Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126096

RESUMEN

With-no-lysine kinase (WNK) is a unique serine/threonine kinase family member. WNK differs from other protein kinases by not having a standard lysine in subdomain II of the universally preserved kinase catalytic region. Conversely, the amino acid lysine located in subdomain I plays a crucial role in its phosphorylation. The WNK family has been reported to regulate Arabidopsis flowering, circadian rhythm, and abiotic stress. Eighteen members of the WNK gene family were discovered in apples in this research, and they were primarily grouped into five categories on the phylogenetic tree. Conserved domains and motifs also confirmed their identity as members of the WNK family. Promoter cis-acting element analysis indicated their potential role in responses to both abiotic stress and phytohormones. Furthermore, qRT-PCR analysis showed that the expression of MdWNK family genes was stimulated to different extents by Colletotrichum siamense, NaCl, mannitol, ABA, JA, and SA, with Colletotrichum siamense being the most prominent stimulant. MdWNK family genes were expressed across all apple tissues, with young fruits showing the greatest expression and roots showing the least expression. The research offered detailed insights into the MdWNK gene family, serving as a crucial basis for investigating the biological roles of MdWNK genes.


Asunto(s)
Colletotrichum , Regulación de la Expresión Génica de las Plantas , Malus , Familia de Multigenes , Filogenia , Proteínas de Plantas , Proteínas Serina-Treonina Quinasas , Estrés Fisiológico , Malus/genética , Malus/microbiología , Estrés Fisiológico/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Regiones Promotoras Genéticas , Genoma de Planta
2.
Am J Physiol Renal Physiol ; 326(3): F460-F476, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38269409

RESUMEN

Kidney-specific with-no-lysine kinase 1 (KS-WNK1) is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies have suggested that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal-potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low-potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl- while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared with KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the phosphorylated NCC-to-NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the distal convoluted tubule to respond to extreme changes in potassium intake, such as those occurring in wildlife.NEW & NOTEWORTHY The findings of this study demonstrate that kidney-specific with-no-lysine kinase 1 plays a role in regulating urinary electrolyte excretion during extreme changes in potassium intake, such as those occurring in wildlife. .


Asunto(s)
Ratones Noqueados , Potasio en la Dieta , Proteína Quinasa Deficiente en Lisina WNK 1 , Animales , Masculino , Ratones , Riñón/metabolismo , Túbulos Renales Distales/metabolismo , Ratones Endogámicos C57BL , Fosforilación , Potasio/orina , Potasio/metabolismo , Potasio/sangre , Potasio en la Dieta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Eliminación Renal , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Femenino
3.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881876

RESUMEN

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Seudohipoaldosteronismo , Animales , Ratones , Furosemida , Ratones Endogámicos C57BL , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Tiazidas
4.
Am J Physiol Renal Physiol ; 325(4): F479-F490, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37560773

RESUMEN

The primary structure of the thiazide-sensitive NaCl cotransporter (NCC) was resolved 30 years ago by the molecular identification of the cDNA encoding this cotransporter, from the winter's flounder urinary bladder, following a functional expression strategy. This review outlines some aspects of how the knowledge about thiazide diuretics and NCC evolved, the history of the cloning process, and the expansion of the SLC12 family of electroneutral cotransporters. The diseases associated with activation or inactivation of NCC are discussed, as well as the molecular model by which the activity of NCC is regulated. The controversies in the field are discussed as well as recent publication of the three-dimensional model of NCC obtained by cryo-electron microscopy, revealing not only the amino acid residues critical for Na+ and Cl- translocation but also the residues critical for polythiazide binding to the transporter, opening the possibility for a new era in thiazide diuretic therapy.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Cloruro de Sodio , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruro de Sodio/metabolismo , Microscopía por Crioelectrón , Inhibidores de los Simportadores del Cloruro de Sodio , Clonación Molecular
5.
Front Physiol ; 14: 1100522, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875042

RESUMEN

The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.

6.
SAR QSAR Environ Res ; 33(2): 63-87, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35078380

RESUMEN

The With-No-Lysine (WNK) has received attention because of its involvement in hypertension. Genetic mutation in the genes of WNK, leading to its overexpression, has been reported in Familial Hyperkalaemic Hypertension, and thus WNK is considered a potential drug target. Herein, we have performed a high-throughput virtual screening of ~11,000 compounds, mainly the natural phytochemical compounds and kinase inhibitory libraries, to find potential competitive inhibitors against WNK1. Initially, candidates with a docking score of ~ -10.0 kcal/mol or less were selected to further screen their good pharmacological properties by applying absorption, distribution, metabolism, excretion, and toxicity (ADMET). Finally, six docked compounds bearing appreciable binding affinities and WNK1 selectivity were complimented with 500 ns long all-atom molecular dynamic simulations. Subsequently, the MMPBSA scheme (Molecular Mechanics Poisson Boltzmann Surface Area) suggested three phytochemical compounds, C00000947, C00020451, and C00005031, with favourable binding affinity against WNK1. Among them, C00000947 acts as the most potent competitive inhibitor of WNK1. Further, inverse pharmacophore-based lead optimization of the C00000947 leads to one potential compound, meciadanol, which shows better binding affinity and specificity than C00000947 towards WNK1, which may be further exploited to develop effective therapeutics against WNK1-associated hypertension after in vitro and in vivo validation.


Asunto(s)
Hipertensión , Simulación de Dinámica Molecular , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipertensión/tratamiento farmacológico , Lisina , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa
7.
Brain ; 145(3): 950-963, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34528073

RESUMEN

First-in-line benzodiazepine treatment fails to terminate seizures in about 30% of epilepsy patients, highlighting a need for novel anti-seizure strategies. It is emerging that impaired K+/Cl- cotransporter 2 (KCC2) activity leads to deficits in GABAergic inhibition and increased seizure vulnerability in patients. In neurons, the with-no-lysine (WNK) kinase-STE20/SPS1-related proline/alanine-rich (SPAK) kinase signalling pathway inhibits KCC2 activity via T1007 phosphorylation. Here, we exploit the selective WNK kinase inhibitor WNK463 to test the effects of pharmacological WNK inhibition on KCC2 function, GABAergic inhibition, and epileptiform activity. Immunoprecipitation and western blotting analysis revealed that WNK463 reduces KCC2-T1007 phosphorylation in vitro and in vivo. Using patch-clamp recordings in primary rat neurons, we further observed that WNK463 hyperpolarized the Cl- reversal potential, and enhanced KCC2-mediated Cl- extrusion. In the 4-aminopyridine slice model of acute seizures, WNK463 administration reduced the frequency and number of seizure-like events. In vivo, C57BL/6 mice that received intrahippocampal WNK463 experienced delayed onset of kainic acid-induced status epilepticus, less epileptiform EEG activity, and did not develop pharmaco-resistance to diazepam. Our findings demonstrate that acute WNK463 treatment potentiates KCC2 activity in neurons and limits seizure burden in two well-established models of seizures and epilepsy. In summary, our work suggests that agents which act to increase KCC2 activity may be useful adjunct therapeutics to alleviate diazepam-resistant status epilepticus.


Asunto(s)
Epilepsia , Estado Epiléptico , Simportadores , Animales , Diazepam/metabolismo , Diazepam/farmacología , Hipocampo/metabolismo , Humanos , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratas , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico , Estado Epiléptico/metabolismo , Simportadores/metabolismo
8.
Am J Physiol Renal Physiol ; 322(1): F55-F67, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843409

RESUMEN

We used whole cell recording to examine the renal outer medullary K+ channel (ROMK or Kir1.1) and epithelial Na+ channel (ENaC) in the late distal convoluted tubule (DCT2)/initial connecting tubule (iCNT) and in the cortical collecting duct (CCD) of kidney tubule-specific neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) knockout mice (Ks-Nedd4-2 KO) and floxed neural precursor cell-expressed developmentally downregulated 4-like (Nedd4l) mice (control). Tertiapin Q (TPNQ)-sensitive K+ currents (ROMK) were smaller in both the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on a normal diet than in control mice. Neither high dietary salt intake nor low dietary salt intake had a significant effect on ROMK activity in the DCT2/iCNT and CCD of control and Ks-Nedd4-2 KO mice. In contrast, high dietary K+ intake (HK) increased, whereas low dietary K+ intake (LK) decreased TPNQ-sensitive K+ currents in floxed Nedd4l mice. However, the effects of dietary K+ intake on ROMK channel activity were absent in Ks-Nedd4-2 KO mice since neither HK nor LK significantly affected TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD. Moreover, TPNQ-sensitive K+ currents in the DCT2/iCNT and CCD of Ks-Nedd4-2 KO mice on HK were similar to those of control mice on LK. Amiloride-sensitive Na+ currents in the DCT2/iCNT and CCD were significantly higher in Ks-Nedd4-2 KO mice than in floxed Nedd4l mice on a normal K+ diet. HK increased ENaC activity of the DCT2/iCNT only in control mice, but HK stimulated ENaC of the CCD in both control and Ks-Nedd4-2 KO mice. Moreover, the HK-induced increase in amiloride-sensitive Na+ currents was larger in Ks-Nedd4-2 KO mice than in control mice. Deletion of Nedd4-2 increased with no lysine kinase 1 expression and abolished HK-induced inhibition of with no lysine kinase 1. We conclude that deletion of Nedd4-2 increases ENaC activity but decreases ROMK activity in the aldosterone-sensitive distal nephron and that HK fails to stimulate ROMK, but robustly increases ENaC activity in the CCD of Nedd4-2-deficient mice.NEW & NOTEWORTHY We demonstrate that renal outer medullary K+ (ROMK) channel activity is inhibited in the late distal convoluted tubule/initial connecting tubule and cortical collecting duct of neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2)-deficient mice. Also, deletion of Nedd4-2 abolishes the stimulatory effect of dietary K+ intake on ROMK. The lack of high K+-induced stimulation of ROMK is associated with the absence of high K+-induced inhibition of with no lysine kinase 1.


Asunto(s)
Aldosterona/farmacología , Túbulos Renales Distales/efectos de los fármacos , Ubiquitina-Proteína Ligasas Nedd4/deficiencia , Canales de Potasio de Rectificación Interna/metabolismo , Potasio en la Dieta/metabolismo , Animales , Dieta Hiposódica , Canales Epiteliales de Sodio/metabolismo , Túbulos Renales Distales/metabolismo , Masculino , Potenciales de la Membrana , Ratones Noqueados , Ubiquitina-Proteína Ligasas Nedd4/genética , Cloruro de Sodio Dietético/metabolismo
9.
10.
JACC Basic Transl Sci ; 6(11): 834-850, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34869947

RESUMEN

Small molecule inhibition of with no lysine kinase 1 (WNK1) (WNK463) signaling activates adenosine monophosphate-activated protein kinase signaling and mitigates membrane enrichment of glucose transporters 1 and 4, which decreases protein O-GlcNAcylation and glycation. Quantitative proteomics of right ventricular (RV) mitochondrial enrichments shows WNK463 prevents down-regulation of several mitochondrial metabolic enzymes. and metabolomics analysis suggests multiple metabolic processes are corrected. Physiologically, WNK463 augments RV systolic and diastolic function independent of pulmonary arterial hypertension severity. Hypochloremia, a condition of predicted WNK1 activation in patients with pulmonary arterial hypertension, is associated with more severe RV dysfunction. These results suggest WNK1 may be a druggable target to combat metabolic dysregulation and may improve RV function and survival in pulmonary arterial hypertension.

11.
Chem Biol Drug Des ; 98(3): 405-420, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33969941

RESUMEN

Specifically targeting the With-No-Lysine (WNK1) kinase, which is implicated in hypertension, renders a significant challenge in discovering competitive inhibitors due to the highly conserved ATP-binding pocket. However, an allosteric inhibitor may impart high specificity against the WNK kinase isoforms since it targets the less conserved site and can provide greater efficacy even under high physiological ATP concentration. In the current study, we have investigated the structural and energetic basis of the specificity of the allosteric inhibitor WNK476 against WNK kinase isoforms by combining molecular dynamics simulations and free energy calculations using molecular mechanics Poisson-Boltzmann surface area. Our study reveals that the conformational stabilization of αC-helix near the allosteric binding site, including conformational changes in activation and glycine-rich loop regions, favors the specificity of WNK476 toward WNK1. The MM/PBSA calculations suggest that the non-polar contribution from hydrophobic residues and polar solvation energy influences WNK/WNK476 complexation. Despite more favorable electrostatic and van der Waals interactions in WNK2/WNK476, WNK476 is more potent against WNK1 due to the lower contribution of disfavoring components-polar solvation and entropy. Further, we have identified that the hydrophobic residues of DLG, αC-helix, ß4 , and ß5 regions, and H-bond network near the ß4 strand play a critical role in the specificity of WNK476 against WNK1. Finally, our study reveals that residues Leu272 , Val281 , Phe283 , and Leu369 of WNK1 actively contribute to the overall hydrophobic interactions for WNK1/WNK476. Overall, our study might help in the rational design of novel allosteric inhibitors against hypertension.


Asunto(s)
Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Proteína Quinasa Deficiente en Lisina WNK 1/antagonistas & inhibidores , Sitio Alostérico , Sitios de Unión , Humanos , Enlace de Hidrógeno , Análisis de Componente Principal , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Termodinámica , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo
12.
Am J Physiol Renal Physiol ; 320(5): F734-F747, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682442

RESUMEN

The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Riñón/enzimología , Proteínas de Microfilamentos/metabolismo , Potasio en la Dieta/metabolismo , Seudohipoaldosteronismo/enzimología , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Cullin/metabolismo , Estabilidad de Enzimas , Femenino , Riñón/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microfilamentos/genética , Mutación , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/fisiopatología , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/deficiencia , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Xenopus laevis
13.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760209

RESUMEN

With­no­lysine kinase 3 (WNK3) is a serine/threonine kinase that functions by regulating downstream signaling molecules. WNK3 mainly regulates intracellular and extracellular Na+, Cl­ and K+ levels by regulating downstream ion transporters, the disruption of which has been associated with cerebral ischemia, epilepsy, glioma and other diseases. In addition, WNK3 was demonstrated to regulate neuronal splicing factor RNA binding fox­1 homolog­1 to influence autism. Over the past 20 years, accumulating evidence has reported that dysfunctional WNK3 signaling was involved in the pathologies of various neurological disorders; therefore, WNK3 has become a promising therapeutic target for ameliorating the corresponding symptoms of such disorders. The present review aimed to provide a general overview of the expression patterns and physiological functions of WNK3 signaling and its pathophysiological roles in neurological diseases, such as epilepsy, ischemic brain injury, intracerebral hemorrhage, autism, glioma and schizophrenia.


Asunto(s)
Hemorragia Cerebral/genética , Transporte Iónico/genética , Enfermedades del Sistema Nervioso/genética , Proteínas Serina-Treonina Quinasas/genética , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Hemorragia Cerebral/patología , Epilepsia/genética , Epilepsia/patología , Humanos , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , Neuronas/patología , Transducción de Señal/genética
14.
Acta Pharm Sin B ; 11(12): 3994-4007, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35024321

RESUMEN

Vascular smooth muscle cell (VSMC) migration plays a critical role in the pathogenesis of many cardiovascular diseases. We recently showed that TMEM16A is involved in hypertension-induced cerebrovascular remodeling. However, it is unclear whether this effect is related to the regulation of VSMC migration. Here, we investigated whether and how TMEM16A contributes to migration in basilar artery smooth muscle cells (BASMCs). We observed that AngII increased the migration of cultured BASMCs, which was markedly inhibited by overexpression of TMEM16A. TMEM16A overexpression inhibited AngII-induced RhoA/ROCK2 activation, and myosin light chain phosphatase (MLCP) and myosin light chain (MLC20) phosphorylation. But AngII-induced myosin light chain kinase (MLCK) activation was not affected by TMEM16A. Furthermore, a suppressed activation of integrinß3/FAK pathway, determined by reduced integrinß3 expression, FAK phosphorylation and F-actin rearrangement, was observed in TMEM16A-overexpressing BASMCs upon AngII stimulation. Contrary to the results of TMEM16A overexpression, silencing of TMEM16A showed the opposite effects. These in vitro results were further demonstrated in vivo in basilar arteries from VSMC-specific TMEM16A transgenic mice during AngII-induced hypertension. Moreover, we observed that the inhibitory effect of TMEM16A on BASMC migration was mediated by decreasing the activation of WNK1, a Cl--sensitive serine/threonine kinase. In conclusion, this study demonstrated that TMEM16A suppressed AngII-induced BASMC migration, thus contributing to the protection against cerebrovascular remodeling during AngII-infused hypertension. TMEM16A may exert this effect by suppressing the RhoA/ROCK2/MLCP/MLC20 and integrinß3/FAK signaling pathways via inhibiting WNK1. Our results suggest that TMEM16A may serve as a novel therapeutic target for VSMC migration-related diseases, such as vascular remodeling.

15.
J Cyst Fibros ; 20(3): 516-524, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279469

RESUMEN

BACKGROUND: The pathophysiological roles of cystic fibrosis transmembrane-conductance regulator (CFTR) Cl- channels in the regulation of blood pressure (BP) remain controversial. Here we studied the function of CFTR Cl- channels in regulation of BP and in the high-fructose-salt-diet (HFSD) induced hypertension in mice. METHODS: The systolic, diastolic and mean BP (SBP, DBP and MBP, respectively) were continuously monitored from unrestricted conscious wild-type (cftr+/+) FVB and CFTR-knockout (cftr-/-) mice (8-week old, male). HFSD (64.7% fructose, 2% NaCl water) or control normal starch diet (CNSD, 58.9% corn starch, 0 NaCl water) was given for 8 weeks and vascular Doppler were performed. Real-time PCR and Western blot were used to examine mRNA and protein expression, respectively. RESULTS: The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of the cftr-/- mice were significantly higher than those in the age- and gender-matched cftr+/+ mice, which is consistent with the findings of increased vascular resistance in cystic fibrosis patients. The aortic stiffness, daytime and nighttime SBP, DBP, and MBP of cftr+/+ mice fed with HFSD were all significantly higher than those fed with CNSD. Importantly, HFSD caused a significant decrease in mRNA and protein expression of WINK1, WINK4 and CFTR in aorta and mesenteric arteries, but not in the kidney, corroborating that HSFD-induced downregulation of WINKs and loss of CFTR function specifically in the arteries may mediate the increased BP. CONCLUSIONS: CFTR regulates peripheral arterial resistance and BP in vivo. HFSD-induced CFTR downregulation specifically in the arteries may be a novel mechanism for hypertension.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Fibrosis Quística/fisiopatología , Resistencia Vascular/fisiología , Animales , Presión Sanguínea/fisiología , Dieta Alta en Grasa , Carbohidratos de la Dieta/administración & dosificación , Regulación hacia Abajo , Fructosa/administración & dosificación , Masculino , Ratones , Ultrasonografía Doppler
16.
J Asian Nat Prod Res ; 23(8): 764-771, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32602352

RESUMEN

Three compounds with diuretic potential were identified from the 95% ethanol extract of Pyrrosia petiolosa (Christ) Ching. Among them, one was a new benzanilide named petiolide A (1), and the other two were phenolic derivatives barbatic acid (2) and kaempferol (3). Their structures were elucidated based on extensive spectral analyses and comparison with the literature data. The docking experiments of all compounds into the active site of the With-No-Lysine kinase 1 (WNK1) domain demonstrated that kaempferol (3) was the most effective component with diuretic potential for its comparative diuretic effect to that of an orally bioavailable WNK inhibitor WNK463 (docking score -10.99 vs -11.09).[Formula: see text].


Asunto(s)
Diuréticos , Polypodiaceae , Diuréticos/farmacología , Estructura Molecular , Extractos Vegetales
17.
Biochem Biophys Res Commun ; 533(4): 1290-1297, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33046244

RESUMEN

With-no-lysine kinase (WNK) plays important roles in regulating electrolyte homeostasis, cell signaling, survival, and proliferation. It has been recently demonstrated that WNK1, a member of the WNK family, modifies the function of immune cells. Here we report that in macrophages, WNK1 has suppressive effects on lipopolysaccharide (LPS)-induced inflammatory responses via TGFß-activated kinase 1 (TAK1)-mediated activation of nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. We found that WNK1 heterozygous (WNK1+/-) mice produced excessive proinflammatory cytokines in an experimental LPS-induced sepsis model, and peritoneal macrophages isolated from WNK1+/- mice produced higher levels of LPS-induced cytokines and NOS2 expression as canonical proinflammatory M1 macrophage markers. We confirmed that small hairpin RNA (shRNA)-mediated knockdown of WNK1 activated LPS-induced cytokine production and NOS2 expression in RAW 264.7 macrophages. Moreover, we demonstrated that WNK1 knockdown increased the nuclear translocation of NF-κB and activated the p38 and Jun N-terminal kinase (JNK) MAPK signaling pathway and that a TAK1 inhibitor diminished these effects of WNK1 knockdown. These results suggest that WNK1 acts as a physiologic immune modulator via interactions with TAK1. WNK1 may be a therapeutic target against the cytokine storm caused by sepsis.


Asunto(s)
Citocinas/biosíntesis , Quinasas Quinasa Quinasa PAM/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Sepsis/inmunología , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Animales , Células Cultivadas , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/fisiología , Sistema de Señalización de MAP Quinasas , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Células RAW 264.7 , Sepsis/inducido químicamente , Sepsis/enzimología , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Proteína Quinasa Deficiente en Lisina WNK 1/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
CEN Case Rep ; 9(2): 133-137, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31900739

RESUMEN

Owing to its rarity and severe nature, the treatment for generalized pseudohypoaldosteronism type 1 (PHA1), a genetic disorder in the epithelial sodium channel (ENaC), is exclusively experience-based. In particular, the usefulness of dietary potassium restriction in PHA1 remains unclear with the absence of theoretical background to elucidate its utility. First, we demonstrated the effect of potassium restriction in a 13-month-old patient with ENaC γ-subunit gene mutations via a retrospective chart review; reduction of daily dietary potassium intake from 40 to 20 mEq induced rapid restoration of volume depletion, as evidenced by weight gain, elevation of the serum sodium level from 133 to 141 mEq/L, decreased urinary sodium excretion, and normalized renin activity. The serum potassium level decreased from 5.6 to 4.5 mEq/L. Next, we attempted to elucidate the pathophysiological basis of the usefulness of potassium restriction, leveraged by the increased knowledge regarding the roles of with-no-lysine kinases (WNKs) in the distal nephron. When potassium is restricted, the WNK signal will turn "on" in the distal nephron via reduction in the intracellular chloride level. Consequently, the sodium reabsorption from the Na+Cl- cotransporter (NCC) in the distal convoluted tubule and possibly from pendrin in the ß-intercalated cell will increase. Thus, potassium restriction causes NCC and pendrin to compensate for the non-functional ENaC in the collecting duct. In conclusion, dietary potassium restriction is one of the indispensable treatments for generalized PHA1.


Asunto(s)
Dietoterapia/efectos adversos , Canales Epiteliales de Sodio/genética , Nefronas/metabolismo , Seudohipoaldosteronismo/dietoterapia , Sodio/orina , Dietoterapia/métodos , Humanos , Lactante , Túbulos Renales Distales/metabolismo , Túbulos Renales Distales/fisiopatología , Masculino , Mutación , Nefronas/fisiopatología , Potasio/sangre , Potasio en la Dieta/administración & dosificación , Potasio en la Dieta/provisión & distribución , Proteínas Serina-Treonina Quinasas/genética , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/fisiopatología , Estudios Retrospectivos , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Transportadores de Sulfato/genética , Resultado del Tratamiento
19.
J Biomol Struct Dyn ; 38(5): 1306-1321, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31017050

RESUMEN

The With-No-Lysine (WNK) kinase family plays a significant role in regulating cation-chloride cotransporters, blood pressure and body fluid homeostasis. Mutations in the gene of WNK family, especially in WNK1 and WNK4 are responsible for pseudohypoaldosteronism type II (PHAII), characterized by hypertension. The selective inhibition of WNK1 over other isoforms has created an immense challenge in the design of an ATP competitive inhibitor due to their high conservatism. In this work, we have compared the selectivity of the inhibitor WNK463, which was designed for WNK1 with other WNK family isoforms by comprehensive molecular modeling, docking and molecular dynamics simulations in conjunction with the Molecular Mechanics Poisson-Boltzmann Surface Area method. Our calculations show that the affinity of the inhibitor decreases in the order WNK2 > WNK1 > WNK3 > WNK4, in agreement with the experiment. Our study reveals that the inhibitor is most selective to WNK2 due to decreased polar solvation and configurational entropy compared to other isoforms. Furthermore, our analyses indicated that the nonpolar contribution from the hydrophobic residues and hydrogen bonds in the hinge region gatekeeper residue Met304 of WNK1 and its equivalent residue from other kinases played a critical role in stabilizing the inhibitor against WNK kinases. Residues Lys233, Met304, Phe356 and Leu369 of WNK1 were the essential residue differences compared to other isoforms that led to specific interactions thereby forming the basis of molecular binding pattern of binding interactions. Overall, we have identified conserved WNK-inhibitor interactions and elucidated isoform-specific interactions that could be exploited in the design of more potent and selective WNK inhibitors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antihipertensivos , Proteínas Serina-Treonina Quinasas , Imidazoles , Riñón , Lisina , Antígenos de Histocompatibilidad Menor , Isoformas de Proteínas , Pirrolidinas , Proteína Quinasa Deficiente en Lisina WNK 1
20.
Proc Natl Acad Sci U S A ; 116(10): 4502-4507, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30765526

RESUMEN

With-no-lysine (WNK) kinases regulate renal sodium-chloride cotransporter (NCC) to maintain body sodium and potassium homeostasis. Gain-of-function mutations of WNK1 and WNK4 in humans lead to a Mendelian hypertensive and hyperkalemic disease pseudohypoaldosteronism type II (PHAII). X-ray crystal structure and in vitro studies reveal chloride ion (Cl-) binds to a hydrophobic pocket within the kinase domain of WNKs to inhibit its activity. The mechanism is thought to be important for physiological regulation of NCC by extracellular potassium. To test the hypothesis that WNK4 senses the intracellular concentration of Cl- physiologically, we generated knockin mice carrying Cl--insensitive mutant WNK4. These mice displayed hypertension, hyperkalemia, hyperactive NCC, and other features fully recapitulating human and mouse models of PHAII caused by gain-of-function WNK4. Lowering plasma potassium levels by dietary potassium restriction increased NCC activity in wild-type, but not in knockin, mice. NCC activity in knockin mice can be further enhanced by the administration of norepinephrine, a known activator of NCC. Raising plasma potassium by oral gavage of potassium inactivated NCC within 1 hour in wild-type mice, but had no effect in knockin mice. The results provide compelling support for the notion that WNK4 is a bona fide physiological intracellular Cl- sensor and that Cl- regulation of WNK4 underlies the mechanism of regulation of NCC by extracellular potassium.


Asunto(s)
Cloruros/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ratones , Ratones Transgénicos , Potasio/administración & dosificación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA