer-scale uniformity of the film is evidenced by spatial Raman mappings and statistical electrical analysis. Furthermore, surface accumulation-induced good ohmic contact has been observed and explained by the unique band alignment of the charge neutrality level inside the Te valence band. These results demonstrate ALD TeOx/Te as a promising p-type semiconductor for monolithic three-dimensional integration in BEOL CMOS applications incorporated with well-established n-type ALD oxide semiconductors.

2.
ACS Nano ; 18(40): 27782-27792, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39316430

RESUMEN

Progress in superconducting device and detector technologies over the past decade has realized practical applications in quantum computers, detectors for far-infrared telescopes, and optical communications. Superconducting thin-film materials, however, have remained largely unchanged, with aluminum still being the material of choice for superconducting qubits and niobium compounds for high-frequency/high kinetic inductance devices. Magnesium diboride (MgB2), known for its highest transition temperature (Tc = 39 K) among metallic superconductors, is a viable material for elevated temperature and higher frequency superconducting devices moving toward THz frequencies. However, difficulty in synthesizing wafer-scale thin films has prevented implementation of MgB2 devices into the application base of superconducting electronics. Here, we report ultrasmooth (<0.5 nm root-mean-square roughness) and uniform MgB2 thin (<100 nm) films over 100 mm in diameter and present prototype devices fabricated with these films demonstrating key superconducting properties including an internal quality factor over 104 at 4.5 K and high tunable kinetic inductance in the order of tens of pH/sq in a 40 nm thick film. This advancement will enable development of elevated temperature, high-frequency superconducting quantum circuits, and devices.

3.
Nanomaterials (Basel) ; 14(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39269071

RESUMEN

As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.

4.
Adv Sci (Weinh) ; : e2408640, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39244733

RESUMEN

Atomic chalcogen vacancy is the most commonly observed defect category in two dimensional (2D) transition-metal dichalcogenides, which can be detrimental to the intrinsic properties and device performance. Here a low-defect density, high-uniform, wafer-scale single crystal epitaxial technology by in situ oxygen-incorporated "growth-repair" strategy is reported. For the first time, the oxygen-repairing efficiency on MoS2 monolayers at atomic scale is quantitatively evaluated. The sulfur defect density is greatly reduced from (2.71 ± 0.65) × 1013 down to (4.28 ± 0.27) × 1012 cm-2, which is one order of magnitude lower than reported as-grown MoS2. Such prominent defect deduction is owing to the kinetically more favorable configuration of oxygen substitution and an increase in sulfur vacancy formation energy around oxygen-incorporated sites by the first-principle calculations. Furthermore, the sulfur vacancies induced donor defect states is largely eliminated confirmed by quenched defect-related emission. The devices exhibit improved carrier mobility by more than three times up to 65.2 cm2 V-1 s-1 and lower Schottky barrier height reduced by half (less than 20 meV), originating from the suppressed Fermi-level pinning effect from disorder-induced gap state. The work provides an effective route toward engineering the intrinsic defect density and electronic states through modulating synthesis kinetics of 2D materials.

5.
Nano Lett ; 24(33): 10155-10160, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39107308

RESUMEN

As integrated circuits continue to scale toward the atomic limit, bottom-up processes, such as epitaxial growth, have come to feature prominently in their fabrication. At the same time, chemistry has developed highly tunable molecular semiconductors that can perform the functions of ultimately scaled circuit components. Hybrid techniques that integrate programmable structures comprising molecular components into devices however are sorely lacking. Here we demonstrate a wafer-scale process that directs the localization of a conductive polymer, Mw = 20 kg mol-1 polyaniline, from dilute solutions into 50 nm vertical nanogap device architectures using electric-field-driven self-assembly. The resulting metal-polymer-metal junctions were characterized by electron microscopy, Raman spectroscopy and transport measurements demonstrating that our technique is highly selective, assembling conductive polymers only in electrically activated nanogaps. Our results represent a step toward scalable hybrid nanoelectronics that seamlessly integrate established lithographic top-down fabrication with bottom-up synthesized molecular functional circuit components.

6.
ACS Appl Mater Interfaces ; 16(36): 48598-48606, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39194212

RESUMEN

Tin telluride (SnTe) is an IV-VI semiconductor with a topological crystalline insulator band structure, high thermoelectric performance, and in-plane ferroelectricity. Despite its many applications, there has been little work focused on understanding the growth mechanisms of SnTe thin films. In this manuscript, we investigate the molecular beam epitaxy synthesis of SnTe (111) thin films on InP (111)A substrates. We explore the effect of substrate temperature, Te/Sn flux ratio, and growth rate on the film quality. Using a substrate temperature of 340 °C, a Te/Sn flux ratio of 3, and a growth rate of 0.48 Å/s, fully coalesced and single crystalline SnTe (111) epitaxial layers with X-ray rocking curve full-width-at-half-maxima of 0.09° and root-mean-square surface roughness as low as 0.2 nm have been obtained. Despite the 7.5% lattice mismatch between the SnTe (111) film and the InP (111)A substrate, reciprocal space mapping indicates that the 15 nm SnTe layer is fully relaxed. We show that a periodic interfacial misfit (IMF) dislocation array forms at the SnTe/InP heterointerface, where each IMF dislocation is separated by 14 InP lattice sites/13 SnTe lattice sites, providing rapid strain relaxation and yielding the high quality SnTe layer. This is the first report of an IMF array forming in a rock-salt on zinc-blende material system and at an IV-VI on III-V heterointerface, and highlights the potential for SnTe as a buffer layer for epitaxial telluride film growth. This work represents an important milestone in enabling the heterointegration between IV-VI and III-V semiconductors to create multifunctional devices.

7.
Adv Mater ; : e2405214, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194391

RESUMEN

Wafer-scale transfer processes of 2D materials significantly expand their application space in scalable microelectronic devices with excellent and tunable properties through van der Waals (vdW) stacking. Unlike many 2D materials, wafer-scale transfer of MXene films for vdW contact engineering has not yet been reported. With their rich surface chemistry and tunable properties, the transfer of MXenes can enable enormous possibilities in electronic devices using interface engineering. Taking advantage of the MXene hydrophilic surface, a straightforward, green, and fast process for the transfer of MXene films at the wafer scale (4-inch) is developed. Uniform vdW stacking of several types of large-area heterojunctions including MXene/MXene (Ti3C2Tx, Nb2CTx, and V2CTx), MXene/MoS2, and MXene/Au is further demonstrated. Multilayer support is applied to minimize damage or deformation in the transfer process of patterned Ti3C2Tx film. It allows us to fabricate thin film transistors and manipulate the MXene/MoS2 interface through the intercalation of various 2D liquids. Particularly noteworthy is the significant enhancement of the interfacial carrier transfer efficiency by ≈2 orders of magnitude using hydrogen iodide (HI) intercalation. This finding indicates a wide range of possibilities for interface engineering by transferring MXene films and employing liquid-assisted interfacial intercalation.

8.
Nano Lett ; 24(34): 10510-10518, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145617

RESUMEN

Low-dimensional semiconductor-based field-effect transistor (FET) biosensors are promising for label-free detection of biotargets while facing challenges in mass fabrication of devices and reliable reading of small signals. Here, we construct a reliable technology for mass production of semiconducting carbon nanotube (CNT) film and FET biosensors. High-uniformity randomly oriented CNT films were prepared through an improved immersion coating technique, and then, CNT FETs were fabricated with coefficient of performance variations within 6% on 4-in. wafers (within 9% interwafer) based on an industrial standard-level process. The CNT FET-based ion sensors demonstrated threshold voltage standard deviations within 5.1 mV at each ion concentration, enabling direct reading of the concentration information based on the drain current. By integrating bioprobes, we achieved detection of biosignals as low as 100 aM through a plug-and-play portable detection system. The reliable technology will contribute to commercial applications of CNT FET biosensors, especially in point-of-care tests.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Transistores Electrónicos , Nanotubos de Carbono/química , Técnicas Biosensibles/instrumentación , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Nanotecnología/instrumentación , Diseño de Equipo
9.
ACS Appl Mater Interfaces ; 16(28): 36678-36687, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38966894

RESUMEN

Stretchable organic phototransistor arrays have potential applications in artificial visual systems due to their capacity to perceive ultraweak light across a broad spectrum. Ensuring uniform mechanical and electrical performance of individual devices within these arrays requires semiconductor films with large-area scale, well-defined orientation, and stretchability. However, the progress of stretchable phototransistors is primarily impeded by their limited electrical properties and photodetection capabilities. Herein, wafer-scale and well-oriented semiconductor films were successfully prepared using a solution shearing process. The electrical properties and photodetection capabilities were optimized by improving the polymer chain alignment. Furthermore, a stretchable 10 × 10 transistor array with high device uniformity was fabricated, demonstrating excellent mechanical robustness and photosensitive imaging ability. These arrays based on highly stretchable and well-oriented wafer-scale semiconductor films have great application potential in the field of electronic eye and artificial visual systems.

10.
ACS Nano ; 18(26): 17185-17196, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38870462

RESUMEN

GaSe is an important member of the post-transition-metal chalcogenide family and is an emerging two-dimensional (2D) semiconductor material. Because it is a van der Waals material, it can be fabricated into atomic-scale ultrathin films, making it suitable for the preparation of compact, heterostructure devices. In addition, GaSe possesses unusual optical and electronic properties, such as a shift from an indirect-bandgap single-layer film to a direct-bandgap bulk material, rare intrinsic p-type conduction, and nonlinear optical behaviors. These properties make GaSe an appealing candidate for the fabrication of field-effect transistors, photodetectors, and photovoltaics. However, the wafer-scale production of pure GaSe single-crystal thin films remains challenging. This study develops an approach for the direct growth of nanometer-thick GaSe films on GaAs substrates by using molecular beam epitaxy. It yields smooth thin GaSe films with a rare γ'-polymorph. We analyze the formation mechanism of γ'-GaSe using density-functional theory and speculate that it is stabilized by Ga vacancies since the formation enthalpy of γ'-GaSe tends to become lower than that of other polymorphs when the Ga vacancy concentration increases. Finally, we investigate the growth conditions of GaSe, providing valuable insights for exploring 2D/three-dimensional (3D) quasi-van der Waals epitaxial growth.

11.
Micromachines (Basel) ; 15(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38793133

RESUMEN

Wafer-scale blue micro-light-emitting diode (micro-LED) arrays were fabricated with a pixel size of 12 µm, a pixel pitch of 15 µm, and a pixel density of 1692 pixels per inch, achieved by optimizing the properties of e-beam-deposited and sputter-deposited indium tin oxide (ITO). Although the sputter-deposited ITO (S-ITO) films exhibited a densely packed morphology and lower resistivity compared to the e-beam-deposited ITO (E-ITO) films, the forward voltage (VF) values of a micro-LED with the S-ITO films were higher than those with the E-ITO films. The VF values for a single pixel and for four pixels with E-ITO films were 2.82 V and 2.83 V, respectively, while the corresponding values for S-ITO films were 3.50 V and 3.52 V. This was attributed to ion bombardment damage and nitrogen vacancies in the p-GaN layer. Surprisingly, the VF variations of a single pixel and of four pixels with the optimized E-ITO spreading layer from five different regions were only 0.09 V and 0.10 V, respectively. This extremely uniform VF variation is suitable for creating micro-LED displays to be used in AR and VR applications, circumventing the bottleneck in the development of long-lifespan and high-brightness organic LED devices for industrial mass production.

12.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38808726

RESUMEN

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

13.
Small ; 20(37): e2402155, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795001

RESUMEN

Two-dimensional (2D) materials exhibit the potential to transform semiconductor technology. Their rich compositional and stacking varieties allow tailoring materials' properties toward device applications. Monolayer to multilayer gallium sulfide (GaS) with its ultraviolet band gap, which can be tuned by varying the layer number, holds promise for solar-blind photodiodes and light-emitting diodes as applications. However, achieving commercial viability requires wafer-scale integration, contrasting with established, limited methods such as mechanical exfoliation. Here the one-step synthesis of 2D GaS is introduced via metal-organic chemical vapor deposition on sapphire substrates. The pulsed-mode deposition of industry-standard precursors promotes 2D growth by inhibiting the vapor phase and on-surface pre-reactions. The interface chemistry with the growth of a Ga adlayer that results in an epitaxial relationship is revealed. Probing structure and composition validate thin-film quality and 2D nature with the possibility to control the thickness by the number of GaS pulses. The results highlight the adaptability of established growth facilities for producing atomically thin to multilayered 2D semiconductor materials, paving the way for practical applications.

14.
Materials (Basel) ; 17(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673078

RESUMEN

Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 µm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics.

15.
Small ; 20(33): e2312120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38558528

RESUMEN

The tunable properties of 2D transition-metal dichalcogenide (TMDs) materials are extensively investigated for high-performance and wavelength-tunable optoelectronic applications. However, the precise modification of large-scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer-scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large-area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single-source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2-, Ni0.06Mo0.26S0.68-, and Ni0.1Mo0.9S1.79Se0.21-based photodetectors is 3.51 × 10-4, 1.48, and 0.9 A W-1 for 532 nm and 0.063, 0.42, and 1.4 A W-1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near-infrared (NIR) photodetection.

16.
Adv Mater ; 36(30): e2402855, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38683952

RESUMEN

Large-scale, high-quality, and uniform monolayer molybdenum disulfide (MoS2) films are crucial for their applications in next-generation electronics and optoelectronics. Epitaxy is a mainstream technique for achieving high-quality MoS2 films and is demonstrated at a wafer scale up to 4-in. In this study, the epitaxial growth of 8-in. wafer-scale highly oriented monolayer MoS2 on sapphire is reported as with excellent spatial homogeneity, using a specially designed vertical chemical vapor deposition (VCVD) system. Field effect transistors (FETs) based on the as-grown 8-in. wafer-scale monolayer MoS2 film are fabricated and exhibit high performances, with an average mobility and an on/off ratio of 53.5 cm2 V-1 s-1 and 107, respectively. In addition, batch fabrication of logic devices and 11-stage ring oscillators are also demonstrated, showcasing excellent electrical functions. This work may pave the way of MoS2 in practical industry-scale applications.

17.
ACS Nano ; 18(11): 7868-7876, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38440979

RESUMEN

Diodes based on p-n junctions are fundamental building blocks for numerous circuits, including rectifiers, photovoltaic cells, light-emitting diodes (LEDs), and photodetectors. However, conventional doping techniques to form p- or n-type semiconductors introduce impurities that lead to Coulomb scattering. When it comes to low-dimensional materials, controllable and stable doping is challenging due to the feature of atomic thickness. Here, by selectively depositing dielectric layers of Y2O3 and AlN, direct formation of wafer-scale carbon-nanotube (CNT) diodes are demonstrated with high yield and spatial controllability. It is found that the oxygen interstitials in Y2O3, and the oxygen vacancy together with Al-Al bond in AlN/Y2O3 electrostatically modulate the intrinsic CNTs channel, which leads to p- and n-type conductance, respectively. These CNTs diodes exhibit a high rectification ratio (>104) and gate-tunable rectification behavior. Based on these results, we demonstrate the applicability of the diodes in electrostatic discharge (ESD) protection and photodetection.

18.
ACS Nano ; 18(11): 7739-7768, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456396

RESUMEN

Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.

19.
Adv Sci (Weinh) ; 11(12): e2306239, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38225745

RESUMEN

A self-confined solid-state dewetting mechanism is reported that can fundamentally reduce the use of sophisticated nanofabrication techniques, enabling efficient wafer-scale patterning of non-closely packed (ncp) gold nanoparticle arrays. When combined with a soft lithography process, this approach can address the reproducibility challenges associated with colloidal crystal self-assembly, allowing for the batch fabrication of ncp gold arrays with consistent ordering and even optical properties. The resulting dewetted ncp gold nanoparticle arrays exhibit strong surface lattice resonance properties when excited in inhomogeneous environments under normal white-light incidence. With these SLR properties, the sensitive plasmonic sensing of molecular interactions is achieved using a simple transmission setup. This study will advance the development of miniaturized and portable devices.

20.
Nanotechnology ; 35(16)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211319

RESUMEN

In the pursuit of ultrathin and highly sensitive photodetectors, a promising approach involves leveraging the combination of light-sensitive two-dimensional (2D) semiconducting transition-metal dichalcogenides, such as MoS2and the high electrical conductivity of graphene. Over the past decade, exfoliated 2D materials and electron-beam lithography have been used extensively to demonstrate feasibility on single devices. But for these devices to be used in the real-world systems, it is necessary to demonstrate good device performance similar to lab-based devices with repeatability of the results from device to device and a path to large scale manufacturing. To work in this way, a fabrication process of MoS2/graphene vertical heterostructures with a wafer-scale integration in a CMOS compatible foundry environment is evaluated here. Large-scale atomic layer deposition on 8 inch silicon wafers is used for the growth of MoS2layers which are then transferred on a 4 inch graphene-based wafer. The MoS2/graphene phototransistors are fabricated collectively, achieving a minimum channel length of 10µm. The results measured on dozen of devices demonstrate a photoresponsivity of 50 A W-1and a remarkable sensitivity as low as 10 nW at 660 nm. These results not only compete with lab-based photodetectors made of chemical vapor deposition grown MoS2layers transferred on graphene, but also pave the way for the large-scale integration of these emerging 2D heterostructures in optoelectronic devices and sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA