Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Onderstepoort J Vet Res ; 91(1): e1-e7, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38949427

RESUMEN

Wild animals, sharing pathogens with domestic animals, play a crucial role in the epidemiology of infectious diseases. Sampling from wild animals poses significant challenges, yet it is vital for inclusion in disease surveillance and monitoring programmes. Often, mass surveillance involves serological screenings using enzyme-linked immunosorbent assay (ELISA) tests, typically validated only for domestic animals. This study assessed the diagnostic specificity of commercially available ELISA tests on 342 wild ruminant serum samples and 100 from wild boars. We evaluated three tests for foot-and-mouth disease: two for Peste des petits ruminants, two for Rift Valley fever and one for Capripox virus. Diagnostic specificity was calculated using the formula True Negative/(False Positive + True Negative). Cohen's kappa coefficient measured agreement between tests. Results showed high specificity and agreement across all tests. Specificity for foot-and-mouth disease (FMD) ranged from 93.89% for Prionics to 100% for IDEXX, with IDvet showing 99.6%. The highest agreement was between FMD IDvet and IDEXX at 97.1%. Rift Valley fever (RVF) tests, Ingezim and IDvet, achieved specificities of 100% and 98.83%, respectively. The optimal specificity was attained by retesting single reactors and inactivating the complement.Contribution: Commercially available ELISA kits are specific for foot-and-mouth disease and similar transboundary animal diseases and can be used for highly specific wild animal testing.


Asunto(s)
Animales Salvajes , Ensayo de Inmunoadsorción Enzimática , Sensibilidad y Especificidad , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Fiebre Aftosa/diagnóstico , Fiebre del Valle del Rift/diagnóstico , Fiebre del Valle del Rift/sangre , Sus scrofa , Rumiantes , Anticuerpos Antivirales/sangre
2.
Res Vet Sci ; 176: 105351, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963994

RESUMEN

Sarcoptic mange is a widely distributed disease, with numerous potential hosts among domestic and wild animals. Nowadays it is considered a neglected re-emergent infection in humans. As a difference with domestic pigs, and even with several clinical cases reported in some European countries, it seems that Eurasian wild boars (Sus scrofa) have a low susceptibility to clinical mange. However, because of a case of confirmed transmission from Spanish ibex (Capra pyrenaica) to wild boar in the province of Tarragona, we planned a large-scale ELISA survey in the neighboring Valencian Community (SE Spain). We compared 419 wild boar sera from different management systems (fenced vs. open game estates), different ages (piglets, juveniles, and adults), with different behaviour (gregarious females of all ages and male piglets vs. solitary juveniles and adult males), from areas with different wild boar densities, different wild ruminant densities and different sarcoptic mange epidemiologic situations. The whole prevalence of antibodies against sarcoptic mange in the tested wild boars was 10.5%. No significant differences were found when comparing fenced and free ranging wild boars, males and females, gregarious vs. solitary individuals or among different ages. However, wild boar density was a relevant factor. In areas with a hunting bag of <1 wild boar/km2, considered as a low density of suids, the seroprevalence was 2.94%, but rose to 11.52% in high density districts, constituting a significant difference (p = 0.037). Low wild boar populations would act as a protective factor (OR 0.233; p = 0.049) against coming into contact with the mite. The wild ruminant densities or their sarcoptic mange status did not show any effect on wild boars seroprevalence against this disease. These results reinforce the suggested host-taxon Sarcoptes scabiei specificity and the independence of host-species foci.


Asunto(s)
Escabiosis , Sus scrofa , Enfermedades de los Porcinos , Animales , Escabiosis/veterinaria , Escabiosis/epidemiología , Sus scrofa/parasitología , Masculino , Femenino , Porcinos , España/epidemiología , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/parasitología , Animales Salvajes/parasitología , Estudios Seroepidemiológicos , Sarcoptes scabiei , Cabras , Ensayo de Inmunoadsorción Enzimática/veterinaria , Prevalencia
3.
Front Vet Sci ; 11: 1415304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915887

RESUMEN

Introduction: Wildlife represents an increasingly important source of pathogens of medical and veterinary importance. Surveillance in wildlife offers an insight on current epidemiological status of selected pathogens and help to prevent spillovers to humans and livestock. Material and methods: Our study included 312 wild ruminants belonging to five species: Roe deer (n = 134), red deer (n = 113), Alpine chamois (n = 53), European mouflon (n = 10) and Alpine ibex (n = 2). Seven pathogens that may have profound effect on human/livestock health and economic viability of the farms were tested using serological methods. Results: Antibodies against Toxoplasma gondii, Neospora caninum, Coxiella burnetii, Brucella spp., Chlamydophila abortus, Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium bovis were detected in 34.62% (108/312), 0.96% (3/312), 2.24% (7/312), 0, 0.96% (3/312), 0, 0.64% (2/312) of animals tested, respectively. Because of low prevalences, risk factors were assessed only for T. gondii. Sex (female>male) and species (roe deer>red deer, roe deer>Alpine chamois) were significantly associated with the T. gondii positive outcome, while age was not. Discussion: Adult males had the lowest T. gondii prevalence which offers future research opportunities. The lower seroprevalence of most investigated pathogens suggests game meat, if properly cooked, as being relatively safe for human consumption. This is the first study investigating the seroprevalence and associated risk factors of selected pathogens in wild ruminants in Slovenia.

4.
BMC Vet Res ; 20(1): 195, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741095

RESUMEN

Small ruminant lentiviruses (SRLVs) are widespread and infect goats and sheep. Several reports also suggest that SRLVs can infect wild ruminants. The presence of specific antibodies against SRLVs has been identified in wild ruminants from Poland, but no studies have been conducted to detect proviral DNA of SRLVs in these animals. Therefore, the purpose of this study was to examine samples from Polish wild ruminants to determine whether these animals can serve as reservoirs of SRLVs under natural conditions. A total of 314 samples were tested from red deer (n = 255), roe deer (n = 52) and fallow deer (n = 7) using nested real-time PCR. DNA from positive real-time PCR samples was subsequently used to amplify a CA fragment (625 bp) of the gag gene, a 1.2 kb fragment of the pol gene and an LTR-gag fragment. Three samples (0.95%) were positive according to nested real-time PCR using primers and probe specific for CAEV (SRLV group B). All the samples were negative for the primers and probe specific for MVV (SRLV A group). Only SRLV LTR-gag sequences were obtained from two red deer. Phylogenetic analysis revealed that these sequences were more closely related to CAEV than to MVV. Our results revealed that deer can carry SRLV proviral sequences and therefore may play a role in the epidemiology of SRLVs. To our knowledge, this is the first study describing SRLV sequences from red deer.


Asunto(s)
ADN Viral , Ciervos , Infecciones por Lentivirus , Provirus , Animales , Ciervos/virología , Polonia/epidemiología , Provirus/genética , Infecciones por Lentivirus/veterinaria , Infecciones por Lentivirus/virología , Infecciones por Lentivirus/epidemiología , ADN Viral/genética , Lentivirus/aislamiento & purificación , Lentivirus/genética , Lentivirus/clasificación , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
5.
Front Vet Sci ; 11: 1371495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605927

RESUMEN

Schmallenberg virus (SBV) is an arthropod-borne virus that emerged recently in northwestern Europe in 2011 that affects domestic and wild ruminants and induces abortion, stillbirth, and newborns with congenital anomalies. Since its discovery, SBV has spread very rapidly to too many countries in the world. The overall serological investigation of SBV is needed to improve modeling predictions and assess the overall impact on ruminant animals, which helps to design interventions for control and prevention strategies. Thus, this study aimed to estimate the overall serological assay of SBV in both domestic and wild ruminants around the world. This systematic review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. International databases were employed To search for relevant articles. The pooled prevalence with a 95% confidence interval was calculated with a random effects model. The Cochran's Q test, τ2, and I2 were used to assess the sources of heterogeneity. In the current meta-analysis, a total of 41 articles were included. The overall pooled proportion of SBV in domestic and wild ruminants was 49 and 26%, respectively. Substantial heterogeneity was observed in studies on domestic ruminants (I2 = 99.7%; p < 0.01) and studies on wild ruminants (I2 = 97.9%; p < 0.01). The pooled prevalence of SBV was significantly associated with publication time, detection techniques, and species of animals. According to the subgroup analysis, the highest pooled prevalence of SBV was reported in cattle (59%), followed by sheep (37%) and goat (18%). In addition to the subgroup analysis based on publication year, the pooled prevalence of SBV infection has become endemic since 2013 (49%) among domestic animals in the world. Of the diagnostic tests used, the highest anti-SBV antibodies (66%) were detected by a virus neutralization test. In this meta-analysis, the major wild animals that were infected by SBV were red deer, roe deer, fallow deer, mouflon, and wild boar. The highest sub-pooled prevalence of SBV was found in roe deer (46%), followed by fallow deer (30%), red deer (27%), mouflon (22%), and wild boar (11%). In general, the prevalence of SBV was high in cattle among domestic ruminants and in roe deer among wild animals. According to the current information provided by this meta-analysis, evidence-based risk management measures should be established to restrict SBV spread in both domestic and wild ruminants.

6.
Microorganisms ; 12(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38543578

RESUMEN

Fascioloidosis is a parasitic disease of primary wild and domestic ruminants, caused by giant liver fluke, Fascioloides magna. The definitive host of the liver fluke in its area of origin (North America) is the white-tailed deer (Odocoileus virginianus). In Europe, the red deer (Cervus elaphus) and European fallow deer (Dama dama) are definitive hosts and the most sensitive hosts to F. magna infection, on which the parasite exerts serious pathogenic effects. In this study, we analyzed fecal samples and livers of 72 D. dama from 11 hunting grounds in Arad County, Romania. Of the 72 fecal samples and livers from D. dama, trematodes of the genus Fascioloides were identified in four (5.56%). Sequencing revealed that the trematodes identified in the samples were similar to the sequence of F. magna (GenBank no. EF534992.1, DQ683545.1, KU232369.1). The sequence obtained from the molecular analysis has been deposited in GenBank® under accession number OQ689976.1. This study describes the first report of giant liver fluke (F. magna) infection in D. dama in Romania.

7.
Med Vet Entomol ; 38(3): 361-365, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38533733

RESUMEN

Among gastrointestinal nematodes, Haemonchus contortus (Rudolphi) Cobb (order Strongylidae; family Trichostrongylidae) is one of pathogenic and economic importance in domestic and wild ruminants, including the European bison, Bison bonasus Linnaeus (order Cetartiodactyla; family Bovidae); a species on the International Union for Conservation of Nature's Red List of Threatened Species. Carabus granulatus Linnaeus (order Coleoptera; family Carabidae) is one of the most prevalent species of ground beetle, inhabiting a wide range of terrestrial ecosystems in Poland. Twenty-six ground beetles of this species inhabiting the Bialowieza Primeval Forest in eastern Poland were screened for the presence of DNA of pathogenic gastrointestinal nematodes of ruminants. Extracted DNA was sequenced and compared to reference sequences. In six insects, the presence of H. contortus DNA was detected. The obtained nucleotide sequences were homologous to each other and to the majority of the published DNA sequences of H. contortus isolates. The sequences were also identical to a sequence of H. contortus isolated from European bison in Poland. The study provides the first molecular evidence of the presence of H. contortus DNA in C. granulatus. The finding suggests that ground beetles may play a role in the transmission dynamics of this parasite.


Asunto(s)
Escarabajos , Haemonchus , Animales , Escarabajos/parasitología , Haemonchus/genética , Haemonchus/clasificación , Polonia , ADN de Helmintos/análisis , Análisis de Secuencia de ADN , Filogenia , Datos de Secuencia Molecular , Secuencia de Bases , Bison
8.
Int J Parasitol Parasites Wildl ; 23: 100906, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38298202

RESUMEN

This review summarizes published records on the prevalence, species diversity, geographical distribution, mixed infections, co-infections with other trematodes and intermediate hosts (IHs) of amphistomes (rumen flukes) of wild ruminants in Africa. Literature search was conducted on Google Scholar, PubMed and JSTOR, using a combination of predetermined search terms and Boolean operators. Of the 54 African countries searched, results showed that occurrence of amphistome infections in wild ruminants have only been reported in 23 countries. A total of 38 amphistome species consisting of the following 11 genera were recorded, viz Bilatorchis, Calicophoron, Carmyerius, Choerecotyloides, Cotylophoron, Explanatum, Gastrothylax, Gigantocotyle, Leiperocotyle, Paramphistomum and Stephanopharynx. These were recorded in 39 wild ruminant species, belonging to the Bovidae family. The genus Carmyerius recorded the highest number of species (n = 13) across nine countries Africa. However, Calicophoron species (n = 9) were more widely distributed, occurring in 17 countries across all regions of Africa. Species of this genus collectively infected 27 wild ruminant species. However, at a species level, Cotylophoron cotylophorum infected the highest number of wild ruminant species. Prevalence of infection based on post-mortem examination ranged from 1.89% in African Buffalo to 100% in Defassa waterbuck from Egypt and Zambia, respectively. The most common mixed infections recorded were those between amphistomes of the same or different genus. Snail intermediate hosts (IHs) were described for 10/38 amphistome species, and these were predominantly species from Plarnobidae family. Despite the richness in diversity of amphistomes infecting wild ruminants in Africa, there is need to further confirm identity of snail IHs and the amphistome species using both morphological and molecular techniques. Furthermore, more studies are recommended to assess the burden of amphistomosis in commercially reared wildlife/game farming, mixed game and livestock farming systems in Africa.

9.
Helminthologia ; 60(2): 134-140, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37745223

RESUMEN

Helminth infection was analysed at necropsy and coprology in a total of 54 roe deer from the province of Grosseto (central Italy) between 2018 - 2020. Age and sex data were recorded for each deer for a total of 31 adults (23 females, 8 males) and 23 juveniles (11 females, 12 males). The results on the small intestine (51 samples) highlighted that nematodes belonging to the species Trichostrongylus colubriformis were the most prevalent parasite (41.2 %), followed by the cestode Moniezia expansa (7.8 %). The large intestine results (52 samples) showed Trichuris spp. (53.8 %), Oesophagostomum venulosum (50 %) and Chabertia ovina (26.9 %). In the abomasum, only Ostertagia ostertagi (17.9 %) was found. Of the 34 samples analysed by bronchopulmonary, only the lung of an adult female was positive for Dictyocaulus spp. In two livers out of 33 samples analysed, nematodes of the species Setaria tundra were found on the surface. Copropositivity was observed in 45 of the 52 faecal samples analysed. The results of the present study indicate that the roe deer is host to several species of parasites, which are also common in other cervids and domestic ruminants. Statistical testing highlighted a significant difference between mean intensities in males and females.

10.
Parasitology ; 150(8): 672-682, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37165895

RESUMEN

Gastrointestinal nematodes threaten the productivity of grazing livestock and anthelmintic resistance has emerged globally. It is broadly understood that wild ruminants living in sympatry with livestock act as a positive source of refugia for anthelmintic-susceptible nematodes. However, they might also act as reservoirs of anthelmintic-resistant nematodes, contributing to the spread of anthelmintic resistance at a regional scale. Here, we sampled managed sheep and cattle together with feral goats within the same property in New South Wales, Australia. Internal transcribed spacer 2 (ITS-2) nemabiome metabarcoding identified 12 gastrointestinal nematodes (Cooperia oncophora, Cooperia punctata, Haemonchus contortus, Haemonchus placei, Nematodirus spathiger, Ostertagia ostertagi, Teladorsagia circumcincta, Oesophagostomum radiatum, Oesophagostomum venulosum, Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus rugatus). Isotype-1 ß-tubulin metabarcoding targeting benzimidazole resistance polymorphisms identified 6 of these nematode species (C. oncophora, C. punctata, H. contortus, H. placei, O. ostertagi and T. circumcincta), with the remaining 3 genera unable to be identified to the species level (Nematodirus, Oesophagostomum, Trichostrongylus). Both ITS-2 and ß-tubulin metabarcoding showed the presence of a cryptic species of T. circumcincta, known from domestic goats in France. Of the gastrointestinal nematodes detected via ß-tubulin metabarcoding, H. contortus, T. circumcincta, Nematodirus and Trichostrongylus exhibited the presence of at least one resistance genotype. We found that generalist gastrointestinal nematodes in untreated feral goats had a similarly high frequency of the benzimidazole-resistant F200Y polymorphism as those nematodes in sheep and cattle. This suggests cross-transmission and maintenance of the resistant genotype within the wild ruminant population, affirming that wild ruminants should be considered potential reservoirs of anthelmintic resistance.


Asunto(s)
Reservorios de Enfermedades , Resistencia a Medicamentos , Cabras , Helmintiasis Animal , Nematodos , Bovinos/parasitología , Crianza de Animales Domésticos/métodos , Animales Salvajes/parasitología , Reservorios de Enfermedades/parasitología , Resistencia a Medicamentos/genética , Genotipo , Cabras/parasitología , Helmintiasis Animal/parasitología , Helmintiasis Animal/transmisión , Nematodos/efectos de los fármacos , Nematodos/genética , Nueva Gales del Sur , Ovinos/parasitología , Animales
11.
Front Vet Sci ; 10: 1321106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239749

RESUMEN

Introduction: The family Mycobacteriaceae contains over 188 species, most of which are saprophytic non-tuberculous mycobacteria (NTM). In wildlife, a variety of different NTM can be found, with different reports about their pathogenic potential. A pathogenic member of NTM is Mycobacterium avium ssp. paratuberculosis (MAP), which can infect farmed and wild ruminants. It causes paratuberculosis which is an economically important chronic disease. Infected farm animals are considered to be the source of infection in wild animals. Wildlife, on the other hand, is thought to be a reservoir for certain members of the Mycobacterium tuberculosis complex (MTBC), such as M. caprae, which causes tuberculosis in cattle and red deer. Methods: Switzerland implemented a surveillance program for tuberculosis in wild animals in 2014. Here, we describe the results from the mycobacterial culture of lymph node samples collected from red deer, roe deer, chamois, ibex, and badgers collected within this surveillance program from 2020 to 2022. Overall, samples from 548 animals were checked macroscopically for tuberculosis-like lesions. Results: In total, 88 animals (16.1%), which either had lesions in their lymph nodes or were male and aged older than 5 years, were investigated using mycobacterial culture. In total, 25 animals (28.4%) were positive for NTM, while no MTBC was detected. The most often identified NTM was M. vaccae, followed by M. avium. Most animals positive for NTM did not show any macroscopic lesions. Furthermore, MAP was isolated from the head lymph nodes of two male red deer. Neither of the two MAP-positive animals had any macroscopic lesions in their head lymph nodes or any other signs of disease. Discussion: The shooting sites of the two MAP-positive animals were located in Alpine pastures used for grazing of cattle during summer, which confirms that species transmission can occur when contaminated pastures are used by different species. In agreement with other studies, the occurrence of MAP in red deer was quite low. However, so far, MAP was mostly isolated from feces and intestinal lymph nodes of wild animals. This is the first detection of MAP in the head lymph nodes of red deer in Switzerland.

12.
Pathogens ; 11(12)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36558811

RESUMEN

Mycoplasma ovipneumoniae, a well-established respiratory pathogen of sheep and goats, has gained increased importance recently because of its detection in wild ruminants including members of the Cervidae family. Despite its frequent isolation from apparently healthy animals, it is responsible for outbreaks of severe respiratory disease which are often linked to infections with multiple heterologous strains. Furthermore, M. ovipneumoniae is characterized by an unusually wide host range, a high degree of phenotypic, biochemical, and genomic heterogeneity, and variable and limited growth in mycoplasma media. A number of mechanisms have been proposed for its pathogenicity, including the production of hydrogen peroxide, reactive oxygen species production, and toxins. It shows wide metabolic activity in vitro, being able to utilize substrates such as glucose, pyruvate, and isopropanol; these patterns can be used to differentiate strains. Treatment of infections in the field is complicated by large variations in the susceptibility of strains to antimicrobials, with many showing high minimum inhibitory concentrations. The lack of commercially available vaccines is probably due to the high cost of developing vaccines for diseases in small ruminants not presently seen as high priority. Multiple strains found in affected sheep and goats may also hamper the development of effective vaccines. This review summarizes the current knowledge and identifies gaps in research on M. ovipneumoniae, including its epidemiology in sheep and goats, pathology and clinical presentation, infection in wild ruminants, virulence factors, metabolism, comparative genomics, genotypic variability, phenotypic variability, evolutionary mechanisms, isolation and culture, detection and identification, antimicrobial susceptibility, variations in antimicrobial susceptibility profiles, vaccines, and control.

13.
Animals (Basel) ; 12(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428415

RESUMEN

In the study, we data concerning the histological and morphometrical examination of the cornea and palisades of Vogt in the different species of ruminants from the families Bovidae, Camelidae, Cervidae, Giraffidae and Tragulidae, coming from the Warsaw Zoological Garden, the Wroclaw Zoological Garden and the Division of Animal Anatomy. The following ruminant species were investigated: common wildebeest, Kirk's dik-dik, Natal red duiker, scimitar oryx, sitatunga, Philippine spotted deer, Père David's deer, moose, reindeer, reticulated giraffe, okapi, Balabac mouse-deer and alpaca. The cornea of ruminant species such as the common wildebeest, Kirk's dik-dik, Natal red duiker, scimitar oryx, reindeer and Balabac mouse-deer consisted of four layers (not found in the Bowman's layer): the anterior corneal epithelium, the proper substance of the cornea, the posterior limiting membrane (Descemet's membrane) and the posterior corneal epithelium (endothelium). The anterior corneal epithelium was composed of a multilayer keratinizing squamous epithelium, which was characterized in the studied ruminants with a variable number of cell layers but also with a different thickness both in the central epithelium part and in the peripheral part. Moreover, the proper substance of cornea was thinnest in Balabac mouse-deer, Kirk's dik-dik, Natal red duiker, scimitar oryx, Philippine spotted deer, alpaca, reindeer and sitatunga and was thickest in the reticulated giraffe. The thickest Descemet's membrane was observed in the Père David's deer. The corneal limbus is characterized by a large number of pigment cell clusters in Kirk's dik-dik, scimitar oryx, moose, Balabac mouse-deer and alpaca. In the common wildebeest, Père David's deer, moose, reticulated giraffe, okapi and alpaca, the palisades of Vogt were marked in the form of a crypt-like structure. The corneal limbus epithelium in the examined ruminants was characterized by a variable number of cell layers but also a variable number of melanocytes located in different layers of this epithelium. The detailed knowledge of the corneal structure of domestic and wild animals can contribute to the even better development of methods for treating eye diseases in veterinary medicine.

14.
Pathogens ; 11(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297181

RESUMEN

Hepatitis E virus (HEV) infection represents an emerging public health concern worldwide. In industrialized countries, increasing numbers of autochthonous cases of human HEV infection are caused by zoonotic transmission of genotypes 3 and 4, mainly through the consumption of contaminated raw or undercooked meat of infected pigs and wild boars, which are considered the main reservoirs of HEV. However, in the last few years, accumulating evidence seems to indicate that several other animals, including different ruminant species, may harbor HEV. Understanding the impact of HEV infection in ruminants and identifying the risk factors affecting transmission among animals and to humans is critical in order to determine their role in the epidemiological cycle of HEV. In this review, we provide a summary of current knowledge on HEV ecology in ruminants. A growing body of evidence has revealed that these animal species may be potential important hosts of HEV, raising concerns about the possible implications for public health.

15.
Front Vet Sci ; 9: 963205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990264

RESUMEN

Hypothermia is one factor associated with mortality in newborn ruminants due to the drastic temperature change upon exposure to the extrauterine environment in the first hours after birth. Ruminants are precocial whose mechanisms for generating heat or preventing heat loss involve genetic characteristics, the degree of neurodevelopment at birth and environmental aspects. These elements combine to form a more efficient mechanism than those found in altricial species. Although the degree of neurodevelopment is an important advantage for these species, their greater mobility helps them to search for the udder and consume colostrum after birth. However, anatomical differences such as the distribution of adipose tissue or the presence of type II muscle fibers could lead to the understanding that these species use their energy resources more efficiently for heat production. The introduction of unconventional ruminant species, such as the water buffalo, has led to rethinking other characteristics like the skin thickness or the coat type that could intervene in the thermoregulation capacity of the newborn. Implementing tools to analyze species-specific characteristics that help prevent a critical decline in temperature is deemed a fundamental strategy for avoiding the adverse effects of a compromised thermoregulatory function. Although thermography is a non-invasive method to assess superficial temperature in several non-human animal species, in newborn ruminants there is limited information about its application, making it necessary to discuss the usefulness of this tool. This review aims to analyze the effects of hypothermia in newborn ruminants, their thermoregulation mechanisms that compensate for this condition, and the application of infrared thermography (IRT) to identify cases with hypothermia.

16.
Transbound Emerg Dis ; 69(6): 3972-3978, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35933587

RESUMEN

Highly divergent picornaviruses (PVs) classified in the genus Bopivirus have been recently discovered on faecal samples from sheep and goats in Hungary and from fallow and red deer in Australia. In this study, we investigated the epidemiology of these novel viruses in domestic and wild ruminants from Northwestern Italian Alps by testing archival faecal samples collected from 128 sheep, 167 goats, 61 red deer (Cervus elaphus), 77 roe deer (Capreolus capreolus), 43 chamois (Rupicapra rupicapra) and 32 Alpine ibex (Capra ibex). Bopivirus RNA was detected in a total of 19 animals, including 14 sheep (10.9%), 2 red deer (3.3%), 1 roe deer (1.3%), 1 chamois (2.3 %) and 1 Alpine ibex (3.3 %), but not in goats. Upon sequence analysis of the 3DRdRp region, the sequences generated from chamois, roe deer, Alpine ibex and ovine faecal samples showed the highest nucleotide identity (96.8-100%) to bopiviruses detected in goats and sheep from Hungarian farms, whereas strains found in red deer displayed the closest relatedness (90.8%-91.2%) to bopiviruses identified in fallow and red deer in Australia. The nearly complete genome sequence of strains 12/2020/ITA (ON497046) and 14-73/2020/ITA (ON497047) detected in an Alpine ibex and in a sheep, respectively, was determined by combining a modified 3'-RACE protocol with Oxford Nanopore Technologies sequencing platform. On phylogenetic analysis based on the complete polyprotein, both strains segregated into the candidate species Bopivirus B along with ovine and caprine strains detected in Hungary (90.0-94.6% nucleotide and 94.6-98.0% amino acid identities). The findings of this study expand the host range of these novel viruses and hint to a possible virus circulation between domestic ruminants and wild animals.


Asunto(s)
Ciervos , Rupicapra , Animales , Ovinos , Cabras , Filogenia , Rumiantes , Animales Salvajes , Nucleótidos
17.
Viruses ; 14(7)2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35891438

RESUMEN

The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.


Asunto(s)
Hepacivirus , Hepatitis C , Animales , Bovinos , Genómica , Hepacivirus/genética , Especificidad del Huésped , Rumiantes
18.
Front Vet Sci ; 9: 862092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573405

RESUMEN

Ashworthius sidemi is an abomasal nematode typical for Asiatic cervids such as sambar (Rusa unicolor) or sika deer (Cervus nippon). This non-native parasite was introduced into Europe via sika deer in the late 19th and early 20th centuries. The current dynamic spread of this parasite amongst autochthonous wild cervids occurs independently of human activities, and A. sidemi has a negative impact on the health of wild ruminants and may pose a threat to the conservation of endangered wild ungulates and to livestock. This invasive parasite has been previously detected in the Czech Republic, but more accurate information on A. sidemi is required. Only limited information is generally available on the factors influencing the spread of abomasal nematodes in wild ruminants, so more information is necessary for planning effective strategies of parasite control. We therefore conducted a survey on the abomasal nematodes in cervids in both game reserves and hunting grounds across the Czech Republic, taking into account the hosts (species, age, sex) and environmental factors (monthly average temperature). The abomasa of 104 animals belonging to five cervid species originating from various locations of the country were collected. Data on host (species, sex, and age group) and the monthly average temperature in the region were obtained for each animal. The parasitological analyses indicated that 92% of the abomasa were infected by nematodes. Ashworthius sidemi was the most prevalent (72%) and abundant (80% of the total recovered individuals) nematode species and was detected in all cervid species except white-tailed deer. The intensity of A. sidemi was highest in roe deer (Capreolus capreolus) and fallow deer (Dama dama), but A. sidemi abundance did not depend substantially on the host or environmental factors. In contrast, the abundance of nematodes from the subfamily Ostertagiinae was influenced by the host species and temperature. Parasitic load was significantly higher in roe deer and during the warmer periods of the survey. We also detected another non-native nematode species, Spiculopteragia houdemeri. The results of our study suggest that the non-native nematode A. sidemi is now widespread amongst cervid hosts in the Czech Republic, probably due to the high sensitivity of autochthonous cervids to A. sidemi infections as well as adaptation of this parasite to the current climatic conditions of this country.

19.
J Vet Dent ; 39(2): 142-150, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35291887

RESUMEN

This study aims to assess the contributory and predisposing effects of prolonged drought and climate phenomena on the occurrence of dental abnormalities among three age groups of the black duiker (Cephalophus niger). 36 skulls comprised of 18 females and 18 males were examined. Each group consisted of 8 kids (age range 0-10 months) (4 males and 4 females), 14 mature individuals (age range 1-3 years) (7 males and 7 females) and 14 adults (age range older than 3½ years) (7 males and 7 females). It was observed that the most severe defects occurred in mature and old females during prolonged drought. Morphologic disruptions of the dentition occurred more frequently on the mandible relative to the maxilla. 93% showed apical dental aberration. Bone resorption occurred in 30% and 6% of females and males respectively with profile aberrations at both time stages, tooth staining was observed in 40% of females and 8% of males, attrition accounted for 15% in each of both sexes, 28% and 3% of the females and the males had missing teeth respectively with more occurrence in the premolars and the molar teeth. Calculus was found in 4% and 9% of the females and males respectively. These findings may be useful in determination of likely age and season for occurrence of dental pathologies, in evaluation of response to irrigation and may provide information to assist in bioremediation of dental pathology.


Asunto(s)
Clima Extremo , Animales , Dieta , Femenino , Masculino , Mandíbula , Maxilar , Niger
20.
Pathogens ; 11(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35335629

RESUMEN

During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA