Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.097
Filtrar
1.
Mar Pollut Bull ; 203: 116465, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723549

RESUMEN

Regular testing of coastal waters for fecal coliform bacteria by shellfish sanitation programs could provide data to fill large gaps in existing coastal water quality monitoring, but research is needed to understand the opportunities and limitations of using these data for inference of long-term trends. In this study, we analyzed spatiotemporal trends from multidecadal fecal coliform concentration observations collected by a shellfish sanitation program, and assessed the feasibility of using these monitoring data to infer long-term water quality dynamics. We evaluated trends in fecal coliform concentrations for a 20-year period (1999-2021) using data collected from spatially fixed sampling sites (n = 466) in North Carolina (USA). Findings indicated that shellfish sanitation data can be used for long-term water quality inference under relatively stationary management conditions, and that salinity trends can be used to investigate management-driven bias in fecal coliform observations collected in a particular area.

2.
Water Environ Res ; 96(5): e11037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726833

RESUMEN

Microbial pollution of recreational waters leads to millions of skin, respiratory, and gastrointestinal illnesses globally. Fecal indicator bacteria (FIB) are monitored to assess recreational waters but may not reflect the presence of Staphylococcus aureus, a global leader in bacterial fatalities. Since many community-acquired S. aureus skin infections are associated with high recreational water usage, this study measured and modeled S. aureus, methicillin-resistant S. aureus (MRSA), and FIB (Enterococcus spp., Clostridium perfringens) concentrations in seawater and sand at six beaches in Hilo, Hawai'i, USA, over 37 sample dates from July 2016 to February 2019 using culturing techniques. Generalized linear models predicted bacterial concentrations with physicochemical and environmental data. Beach visitors were also surveyed on their preferred activities. S. aureus and FIB concentrations were roughly 6-78 times higher at beaches with freshwater discharge than at those without. Seawater concentrations of Enterococcus spp. were positively associated with MRSA but not S. aureus. Elevated S. aureus was associated with lower tidal heights, higher freshwater discharge, onsite sewage disposal system density, and turbidity. Regular monitoring of beaches with freshwater input, utilizing real-time water quality measurements with robust modeling techniques, and raising awareness among recreational water users may mitigate exposure to S. aureus, MRSA, and FIB. PRACTITIONER POINTS: Staphylococcus aureus and fecal bacteria concentrations were higher in seawater and sand at beaches with freshwater discharge. In seawater, Enterococcus spp. positively correlated with MRSA, but not S. aureus. Freshwater discharge, OSDS density, water turbidity, and tides significantly predicted bacterial concentrations in seawater and sand. Predictive bacterial models based upon physicochemical and environmental data developed in this study are readily available for user-friendly application.


Asunto(s)
Heces , Agua de Mar , Staphylococcus aureus , Agua de Mar/microbiología , Staphylococcus aureus/aislamiento & purificación , Hawaii , Heces/microbiología , Playas , Monitoreo del Ambiente , Arena/microbiología , Microbiología del Agua , Enterococcus/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación
3.
Heliyon ; 10(10): e31543, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803936

RESUMEN

Background: The quality of drinking water has recently become of utmost concern to consumers worldwide, especially in areas where Water Service Authorities (WSAs) failed to provide safe water. To combat this challenge, government entities regulate water to ensure that safe water is provided. The Emfuleni Local Municipality (ELM) has experienced cases of water contamination by human excretion, whereby communities were affected. As a result, there was a sharp increase in bottled water (BW) use, which however gave rise to unregulated and counterfeit versions of popular brands. This situation poses threats to public health. Aim: This study sought to determine the regulation of drinking water and to assess whether environmental health practitioners (EHPs) monitor the quality of water sources (BW and tap water) in ELM as outlined by the National Environmental Health Norms and Standards (NEHNS). Settings: The study was conducted in the Emfuleni Local Municipality in South Africa. Methods: A quantitative cross-sectional study design was employed in this research. Fifteen online questionnaires using a Google Forms survey were distributed amongst all EHPs servicing ELM. Secondary data that included the Integrated Development Plan (IDP) and Service Delivery Budget Implentation Plan (SDBIP) for the 2017-2020 financial years were also evaluated, specifically for water quality monitoring (tap and bottled water). The dataset was analysed using the Statistical Package for the Social Sciences (SPSS) version 29. Results: Due to complexity in the legislation and NEHNS in relation to Municipal Health Services (MHS), bottled water was not sampled at all. A number of EHPs were also not conversant with the regulations governing BW. Moreover, NEHNS consider bottled water as food, which does not fall under the MHS. Conclusion: There should be clarity in the legislation to ensure that bottled water monitoring is intensified to protect public health within the WSAs. Contribution: The findings of this study could assist policy-makers to make informed decisions on water quality monitoring, as well as clarify legislative issues on bottled water.

4.
Ecotoxicol Environ Saf ; 279: 116517, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38805830

RESUMEN

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.

5.
Water Res ; 258: 121783, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38805870

RESUMEN

The increasing frequency of cyanobacteria blooms in waterbodies caused by ecosystem eutrophication could endanger human health. This risk can be mitigated by effective monitoring incorporating molecular methods. To date, most molecular studies on toxigenic cyanobacteria have been limited to microcystins (MCs), disregarding other cyanotoxins, to freshwater planktic habitats while ignoring benthic habitats, and to limited geographic areas (usually one or a few specific waterbodies). In this study, we used PCR-based methods including PCR product sequencing and chemical-analytical methods (LC-MS/MS) to screen many plankton (n = 123) and biofilm samples (n = 113) originating from 29 Alpine lakes and 18 rivers for their cyanotoxin production potential. Both mcyE (indicating MC synthesis) and anaC (indicating anatoxin (ATX) synthesis) gene fragments were able to qualitatively predict MC or ATX occurrence. The abundance of mcyE gene fragments was significantly related to MC concentrations in plankton samples (R2 = 0.61). mcyE gene fragments indicative of MC synthesis were most abundant in planktic samples (65 %) and were assigned to the genera Planktothrix and Microcystis. However, mcyE rarely occurred in biofilms of lakes and rivers, i.e., 4 % and 5 %, respectively, and were assigned to Microcystis, Planktothrix, and Nostoc. In contrast, anaC gene fragments occurred frequently in planktic samples (14 % assigned to Tychonema, Phormidium (Microcoleus), and Oscillatoria), but also in biofilms of lakes (49 %) and rivers (18 %) and were assigned to the genera Phormidium, Oscillatoria, and Nostocales. The cyrJ gene fragment indicating cylindrospermopsin synthesis occurred only once in plankton (assigned to Dolichospermum), while saxitoxin synthesis potential was not detected. For plankton samples, monomictic and less eutrophic conditions were positively related to mcyE/MC occurrence frequency, while oligomictic conditions were related to anaC/ATX frequency. The anaC/ATX frequency in biofilm was related to the lake habitats generally showing higher biodiversity as revealed from metabarcoding in a parallel study.

6.
Environ Monit Assess ; 196(6): 583, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806740

RESUMEN

Agriculture is an essential economic activity in Brazil. However, it is also the main source of water quality degradation. Monitoring catchments with agricultural land use is a way to generate information on a scale to identify causes and sources of water quality degradation. This work used monitoring data derived from hydrology and the quality of surface and underground water in an intensive agricultural catchment in the Atlantic Forest biome. The Fortaleza River catchment is located in the western part of Santa Catarina state in southern Brazil and has 62 km2 of drainage area. Hydrological and water quality monitoring was conducted for 7 years at two fluviometric stations, three lysimeters, one meteorological station, and one piezometer. Data on precipitation, temperature, water flow, surface runoff, drainage, and water quality were used. Statistical analyses were also developed. Precipitation between 2013 and 2019 presented a homogeneous distribution in monthly and annual data, with January and July the months with the highest and lowest values, respectively. Statistical difference in the average and Q95 flows was found in upstream and downstream fluviometric sections. In terms of quality, statistical differences were identified for ammonium, nitrate, and potassium concentrations, which had higher concentrations in lysimeter runoff, indicating direct influence of agricultural activity on water quality. Principal component analysis (PCA) indicated that (i) surface water presented a positive relationship in Component 1 for the magnesium-calcium, sulphate-chloride, and acetate-bromide groups and a negative relationship for phosphate-nitrate; (ii) in lysimeters, the positive relationship occurred for Component 2 for the phosphate-chloride and sulphate-nitrate groups and was negative for ammonium-lithium and calcium-potassium-magnesium; and (iii) in piezometer, positive relationships were found for chloride-sodium and phosphate-nitrite pairs, while negative relationships were found for calcium-magnesium.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Bosques , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente/métodos , Animales , Contaminantes Químicos del Agua/análisis , Porcinos , Ríos/química , Calidad del Agua , Nitratos/análisis
7.
Sci Total Environ ; : 173366, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38796005

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are legacy organic micropollutants (OMPs) that are sporadically detected in drinking water (DW) sources. The European Drinking Water Directive requires EU member states to monitor 5 PAHs in DW and its sources. The Dutch national regulations require 6 additional PAHs to be monitored and 7 polychlorinated biphenyls (PCBs). These indicator compounds act as representatives for large compound classes. PCBs alone comprise 209 congeners, it is evident that conventional chemical target analysis (GC-tQ-MS) alone is not sufficient to monitor these entire compound classes. This study investigated the application of reporter gene assays as effect-based methods (EBMs) to monitor PAHs and PCBs in DW sources. Herein, it was assessed what added value the bioassays can bring compared to the current approach of chemical target analysis for PCBs and PAHs. Regulated and non-regulated PAHs and PCBs were tested in four bioassays to determine the relative potency factors (RPFs) for these compounds. Non-regulated congeners were found to be active in the PAH-CALUX and anti-AR CALUX. An assessment of surface water (SW) spiked with standard mixtures containing PAHs and PCBs confirmed the predictable behavior of the PAH-CALUX. Moreover, the bioassay was able to detect AhR-mediated activity caused by non-regulated PAHs and PCBs, whereas this would have been missed by conventional chemical target analysis. Last, a field study was conducted in Dutch DW sources at six sampling moments. The PAH-CALUX detected AhR-mediated activity at all sampling moments and an ecological effect-based trigger (EBT) value was exceeded on multiple accounts. Combined application of GC-tQ-MS and the PAH-CALUX ensures compliancy with monitoring legislation and provides additional insights into potential hazards to humans and the environment.

8.
J Environ Manage ; 360: 121184, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796868

RESUMEN

Forest fertilization with municipal biosolids has been shown to increase tree growth and enhance forest soils. However, there are concerns that nitrogen from the biosolids could impact surface waters through movement from subsurface flow. Here we analyzed data on soil and surface water nitrogen from a working tree plantation that has used biosolids for over three decades to see if there was evidence of N movement through the soil to surface waters. GIS (Geographic Information System) was used to map application units over time and LiDAR (Light Detection and Ranging) was used to delineate watersheds. The program is located in King County Washington with biosolids provided by the King County Wastewater Treatment program. We assembled records to determine if there is any evidence of movement of NO3- through soils or any enrichment in surface waters. While soils show evidence of NO3- enrichment following biosolids application with cumulative loading rates up to 26 Mg ha-1, this is generally limited to the 'A' soil horizon and does not increase linearly with increased biosolids loading rates. There was no indication of increased surface water NO3- concentration relative to biosolids application rates, with a small trend of decreasing water NO3- over time. Surface water NO3- concentration was not correlated with the fraction of the watershed area that had been amended with biosolids, and there was no observable increase in surface water NO3- with increased frequency of biosolids applications to the tree plantations. These results suggest that the current biosolids program is sufficiently protective of ground and surface waters. These observations suggest that biosolids application can be conducted on a large scale with multiple benefits and no discernible impact to surface waters.

9.
Sci Total Environ ; : 173407, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38797427

RESUMEN

Following the B1 dam collapse at Córrego do Feijão Mine, actions were taken to address environmental damage and enhance the quality of water in the Paraopeba River. Natural processes in the river involve gradual reduction of contamination through dispersion and downstream transportation of tailings-a slow, nature-driven process. Dredging, a human intervention, aimed to expedite recovery. Hence, this study aimed to explore dredging's role in reducing contamination in the impacted Paraopeba River zone. Analysis revealed a direct link between dredging and post-collapse turbidity, though recent trends suggest a lessening impact on pre-collapse conditions. Distinct seasonal variations were observed in iron and manganese concentrations, peaking during wet seasons and displaying notable upstream-downstream disparities. An analysis of ratios (downstream/upstream) was conducted to understand and even predict the return to pre-collapse conditions. Wet season averages for iron and manganese decreased by around 90 % over time, with standard deviations reducing by about 48 % and 58 %, respectively. In the dry season, the averages decreased by over 100 %, indicating water quality improvements surpassing pre-collapse levels. Standard deviations also decreased significantly, by approximately 67 % and 79 %, respectively. Employing an exponential decay model revealed that the contribution of dredging in the dry period is negligible, but in the wet period the contribution can be estimated at 28.6 % in the case of iron and 25 % in the case of manganese. While the models performed well based on extensive data, some limitations occur in estimating dredging contribution rates. The model's sensitivity might overlook influential factors, underscoring the importance of considering sediment nature and dredged area extent in understanding water quality dynamics. Despite these potential limitations, this investigation provides crucial insights into the intricate relationship between dredging and water quality in the Paraopeba River. These findings pave the way for future studies aimed at deeper exploration and more accurate assessments of this association.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38797754

RESUMEN

Urbanization and economic development cause water pollution in the inner-city canals and rivers globally. Bung Xang canal in Can Tho city of Vietnam is facing problems with water pollution due to the lack of centralized wastewater treatment plants and low public awareness on environmental protection. Perception of local residents was collected using structured questionnaires including both qualitative and quantitative information. Regression analysis was employed to evaluate the factors affecting the decision of respondents on the willingness to pay (WTP) to improve water quality in the Bung Xang canal. Knowledge about the environmental protection fee for domestic wastewater (10% of the VAT-excluded from the selling price of 1 m3 of tap water purchased), age of the respondents and their education levels affected the WTP positively, while respondents' perception on water quality affected the WTP negatively. There was 58.33% of the respondents showed the WTP for improved water quality in the canal. They agreed to pay a small fee of VND 10,000 to 15,000 (equivalent to USD 0.42-0.63)/month (1 US$= 23,700 VND). The result indicates that environmental education is the only way forward for a successful sustainable urban city.

11.
Environ Toxicol Chem ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801401

RESUMEN

Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;00:1-22. © 2024 SETAC.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38801608

RESUMEN

The water source reservoirs are the important urban water source in northern China. Although external pollution has been greatly improved, the internal pollutants in reservoirs continue to accumulate with the complex deposition and release processes, resulting in potential risks to water supply safety. To address the aforementioned issue, this paper proposed a simulation model of water quality named ECOlab EU1-WSR to simulate the spatio-temporal changes of water quality under the influence of internal pollution for the water source reservoirs. Based on the analysis of the water quality characteristics and the distribution of benthic vegetation in the reservoir, a three-dimensional hydrodynamic model was established based on MIKE3, the corresponding parameters and the related state variables were set, the ECOlab EU1-WSR model was established by secondly developing the original ECOlab EU1 template, and the real-time dynamic outputs of pollutant content in sediment were added to link the water quality index with sediment nutrition index for better revealing the impact of the internal pollution on the water quality. The performance of the model was evaluated by the case application on the water quality simulation of Daye reservoir and the optimization of the connection project between Daye reservoir and Xueye reservoir in Shandong Province China. The results showed that the model can accurately and simultaneously simulate the pollution in water and sediment by the comparative verification of hydrodynamics, water temperature, and water quality. Moreover, the model can effectively reflect the influence of the accumulation, deposition, and release of internal pollution on water quality by analyzing the correlation between the content of various pollution in water body and those in sediment, such as the total nitrogen and total phosphorus in the water body at the bottom of the water intake, were negatively correlated with the total nitrogen and total phosphorus in the sediments with correlation coefficients of 0.538 and 0.917, respectively. In addition, the optimal water inlet position and water flow rate of the connection project can be optimized and determined by using the model to effectively control water quality. The established model will be a useful tool for the design and management of a reservoir, the interconnection projects, and other water bodies by adaptively recoded.

13.
Environ Toxicol Chem ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808394

RESUMEN

Pharmaceuticals and drugs of abuse are organic micropollutants of emerging concern in both surface and groundwater worldwide. These compounds are considered to be pseudo-persistent because of their continuous release into water systems. The presence of these compounds in the environment at any concentration poses a potential risk to nontarget organisms. The main sources of these contaminants are wastewater treatment plants (WWTPs) and combined sewer overflows (CSOs). The primary goal of our study was to identify and quantify a panel of 28 commonly prescribed pharmaceuticals (mood-altering drugs, cardiovascular drugs, antacids, antibiotics) and high-prevalence drugs of abuse (cocaine, amphetamines, opioids, cannabis) in river water samples collected from 19 locations in the Hudson and East rivers in New York City. The second goal was to investigate the possible source (WWTP or CSOs) of these micropollutants. Samples were collected weekly from May to August 2021 (n = 224) and May to August 2022 (n = 232), and placed at -20 °C until analysis by liquid chromatography-tandem mass spectrometry. The most frequently detected analytes in 2021 were metoprolol (n = 206, 92%), benzoylecgonine (n = 151, 67%), atenolol (n = 142, 63%), and methamphetamine (n = 118, 53%), and in 2022 the most frequently detected were methamphetamine (n = 194, 84%), atenolol (n = 177, 76%), metoprolol (n = 177, 76%), and 2-ethylene-1,5-dimethyl-3,3-diphenylpyrrolidine (n = 159, 69%). Measured concentrations ranged from the limit of detection (0.50-5.00 ng/L) to 103 ng/L. More drugs and higher concentrations were detected in water contaminated by Enterococci (>60 most probably number) and after rainfall, indicating the influence of CSOs. The presence of drugs in samples with little to no Enterococci and after dry weather events indicates that WWTPs contribute to the presence of these substances in the river, probably due to a low removal rate. Environ Toxicol Chem 2024;00:1-12. © 2024 SETAC.

14.
Environ Monit Assess ; 196(6): 586, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809274

RESUMEN

Artificial neural networks offer a viable route in assessing and understanding the presence and concentration of heavy metals that can cause dangerous complications in the wider context of water quality prediction for the sustainability of the ecosystem. In order to estimate the heavy metal concentrations in Iznik Lake, which is an important water source for the surrounding communities, characterization data were taken from five different water sources flowing into the lake between 2015 and 2021. These characterization results were evaluated with IBM SPSS Statistics 23 software, with the addition of the lake water quality system. For this purpose, seven distinct physicochemical parameters were measured and monitored in Karasu, Kirandere, Olukdere and Sölöz water sources flowing into the lake, to serve as input data. Concentration levels of 15 distinct heavy metals in Karsak Stream originating from the lake were as the output. Specifically, Sn for Karasu (0.999), Sb for Kirandere (1.000), Cr for Olukdere (1.000) and Pb and Se for Sölöz (0.995) indicate parameter estimation R2 coefficients close to 1.000. Sn stands out as the common heavy metal parameter with best estimation prospects. Given the importance of the independent variable in estimating heavy metal pollution, conductivity, COD, COD and temperature stood out as the most effective parameters for Karasu, Olukdere, Kirandere and Sölöz, respectively. The ANN model emerges as a good prediction tool that can be used effectively in determining the heavy metal pollution in the lake as part of the efforts to protect the water budget of Lake Iznik and to eliminate the existing pollution.


Asunto(s)
Monitoreo del Ambiente , Lagos , Metales Pesados , Redes Neurales de la Computación , Contaminantes Químicos del Agua , Lagos/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Turquía , Calidad del Agua
15.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773003

RESUMEN

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Asunto(s)
Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Brasil , Ríos/química , Biomarcadores/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/metabolismo , Metales/análisis , Characidae , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peces/metabolismo
16.
Environ Manage ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767663

RESUMEN

Small water supply systems (SWSSs) are often more vulnerable to waterborne disease outbreaks. In Japan, many SWSSs operate without regulation under the Waterworks Law, yet there is limited investigation into microbial contamination and the associated health risks. In this study, the microbiological water quality of four SWSSs that utilize mountain streams as water sources and do not install water treatment facilities were monitored for over 2 years. In investigated SWSSs, the mean heterotrophic plate counts were below 350 CFU/mL, and the total bacterial loads (16S rDNA concentration) ranged from 4.71 to 5.35 log10 copies/mL. The results also showed the consistent presence of fecal indicator bacteria (FIB), i.e., Escherichia coli and Clostridium perfringens, suggesting the potential of fecal pollution. E. coli was then utilized as an indicator to assess the health risk posed by E. coli O157:H7 and Campylobacter jejuni. The results indicated that the estimated mean annual risk of infection and disability-adjusted life years (DALYs) exceeded acceptable levels in all SWSSs for the two reference pathogens. To ensure microbial water safety, implementing appropriate water treatment facilities with an estimated mean required reduction of 5-6 log10 was necessary. This study highlighted the potential microbial contamination and health risk level in SWSSs that utilize mountain streams as water sources, even though the water sources were almost not affected by human activities. Furthermore, this study would also be helpful in supporting risk-based water management to ensure a safe water supply in SWSSs.

18.
J Contam Hydrol ; 264: 104368, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38776561

RESUMEN

In this study, twenty-two water samples were collected from boreholes (BH), and streams to evaluate drinking water quality, its distribution, identification of contamination sources and apportionment for Moti village, northern Pakistan. An atomic absorption spectrophotometer (AAS) is utilized to determine the level of heavy metals in water such as arsenic (As), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), manganese (Mn), and ferrous (Fe). Groundwater chemistry and its quantitative driving factors were further explored using multivariate statistical methods, Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) models. Finally, a total of eight electrical resistivity tomographs (ERTs) were acquired across i) the highly contaminated streams; ii) the villages far away from contaminated streams; and iii) across the freshwater stream. In the Moti village, the mean levels (mg/l) of heavy metals in water samples were 7.2465 (As), 0.4971 (Zn), 0.5056 (Pb), 0.0422 (Cu), 0.0279 (Cd), 0.1579 (Mn), and 0.9253 (Fe) that exceeded the permissible limit for drinking water (such as 0.010 for As and Pb, 3.0 for Zn, 0.003 for Cd and 0.3 for Fe) established by the World Health Organization (WHO, 2008). The average entropy weighted water quality index (EWQI) of 200, heavy metal pollution index (HPI) of 175, heavy metal evaluation index (HEI) of 1.6 values reveal inferior water quality in the study area. Human health risk assessment, consisting of hazard quotient (HQ) and hazard index (HI), exceeded the risk threshold (>1),indicating prevention of groundwater usage. Results obtained from the PCA and PMF models indicated anthropogenic sources (i.e. industrial and solid waste) responsible for the high concentration of heavy metals in the surface and groundwater. The ERTs imaged the subsurface down to about 40 m depths and show the least resistivity values (<11 Ωm) for subsurface layers that are highly contaminated. However, the ERTs revealed relatively high resistivity values for subsurface layers containing fresh or less contaminated water. Filtering and continuous monitoring of the quality of drinking water in the village are highly recommended.

19.
Water Res ; 258: 121777, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38781620

RESUMEN

The determination of water quality heavily depends on the selection of parameters recorded from water samples for the water quality index (WQI). Data-driven methods, including machine learning models and statistical approaches, are frequently used to refine the parameter set for four main reasons: reducing cost and uncertainty, addressing the eclipsing problem, and enhancing the performance of models predicting the WQI. Despite their widespread use, there is a noticeable gap in comprehensive reviews that systematically examine previous studies in this area. Such reviews are essential to assess the validity of these objectives and to demonstrate the effectiveness of data-driven methods in achieving these goals. This paper sets out with two primary aims: first, to provide a review of the existing literature on methods for selecting parameters. Second, it seeks to delineate and evaluate the four principal motivations for parameter selection identified in the literature. This manuscript categorizes existing studies into two methodological groups for refining parameters: one focuses on preserving information within the dataset, and another ensures consistent prediction using the full set of parameters. It characterizes each group and evaluates how effectively each approach meets the four predefined objectives. The study presents that the minimal WQI approach, common to both categories, is the only approach that has successfully reduced recording costs. Nonetheless, it notes that simply reducing the number of parameters does not guarantee cost savings. Furthermore, the group of studies classified as preserving information within the dataset has demonstrated potential to decrease the eclipsing problem, whereas studies in the consistent prediction group have not been able to mitigate this issue. Additionally, since data-driven approaches still rely on the initial parameters chosen by experts, they do not eliminate the need for expert judgment. The study further points out that the WQI formula is a straightforward and expedient tool for assessing water quality. Consequently, the paper argues that employing machine learning solely to reduce the number of parameters to enhance WQI prediction is not a standalone solution. Rather, this objective should be integrated with a more comprehensive set of research goals. The critical analysis of research objectives and the characterization of previous studies lay the groundwork for future research. This groundwork will enable subsequent studies to evaluate how their proposed methods can effectively achieve these objectives.

20.
Sci Total Environ ; : 173316, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782290

RESUMEN

Freshwater systems are facing a number of pressures due to the inputs of polar organic contaminants from a range of sources including agriculture, domestic and industry. The River Itchen and River Test are two sensitive chalk streams in Southern England that are experiencing a decline in invertebrate communities. We used Chemcatcher passive samplers to measure time-weighted average concentrations (14 days) of polar pollutants at nine sites on the River Itchen and eight sites on the River Test over a 12-month period. Sampler extracts were analysed using a targeted LC/MS method. In total, 121 plant protection products and pharmaceutical and personal care products were quantified (range of log Kow - 1.5 to 7). Concentrations (sub ng L-1 to >500 ng L-1) in both rivers showed spatial and temporal variations. A greater number of compounds and higher concentrations were found in the River Test. The chemical profile was dominated by inputs from wastewater treatment plants and legacy plant protection products. On the River Itchen, high concentrations (~100 ng L-1) of caffeine were observed directly downstream of a fish farm. Using the NORMAN database, the predicted no effect concentration (PNEC) freshwater values were exceeded by only five contaminants (2-hydroxy-terbuthylazine, alprazolam, azithromycin, diclofenac and imidacloprid). In addition, venlafaxine was detected above its EU Watch List concentration. These exceedances were mainly downstream of direct inputs from treatment plants. These compounds are known to have ecotoxicological effects on a range of aquatic biota including macroinvertebrates. Of concern is the ubiquitous presence of the ectoparasiticide imidacloprid, highlighting the need to control its use. The impact of the cocktail of pollutants found in this study on the long-term effects on chalk stream ecosystems remains unknown and needs further investigation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...