Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001327

RESUMEN

Before revascularization, moyamoya patients require hemodynamic evaluation. In this study, we evaluated the scoring system Prior Infarcts, Reactivity and Angiography in Moyamoya Disease (PIRAMID). We also devised a new scoring system, MRI-Based Assessment of Risk for Stroke in Moyamoya Angiopathy (MARS-MMA), and compared the scoring systems with respect to the capability to predict impaired [15O]water PET cerebral perfusion reserve capacity (CPR). We evaluated 69 MRI, 69 DSA and 38 [15O]water PET data sets. The PIRAMID system was validated by ROC curve analysis with neurological symptomatology as a dependent variable. The components of the MARS-MMA system and their weightings were determined by binary logistic regression analysis. The comparison of PIRAMID and MARS-MMA was performed by ROC curve analysis. The PIRAMID score correlated well with the symptomatology (AUC = 0.784). The MARS-MMA system, including impaired breath-hold-fMRI, the presence of the Ivy sign and arterial wall contrast enhancement, correlated slightly better with CPR impairment than the PIRAMID system (AUC = 0.859 vs. 0.827, Akaike information criterion 140 vs. 146). For simplified clinical use, we determined three MARS-MMA grades without loss of diagnostic performance (AUC = 0.855). The entirely MRI-based MARS-MMA scoring system might be a promising tool to predict the risk of stroke.

2.
EJNMMI Phys ; 10(1): 15, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36881266

RESUMEN

BACKGROUND: Quantitative positron emission tomography (PET) scans of the brain typically require arterial blood sampling but this is complicated and logistically challenging. One solution to remove the need for arterial blood sampling is the use of image-derived input functions (IDIFs). Obtaining accurate IDIFs, however, has proved to be challenging, mainly due to the limited resolution of PET. Here, we employ penalised reconstruction alongside iterative thresholding methods and simple partial volume correction methods to produce IDIFs from a single PET scan, and subsequently, compare these to blood-sampled input curves (BSIFs) as ground truth. Retrospectively we used data from sixteen subjects with two dynamic 15O-labelled water PET scans and continuous arterial blood sampling: one baseline scan and another post-administration of acetazolamide. RESULTS: IDIFs and BSIFs agreed well in terms of the area under the curve of input curves when comparing peaks, tails and peak-to-tail ratios with R2 values of 0.95, 0.70 and 0.76, respectively. Grey matter cerebral blood flow (CBF) values showed good agreement with an average difference between the BSIF and IDIF CBF values of 2% ± and a coefficient of variation (CoV) of 7.3%. CONCLUSION: Our results show promising results that a robust IDIF can be produced for dynamic 15O-water PET scans using only the dynamic PET scan images with no need for a corresponding MRI or complex analytical techniques and thereby making routine clinical use of quantitative CBF measurements with 15O-water feasible.

3.
Neuroradiology ; 65(3): 539-550, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36434312

RESUMEN

PURPOSE: Patients with Moyamoya Angiopathy (MMA) require hemodynamic assessment to evaluate the risk of stroke. Hemodynamic evaluation by use of breath-hold-triggered fMRI (bh-fMRI) was proposed as a readily available alternative to the diagnostic standard [15O]water PET. Recent studies suggest voxel-wise hemodynamic delay correction in hypercapnia-triggered fMRI. The aim of this study was to evaluate the effect of delay correction of bh-fMRI in patients with MMA and to compare the results with [15O]water PET. METHODS: bh-fMRI data sets of 22 patients with MMA were evaluated without and with voxel-wise delay correction within different shift ranges and compared to the corresponding [15O]water PET data sets. The effects were evaluated combined and in subgroups of data sets with most severely impaired CVR (apparent steal phenomenon), data sets with territorial time delay, and data sets with neither steal phenomenon nor delay between vascular territories. RESULTS: The study revealed a high mean cross-correlation (r = 0.79, p < 0.001) between bh-fMRI and [15O]water PET. The correlation was strongly dependent on the choice of the shift range. Overall, no shift range revealed a significantly improved correlation between bh-fMRI and [15O]water PET compared to the correlation without delay correction. Delay correction within shift ranges with positive high high cutoff revealed a lower agreement between bh-fMRI and PET overall and in all subgroups. CONCLUSION: Voxel-wise delay correction, in particular with shift ranges with high cutoff, should be used critically as it can lead to false-negative results in regions with impaired CVR and a lower correlation to the diagnostic standard [15O]water PET.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Moyamoya , Humanos , Imagen por Resonancia Magnética/métodos , Agua , Circulación Cerebrovascular , Hemodinámica , Encéfalo/irrigación sanguínea
4.
Neuroimage Clin ; 33: 102950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35134705

RESUMEN

BACKGROUND: Clinical diagnosis of frontotemporal dementia (FTD) remains a challenge due to the overlap of symptoms among FTD subtypes and with other psychiatric disorders. Perfusion imaging by arterial spin labeling (ASL) is a promising non-invasive alternative to established PET techniques; however, its sensitivity to imaging parameters can hinder its ability to detect perfusion abnormalities. PURPOSE: This study evaluated the similarity of regional hypoperfusion patterns detected by ASL relative to the gold standard for imaging perfusion, PET with radiolabeled water (15O-water). METHODS AND MATERIALS: Perfusion by single-delay pseudo continuous ASL (SD-pCASL), free-lunch Hadamard encoded pCASL (FL_TE-pCASL), and 15O-water data were acquired on a hybrid PET/MR scanner in 13 controls and 9 FTD patients. Cerebral blood flow (CBF) by 15O-water was quantified by a non-invasive approach (PMRFlow). Regional hypoperfusion was determined by comparing individual patients to the control group. This was performed using absolute (aCBF) and CBF normalized to whole-brain perfusion (rCBF). Agreement was assessed based on the fraction of overlapping voxels. Sensitivity and specificity of pCASL was estimated using hypoperfused regions of interest identified by 15O-water. RESULTS: Region of interest (ROI) based perfusion measured by 15O-water strongly correlated with SD-pCASL (R = 0.85 ± 0.1) and FL_TE-pCASL (R = 0.81 ± 0.14). Good agreement in terms of regional hypoperfusion patterns was found between 15O-water and SD-pCASL (sensitivity = 70%, specificity = 78%) and between 15O-water and FL_TE-pCASL (sensitivity = 71%, specificity = 73%). However, SD-pCASL showed greater overlap (43.4 ± 21.3%) with 15O-water than FL_TE-pCASL (29.9 ± 21.3%). Although aCBF and rCBF showed no significant differences regarding spatial overlap and metrics of agreement with 15O-water, rCBF showed considerable variability across subtypes, indicating that care must be taken when selecting a reference region. CONCLUSIONS: This study demonstrates the potential of pCASL for assessing regional hypoperfusion related to FTD and supports its use as a cost-effective alternative to PET.


Asunto(s)
Demencia Frontotemporal , Circulación Cerebrovascular/fisiología , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Marcadores de Spin , Tomografía Computarizada por Rayos X , Agua
5.
Neuroradiology ; 64(3): 553-563, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34570251

RESUMEN

PURPOSE: Patients with Moyamoya Angiopathy (MMA) require hemodynamic evaluation to assess the risk of stroke. Assessment of cerebral blood flow with [15O]water PET and acetazolamide challenge is the diagnostic standard for the evaluation of the cerebral perfusion reserve (CPR). Estimation of the cerebrovascular reactivity (CVR) by use of breath-hold-triggered fMRI (bh-fMRI) as an index of CPR has been proposed as a reliable and more readily available approach. Recent findings suggest the use of resting-state fMRI (rs-fMRI) which requires minimum patient compliance. The aim of this study was to compare rs-fMRI to bh-fMRI and [15O]water PET in patients with MMA. METHODS: Patients with MMA underwent rs-fMRI and bh-fMRI in the same MRI session. Maps of the CVR gained by both modalities were compared retrospectively by calculating the correlation between the mean CVR of 12 volumes of interest. Additionally, the rs-maps of a subgroup of patients were compared to CPR-maps gained by [15O]water PET. RESULTS: The comparison of the rs-maps and the bh-maps of 24 patients revealed a good correlation (Pearson's r = 0.71 ± 0.13; preoperative patients: Pearson's r = 0.71 ± 0.17; postoperative patients: Pearson's r = 0.71 ± 0.11). The comparison of 7 rs-fMRI data sets to the corresponding [15O]water PET data sets also revealed a high level of agreement (Pearson's r = 0.80 ± 0.19). CONCLUSION: The present analysis indicates that rs-fMRI might be a promising non-invasive method with almost no patient cooperation needed to evaluate the CVR. Further prospective studies are required.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Moyamoya , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Hemodinámica , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Estudios Retrospectivos , Agua
6.
Diagnostics (Basel) ; 11(5)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062847

RESUMEN

Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL). The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and 15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated 3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls, age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function implementation of the single tissue compartment model. Cortical and subcortical regions were automatically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and 75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-Altman analysis revealed poor agreement (bias = -15 mL/100 g/min, lower and upper limits of agreements = -16 and 45 mL/100 g/min, respectively) with a negative relationship. Accounting for the negative relationship, the width of the limits of agreement could be narrowed from 61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was not sufficient for ASL to be used interchangeably with 15O-water PET.

7.
J Cereb Blood Flow Metab ; 41(9): 2229-2241, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33557691

RESUMEN

Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function prediction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.Twenty-five subjects underwent two 10 min dynamic 15O-water brain PET scans with continuous arterial blood sampling, before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by comparing AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with either AIF or MLIF.The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and kinetic modelling.


Asunto(s)
Circulación Cerebrovascular/fisiología , Aprendizaje Automático/normas , Tomografía de Emisión de Positrones/métodos , Agua/metabolismo , Humanos , Estudios Retrospectivos
8.
Neuroimage Rep ; 1(4)2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35419550

RESUMEN

We aimed to assess the reliability of cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion magnetic resonance imaging (MRI) from the periventricular white matter (PVWM) by computing its repeatability and comparing to [15O]-water Positron Emission Tomography (PET) as a reference. Simultaneous PET/MRI perfusion data were acquired twice in the same session, about 15 min apart, from 16 subjects (age: 41.4 ± 12.0 years, 9 female). ASL protocols used pseudocontinuous labeling (pCASL) with background-suppressed 3-dimensional readouts, and included both single and multiple post labeling delay (PLD) acquisitions, each acquired twice, with the latter providing both CBF and arterial transit time (ATT) maps. The reliability of ASL derived PVWM CBF was evaluated using intra-session repeatability assessed by the within-subject coefficient of variation (wsCV) of the PVWM CBF values obtained from the two scans, correlation with concurrently-acquired PET CBF values, and by comparing them with that measured in other commonly used regions of interest (ROIs) such as whole brain (WB), gray matter (GM) and white matter (WM). The wsCVs for PVWM CBF with single and multi-PLD acquisitions were 5.7 (95% CI: (3.4,7.7)) % and 6.1 (95% CI: (3.8,8.3))%, which were similar to those obtained from WB, GM and WM CBF even though the PVWM region is the most weakly perfused region of brain parenchyma. Correlations between relative PVWM CBF derived from ASL and from [15O]-water PET were also comparable to the other ROIs. Finally, the ATT of the PVWM region was found to be 1.27 ± 0.27s, which was not an outlier for the arterial circulation of the brain. These findings suggest that PVWM CBF can be reliably measured with the current state-of-the-art ASL methods.

9.
J Cereb Blood Flow Metab ; 40(2): 328-340, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-30540219

RESUMEN

Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO2) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [15O]H2O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO2 and CBF. In 12 patients aged ≥ 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO2 (ΔrSO2) was -8 ± 9% (P = 0.001) and -5 ± 11% (P = 0.08), whereas the relative change in frontal gray matter CBF (ΔCBF) was -11 ± 18% (P = 0.009) and -12 ± 16% (P = 0.007) for the left and right hemisphere, respectively. ΔrSO2 and ΔCBF were weakly correlated for the left (ρ 0.31, P = 0.4), and moderately correlated for the right (ρ 0.69, P = 0.03) hemisphere. The Bland-Altman plot suggested underestimation of ΔCBF by NIRS. Divergent associations of pH, pCO2 and arterial oxygen content with rSO2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Oximetría , Oxígeno/sangre , Tomografía de Emisión de Positrones , Diálisis Renal , Anciano , Anciano de 80 o más Años , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Espectroscopía Infrarroja Corta
10.
Eur J Hybrid Imaging ; 4(1): 3, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-34191220

RESUMEN

BACKGROUND: Dynamic 15O-water PET may provide information about cardiopulmonary circulation complementary to MRI and CT in complex cyanotic heart disease. CASE PRESENTATION: We present a case in which a 15O-water PET scan was used for the first time to map the complex circulation in a univentricular heart patient with dual pulmonary blood supply. The pulmonary blood supply consisted of partially oxygenated blood led from the univentricle to the lungs by the pulmonary artery, plus of venous blood from the upper body lead by a bidirectional Glenn anastomosis to the right pulmonary artery. Despite the bidirectional Glenn anastomosis, the patient developed increasing cyanosis and was considered for heart transplantation. Pulmonary perfusion measurements using MRI were inconclusive due to metal artifacts, and the patient was referred for a 15O-water PET scan. The scan showed significant venovenous collaterals bypassing the lungs. Only the left upper lung lobe was properly perfused. The mean transit time from the superior vena cava to the left ventricle was approximately four times longer than would be expected from a healthy person. CONCLUSION: The case illustrates that 15O-water PET can complement CT and MRI for quantitative characterization of cardiopulmonary circulation in complex cyanotic heart disease.

11.
EJNMMI Res ; 8(1): 92, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30225682

RESUMEN

BACKGROUND: We investigated the feasibility of left ventricular (LV) and right ventricular (RV) volume and function estimation using a first-pass gated 15O-water PET. This prospective study included 19 patients addressed for myocardial perfusion reserve assessment using 15O-water PET. PET data were acquired at rest and after regadenoson stress, and gated first-pass images were reconstructed over the time range corresponding to tracer first-pass through the cardiac cavities and post-processed using TomPool software; LV and RV were segmented using a semi-automated 4D immersion algorithm. LV volumes were computed using a count-based model and a fixed threshold at 30% of the maximal activity. RV volumes were computed using a geometrical model and an adjustable threshold that was set so as to fit LV and RV stroke volumes. Ejection curves were fitted using a deformable reference curve model. LV results were compared to those obtained using 99mTc-sestamibi gated myocardial SPECT in terms of end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF). RESULTS: There was an excellent concordance between rest and stress PET in terms of EDV and ESV (Lin's coefficient ~ 0.85-0.90), SV (~ 0.80), and EF (~ 0.75) for both ventricles. Correlation with myocardial SPECT was high for LV EDV (Pearson's R = 0.89, p < 0.001) and ESV (R = 0.87, p < 0.001) and satisfying for LV SV (R = 0.67, p < 0.001) and EF (R = 0.67, p < 0.001). Minimal LV ESV overestimation (+ 4 mL, p = 0.03) and EF underestimation (- 4%, p = 0.01) were observed using PET. CONCLUSIONS: Biventricular volume and function assessment are achievable using the first-pass PET, and LV parameters correlate well with those derived from gated myocardial SPECT.

12.
IEEE Trans Radiat Plasma Med Sci ; 2(3): 259-271, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30003181

RESUMEN

Kinetic modelling of myocardial perfusion imaging data allows the absolute quantification of myocardial blood flow (MBF) and can improve the diagnosis and clinical assessment of coronary artery disease (CAD). Positron emission tomography (PET) imaging is considered the reference standard technique for absolute quantification, whilst oxygen-15 (15O)-water has been extensively implemented for MBF quantification. Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has also been used for MBF quantification and showed comparable diagnostic performance against (15O)-water PET studies. We investigated for the first time the diagnostic performance of two different PET MBF analysis softwares PMOD and Carimas, for obstructive CAD detection against invasive clinical standard methods in 20 patients with known or suspected CAD. Fermi and distributed parameter modelling-derived MBF quantification from DCE-MRI was also compared against (15O)-water PET, in a subgroup of 6 patients. The sensitivity and specificity for PMOD was significantly superior for obstructive CAD detection in both per vessel (0.83, 0.90) and per patient (0.86, 0.75) analysis, against Carimas (0.75, 0.65), (0.81, 0.70), respectively. We showed strong, significant correlations between MR and PET MBF quantifications (r=0.83-0.92). However, DP and PMOD analysis demonstrated comparable and higher haemodynamic differences between obstructive versus (no, minor or non)-obstructive CAD, against Fermi and Carimas analysis. Our MR method assessments against the optimum PET reference standard technique for perfusion analysis showed promising results in per segment level and can support further multi-modality assessments in larger patient cohorts. Further MR against PET assessments may help to determine their comparative diagnostic performance for obstructive CAD detection.

13.
Eur J Nucl Med Mol Imaging ; 45(7): 1079-1090, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29497801

RESUMEN

PURPOSE: We assessed the feasibility of myocardial blood flow (MBF) and flow reserve (MFR) estimation using dynamic SPECT with a novel CZT camera in patients with stable CAD, in comparison with 15O-water PET and fractional flow reserve (FFR). METHODS: Thirty patients were prospectively included and underwent FFR measurements in the main coronary arteries (LAD, LCx, RCA). A stenosis ≥50% was considered obstructive and a FFR abnormal if ≤0.8. All patients underwent a dynamic rest/stress 99mTc-sestamibi CZT-SPECT and 15O-water PET for MBF and MFR calculation. Net retention kinetic modeling was applied to SPECT data to estimate global uptake values, and MBF was derived using Leppo correction. Ischemia by PET and CZT-SPECT was considered present if MFR was lower than 2 and 2.1, respectively. RESULTS: CZT-SPECT yielded higher stress and rest MBF compared to PET for global and LAD and LCx territories, but not in RCA territory. MFR was similar in global and each vessel territory for both modalities. The sensitivity, specificity, accuracy, positive and negative predictive value of CZT-SPECT were, respectively, 83.3, 95.8, 93.3, 100 and 85.7% for the detection of ischemia and 58.3, 84.6, 81.1, 36.8 and 93% for the detection of hemodynamically significant stenosis (FFR ≤ 0.8). CONCLUSIONS: Dynamic 99mTc-sestamibi CZT-SPECT was technically feasible and provided similar MFR compared to 15O-water PET and high diagnostic value for detecting impaired MFR and abnormal FFR in patients with stable CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Imagen de Perfusión Miocárdica , Tecnecio Tc 99m Sestamibi , Tomografía Computarizada de Emisión de Fotón Único , Anciano , Anciano de 80 o más Años , Angiografía Coronaria , Femenino , Reserva del Flujo Fraccional Miocárdico , Humanos , Masculino , Persona de Mediana Edad , Radioisótopos de Oxígeno , Agua
14.
EJNMMI Res ; 8(1): 11, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29404708

RESUMEN

BACKGROUND: 15O-Water positron emission tomography (PET) enables functional imaging of the auditory system during stimulation via a promontory electrode or cochlear implant, which is not possible using functional magnetic resonance imaging (fMRI). Although PET has been introduced in this context decades ago, its feasibility when performed during general anesthesia has not yet been explored. However, due to a shift to earlier (and bilateral) auditory implantation, the need to study children during general anesthesia appeared, since they are not able to cooperate during scanning. Therefore, we evaluated retrospectively results of individual SPM (statistical parametric mapping) analysis of 15O-water PET in 17 children studied during general anesthesia and compared them to those in 9 adults studied while awake. Specifically, the influence of scan duration, smoothing filter kernel employed during preprocessing, and cut-off value used for statistical inferences were evaluated. Frequencies, peak heights, and extents of activations in auditory and extra-auditory brain regions (AR and eAR) were registered. RESULTS: It was possible to demonstrate activations in auditory brain regions during general anesthesia; however, the frequency and markedness of positive findings were dependent on some of the abovementioned influence factors. Scan duration (60 vs. 90 s) had no significant influence on peak height of auditory cortex activations. To achieve a similar frequency and extent of AR activations during general anesthesia compared to waking state, a lower cut-off for statistical inferences (p < 0.05 or p < 0.01 vs. p < 0.001) had to be applied. However, this lower cut-off was frequently associated with unexpected, "artificial" activations in eAR. These activations in eAR could be slightly reduced by the use of a stronger smoothing filter kernel during preprocessing of the data (e.g., [30 mm]3). CONCLUSIONS: Our data indicate that it is feasible to detect auditory cortex activations in 15O-water PET during general anesthesia. Combined with the improved signal to noise ratios of modern PET scanners, this suggests reasonable prospects for further evaluation of the method for clinical use in auditory implant users. Adapted parameters for data analysis seem to be helpful to improve the proportion of signals in AR versus eAR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA