Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 917: 170478, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38301780

RESUMEN

Denitrifying woodchip bioreactors (DBRs) are an established nitrate mitigation technology, but uncertainty remains on their viability for phosphorus (P) removal due to inconsistent source-sink behaviour in field trials. We investigated whether iron (Fe) redox cycling could be the missing link needed to explain P dynamics in these systems. A pilot-scale DBR (Aotearoa New Zealand) was monitored for the first two drainage seasons (2017-2018), with supplemental in-field measurements of reduced solutes (Fe2+, HS-/H2S) and their conjugate oxidised species (Fe3+/SO42-) made in 2021 to constrain within-reactor redox gradients. Consistent with thermodynamics, the dissolution of Fe3+(s) to Fe2+(aq) within the DBR sequentially followed O2, NO3- and MnO2(s) reduction, but occurred before SO42- reduction. Monitoring of inlet and outlet chemistry revealed tight coupling between Fe and P (inlet R2 0.94, outlet R2 0.85), but distinct dynamics between drainage seasons. In season one, outlet P exceeded inlet P (net P source), and coincided with elevated outlet Fe2+, but at ⁓50 % lower P concentrations relative to inlet Fe:P ratios. In season 2 the reactor became a net P sink, coinciding with declining outlet Fe2+ concentrations (indicating exhaustion of Fe3+(s) hydroxides and associated P). In order to characterize P removal under varying source dynamics (i.e. inflows vs in-situ P releases), we used the inlet Fe vs P relationship to estimate P binding to colloidal Fe (hydr)oxide surfaces under oxic conditions, and the outlet Fe2+ concentration to estimate in-situ P releases associated with Fe (hydr)oxide reduction. Inferred P-removal rates were highest early in season 1 (k = 0.60 g P m3 d-1; 75-100 % removal), declining significantly thereafter (k = 0.01 ± 0.02 g P m3 d-1; ca. 3-67 % removal). These calculations suggest that microbiological P removal in DBRs can occur at comparable magnitudes to nitrate removal by denitrification, depending mainly on P availability and hydraulic retention efficiency.


Asunto(s)
Nitratos , Fósforo , Compuestos de Manganeso , Desnitrificación , Óxidos , Reactores Biológicos , Nitrógeno
2.
Microbiol Resour Announc ; 12(12): e0080923, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37982652

RESUMEN

We report here the draft whole-genome sequence of Bacillus pseudomycoides strain I32, a bacterium isolated from the denitrifying woodchip bioreactor and showing rhizoidal colony morphology with filamentous swirling pattern on the agar medium plate. The isolate produced nitrous oxide without known nitric oxide reductase genes on the genome.

3.
Microbiol Spectr ; : e0405322, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37747182

RESUMEN

Woodchip bioreactors (WBRs) are used to remove nutrients, especially nitrate, from subsurface drainage. The nitrogen removal efficiency of WBRs, however, is limited by low temperatures and the availability of labile carbon. Bioaugmentation and biostimulation are potential approaches to enhance nitrate removal of WBRs under cold conditions, but their effectiveness is still unclear. Here, we clarified the effects of bioaugmentation and biostimulation on the microbiomes and nitrate removal rates of WBRs. As a bioaugmentation treatment, we inoculated WBR-borne cold-adapted denitrifying bacteria Cellulomonas cellasea strain WB94 and Microvirgula aerodenitrificans strain BE2.4 into the WBRs located at Willmar, MN, USA. As a biostimulation treatment, acetate was added to the WBRs to promote denitrification. Woodchip samples were collected from multiple locations in each WBR before and after the treatments and used for the microbiome analysis. The 16S rRNA gene amplicon sequencing showed that the microbiomes changed by the treatments and season. The high-throughput quantitative PCR for nitrogen cycle genes revealed a higher abundance of denitrification genes at locations closer to the WBR inlet, suggesting that denitrifiers are unevenly present in WBRs. In addition, a positive relationship was identified between the abundance of M. aerodenitrificans strain BE2.4 and those of norB and nosZ in the WBRs. Based on generalized linear modeling, the abundance of norB and nosZ was shown to be useful in predicting the nitrate removal rate of WBRs. Taken together, these results suggest that the bioaugmentation and biostimulation treatments can influence denitrifier populations, thereby influencing the nitrate removal of WBRs. IMPORTANCE Nitrate pollution is a serious problem in agricultural areas in the U.S. Midwest and other parts of the world. Woodchip bioreactor is a promising technology that uses microbial denitrification to remove nitrate from agricultural subsurface drainage, although the reactor's nitrate removal performance is limited under cold conditions. This study showed that the inoculation of cold-adapted denitrifiers (i.e., bioaugmentation) and the addition of labile carbon (i.e., biostimulation) can influence the microbial populations and enhance the reactor's performance under cold conditions. This finding will help establish a strategy to mitigate nitrate pollution.

4.
J Microbiol ; 61(9): 791-805, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37594681

RESUMEN

Nitrate (NO3-) is highly water-soluble and considered to be the main nitrogen pollutants leached from agricultural soils. Its presence in aquatic ecosystems is reported to cause various environmental and public health problems. Bioreactors containing microbes capable of transforming NO3- have been proposed as a means to remediate contaminated waters. Woodchip bioreactors (WBRs) are continuous flow, reactor systems located below or above ground. Below ground systems are comprised of a trench filled with woodchips, or other support matrices. The nitrate present in agricultural drainage wastewater passing through the bioreactor is converted to harmless dinitrogen gas (N2) via the action of several bacteria species. The WBR has been suggested as one of the most cost-effective NO3--removing strategy among several edge-of-field practices, and has been shown to successfully remove NO3- in several field studies. NO3- removal in the WBR primarily occurs via the activity of denitrifying microorganisms via enzymatic reactions sequentially reducing NO3- to N2. While previous woodchip bioreactor studies have focused extensively on its engineering and hydrological aspects, relatively fewer studies have dealt with the microorganisms playing key roles in the technology. This review discusses NO3- pollution cases originating from intensive farming practices and N-cycling microbial metabolisms which is one biological solution to remove NO3- from agricultural wastewater. Moreover, here we review the current knowledge on the physicochemical and operational factors affecting microbial metabolisms resulting in removal of NO3- in WBR, and perspectives to enhance WBR performance in the future.


Asunto(s)
Nitratos , Aguas Residuales , Ecosistema , Desnitrificación , Agricultura , Reactores Biológicos , Nitrógeno
5.
J Environ Manage ; 345: 118735, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37540981

RESUMEN

Woodchip bioreactor (WBR) is commonly used to remove nitrate from drainage and runoff. However, the efficiency of nitrate removal in WBR is highly variable due to the properties of filling materials. In this study, we investigated the potential of recycling two waste materials, biochar (B) and silage leachate (SL), to enhance nitrate removal by providing a better living habitat and extra available carbon for denitrification. We constructed twelve lab-scale bioreactors with different filling materials (WBR, WBR + B, WBR + SL, WBR + B + SL), hydraulic retention times (HRT: 0.5-24 h), and nitrate concentrations (5.4-33 mg L-1) to test nitrate removal efficiency (NRE) and nitrate removal rate (NRR). Our results showed that the combination of biochar and silage leachate led to the highest NRE and NRR, with improvements of 23% and 48%, respectively, compared to WBR alone. However, the benefits of adding biochar and silage leachate were less apparent at longer HRTs. According to the results of our structural equation modeling (SEM), we have attributed the improved denitrification to several factors. These factors include the decrease in dissolved oxygen, saturated hydraulic conductivity, and pH value, as well as an increase in dissolved organic carbon after the addition of silage leachate. Therefore, our study provides evidence that recycling biochar and silage leachate as an additive to WBR could be a beneficial strategy for enhancing nitrate removal. Overall, this study highlights the potential of a win-win solution to improve the efficiency of nitrate removal in water treatment processes.


Asunto(s)
Desnitrificación , Nitratos , Ensilaje , Reactores Biológicos , Nitrógeno
6.
Bioresour Technol ; 385: 129309, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37311530

RESUMEN

A novel heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium D1-1 was identified as Pseudomonas nicosulfuronedens D1-1. Strain D1-1 removed 97.24%, 97.25%, and 77.12% of 100 mg/L NH4+-N, NO3--N, and NO2--N, with corresponding maximum removal rates of 7.42, 8.69, and 7.15 mg·L-1·h-1, respectively. Strain D1-1 bioaugmentation enhanced woodchip bioreactor performance with an average NO3--N removal efficiency of 93.8%. Bioaugmentation enriched N cyclers along with increased bacterial diversity and predicted genes for denitrification, DNRA (dissimilatory nitrate reduction to ammonium), and ammonium oxidation. It also reduced local selection and network modularity from 4.336 to 0.934, resulting in predicted nitrogen (N) cycling genes shared by more modules. These observations suggested that bioaugmentation could enhance the functional redundancy to stabilize the NO3--N removal performance. This study provides insights into the potential applications of HN-AD bacteria in bioremediation or other environmental engineering fields, relying on their ability to shape bacterial communities.


Asunto(s)
Compuestos de Amonio , Pseudomonas , Desnitrificación , Aerobiosis , Nitrificación , Reactores Biológicos , Nitrógeno , Procesos Heterotróficos , Nitritos
7.
Sci Total Environ ; 877: 162837, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924958

RESUMEN

Denitrification bioreactors are an effective edge-of-field conservation practice for nitrate (NO3) reduction from subsurface drainage. However, these systems may produce other pollutants and greenhouse gases during NO3 removal. Here a dual-chamber woodchip bioreactor system experiencing extreme low-flow conditions was monitored for its spatiotemporal NO3 and total organic carbon dynamics in the drainage water. Near complete removal of NO3 was observed in both bioreactor chambers in the first two years of monitoring (2019-2020) and in the third year of monitoring in chamber A, with significant (p < 0.01) reduction of the NO3-N each year in both chambers with 8.6-11.4 mg NO3-N L-1 removed on average. Based on the NO3 removal observed, spatial monitoring of sulfate (SO4), dissolved methane (CH4), and dissolved nitrous oxide (N2O) gases was added in the third year of monitoring (2021). In 2021, chambers A and B had median hydraulic residence times (HRTs) of 64 h and 39 h, respectively, due to varying elevations of the chambers, with drought conditions making the differences more pronounced. In 2021, significant production of dissolved CH4 was observed at rates of 0.54 g CH4-C m-3 d-1 and 0.07 g CH4-C m-3 d-1 in chambers A and B, respectively. In chamber A, significant removal (p < 0.01) of SO4 (0.23 g SO4 m-3 d-1) and dissolved N2O (0.21 mg N2O-N m-2 d-1) were observed, whereas chamber B produced N2O (0.36 mg N2O-N m-2 d-1). Considering the carbon dioxide equivalents (CO2e) on an annual basis, chamber A had loads (~12,000 kg CO2e ha-1 y-1) greater than comparable poorly drained agricultural soils; however, the landscape-scale impact was small (<1 % change in CO2e) when expressed over the drainage area treated by the bioreactor. Under low-flow conditions, pollution swapping in woodchip bioreactors can be reduced at HRTs <50 h and NO3 concentrations >2 mg N L-1.


Asunto(s)
Desnitrificación , Nitratos , Nitratos/análisis , Reactores Biológicos , Óxido Nitroso , Contaminación Ambiental
8.
Sci Total Environ ; 848: 157739, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926631

RESUMEN

Woodchip bioreactor (WBR) is one of the green infrastructures in the agriculture system to reduce nitrate from agricultural drainage and stormwater. A lot of abiotic factors have been reported that affect nitrate removal lacking a comprehensive understanding. In this study, we studied eight important abiotic factors, including media age, hydraulic retention time (HRT), influent nitrate concentration (Cin), temperature, dissolved organic carbon (DOC), dissolved oxygen (DO), pH, and effective porosity (ρe) of WBR-filling materials. Based on a database that included 10,179 sets of data from 63 peer-reviewed articles, the nitrate removal rate (NRR) and nitrate removal efficiency (NRE) corresponding to the eight abiotic factors by different categories were comprehensively reported. According to this database, this study found the optimal range of abiotic factors for NRR and NRE in WBR were different. Regarding NRR, the optimal range of media age, HRT, Cin, temperature, effluent DOC, DO, pH, and ρe were in the first year, 0-5 h, 10-20 mg L-1, 20-25 °C, 0-5 mg L-1, 0-0.5 mg L-1, 7-8, and 0.6-0.7, respectively. For NRE, the optimal range of media age, HRT, Cin, temperature, effluent DOC, DO, pH, and ρe were in the first year, 500-3000 h, 0-10 mg L-1, 10-15 °C, >50 mg L-1, 0-0.5 mg L-1, 4-5, and 0.4-0.5, respectively. Moreover, the principal component analysis (PCA) indicated the field studies' principal components were different from laboratory studies. Furthermore, the structural equation modeling (SEM) also revealed the causal relationship of the eight abiotic factors on NRR and NRE is totally different. Lessons from this study can be incorporated into DNBR designs, especially improving nitrate removal rates by optimizing different abiotic factors. It also provides insights regarding the contributions of different abiotic factors for NRR and NRE independently and comprehensively.


Asunto(s)
Desnitrificación , Nitratos , Reactores Biológicos , Nitratos/análisis , Óxidos de Nitrógeno , Oxígeno
9.
Front Microbiol ; 12: 678448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421841

RESUMEN

Woodchip bioreactors are increasingly used to remove nitrate (NO3 -) from agricultural drainage water in order to protect aquatic ecosystems from excess nitrogen. Nitrate removal in woodchip bioreactors is based on microbial processes, but the microbiomes and their role in bioreactor efficiency are generally poorly characterized. Using metagenomic analyses, we characterized the microbiomes from 3 full-scale bioreactors in Denmark, which had been operating for 4-7 years. The microbiomes were dominated by Proteobacteria and especially the genus Pseudomonas, which is consistent with heterotrophic denitrification as the main pathway of NO3 - reduction. This was supported by functional gene analyses, showing the presence of the full suite of denitrification genes from NO3 - reductases to nitrous oxide reductases. Genes encoding for dissimilatory NO3 - reduction to ammonium were found only in minor proportions. In addition to NO3 - reducers, the bioreactors harbored distinct functional groups, such as lignocellulose degrading fungi and bacteria, dissimilatory sulfate reducers and methanogens. Further, all bioreactors harbored genera of heterotrophic iron reducers and anaerobic iron oxidizers (Acidovorax) indicating a potential for iron-mediated denitrification. Ecological indices of species diversity showed high similarity between the bioreactors and between the different positions along the flow path, indicating that the woodchip resource niche was important in shaping the microbiome. This trait may be favorable for the development of common microbiological strategies to increase the NO3 - removal from agricultural drainage water.

10.
J Appl Microbiol ; 131(1): 197-207, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33222401

RESUMEN

AIMS: The aim of this study was to obtain cold-adapted denitrifying fungi that could be used for bioaugmentation in woodchip bioreactors to remove nitrate from agricultural subsurface drainage water. METHODS AND RESULTS: We isolated a total of 91 nitrate-reducing fungal strains belonging to Ascomycota and Mucoromycota from agricultural soil and a woodchip bioreactor under relatively cold conditions (5 and 15°C). When these strains were incubated with 15 N-labelled nitrate, 29 N2 was frequently produced, suggesting the occurrence of co-denitrification (microbially mediated nitrosation). Two strains also produced 30 N2 , indicating their ability to reduce N2 O. Of the 91 nitrate-reducing fungal strains, fungal nitrite reductase gene (nirK) and cytochrome P450 nitric oxide reductase gene (p450nor) were detected by PCR in 34 (37%) and 11 (12%) strains, respectively. Eight strains possessed both nirK and p450nor, further verifying their denitrification capability. In addition, most strains degraded cellulose under denitrification condition. CONCLUSIONS: Diverse nitrate-reducing fungi were isolated from soil and a woodchip bioreactor. These fungi reduced nitrate to gaseous N forms at relatively low temperatures. These cold-adapted, cellulose-degrading and nitrate-reducing fungi could support themselves and other denitrifiers in woodchip bioreactors. SIGNIFICANCE AND IMPACT OF THE STUDY: The cold-adapted, cellulose-degrading and nitrate-reducing fungi isolated in this study could be useful to enhance nitrate removal in woodchip bioreactors under low-temperature conditions.


Asunto(s)
Celulosa/metabolismo , Desnitrificación , Hongos/enzimología , Hongos/genética , Nitratos/metabolismo , Óxidos de Nitrógeno/metabolismo , Nitrógeno/metabolismo , Agricultura , Biodegradación Ambiental , Reactores Biológicos/microbiología , Frío , ADN de Hongos/genética , Hongos/clasificación , Óxido Nítrico/metabolismo , Filogenia , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Microbiología del Suelo , Agua/química
11.
J Environ Manage ; 272: 110996, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32854899

RESUMEN

Woodchip bioreactors are a practical, low-cost technology for reducing nitrate (NO3) loads discharged from agriculture. Traditional methods of quantifying their performance in the field mostly rely on low-frequency, time-based (weekly to monthly sampling interval) or flow-weighted sample collection at the inlet and outlet, creating uncertainty in their performance and design by providing incomplete information on flow and water chemistry. To address this uncertainty, two field bioreactors were monitored in the US and New Zealand using high-frequency, multipoint sampling for in situ monitoring of NO3-N concentrations. High-frequency monitoring (sub hourly interval) at the inlet and outlet of both bioreactors revealed significant variability in volumetric removal rates and percent reduction, with percent reduction varying by up to 25 percentage points within a single flow event. Time series of inlet and outlet NO3 showed significant lag in peak concentrations of 1-3 days due to high hydraulic residence time, where calculations from instantaneous measurements produced erroneous estimates of performance and misleading relationships between residence time and removal. Internal porewater sampling wells showed differences in NO3 concentration between shallow and deep zones, and "hot spot" zones where peak NO3 removal co-occurred with dissolved oxygen depletion and dissolved organic carbon production. Tracking NO3 movement through the profile showed preferential flow occurring with slower flow in deeper woodchips, and slower flow further from the most direct flowpath from inlet to outlet. High-frequency, in situ data on inlet and outlet time series and internal porewater solute profiles of this initial work highlight several key areas for future research.


Asunto(s)
Reactores Biológicos , Desnitrificación , Nueva Zelanda , Nitratos/análisis , Sesgo de Selección
12.
J Appl Microbiol ; 129(3): 590-600, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32259336

RESUMEN

AIMS: This study was done to obtain denitrifiers that could be used for bioaugmentation in woodchip bioreactors to remove nitrate from agricultural subsurface drainage water. METHODS AND RESULTS: We isolated denitrifiers from four different bioreactors in Minnesota, and characterized the strains by measuring their denitrification rates and analysing their whole genomes. A total of 206 bacteria were isolated from woodchips and thick biofilms (bioslimes) that formed in the bioreactors, 76 of which were able to reduce nitrate at 15°C. Among those, nine potential denitrifying strains were identified, all of which were isolated from the woodchip samples. Although many nitrate-reducing strains were isolated from the bioslime samples, none were categorized as denitrifiers but instead as carrying out dissimilatory nitrate reduction to ammonium. CONCLUSIONS: Among the denitrifiers confirmed by 15 N stable isotope analysis and genome analysis, Cellulomonas cellasea strain WB94 and Microvirgula aerodenitrificans strain BE2.4 appear to be promising for bioreactor bioaugmentation due to their potential for both aerobic and anaerobic denitrification, and the ability of strain WB94 to degrade cellulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Denitrifiers isolated in this study could be useful for bioaugmentation application to enhance nitrate removal in woodchip bioreactors.


Asunto(s)
Agricultura/métodos , Reactores Biológicos/microbiología , Desnitrificación , Purificación del Agua/métodos , Madera/microbiología , Betaproteobacteria/aislamiento & purificación , Betaproteobacteria/metabolismo , Biodegradación Ambiental , Cellulomonas/aislamiento & purificación , Cellulomonas/metabolismo , Minnesota , Nitratos/aislamiento & purificación , Nitratos/metabolismo , Madera/metabolismo
13.
Bioresour Technol ; 303: 122948, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32058906

RESUMEN

A heterotrophic nitrifying and aerobic denitrifying fungus was isolated from lake water and identified as Penicillium tropicum strain IS0293. The strain exhibited efficient heterotrophic nitrification-aerobic denitrification ability and could utilize ammonium, nitrite and nitrate as a sole nitrogen source. Batch tests demonstrated that strain IS0293 can remove nitrate using variety of organic carbon compounds as carbon sources. The effect of woodchip leachate collected at different degradation times on denitrification performance of the strain was also investigated. Furthermore, two denitrifying woodchip bioreactors were constructed to assess the bioaugmention of strain IS0293 for nitrate removal from surface water. Results demonstrated that the incubation of strain IS0293 enhanced the nitrate removal efficiency of the bioreactor. In addition, the average effluent TOC content of the bioaugmention bioreactor was 38.22% lower than the control bioreactor. This study would be valuable to develop an effective technology for nitrate-laden surface water under aerobic conditions.


Asunto(s)
Procesos Heterotróficos , Agua , Aerobiosis , Reactores Biológicos , Desnitrificación , Hongos , Nitratos , Nitrificación , Nitritos , Nitrógeno
14.
Water Res ; 170: 115311, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783190

RESUMEN

Nutrients and pesticides in agricultural runoff contribute to the degradation of water resources. Nitrates and phosphates can be remediated through the use of treatment systems such as woodchip bioreactors and adsorbent aggregate filters; however, concerns remain over potential effects of pesticides on nutrient removal efficiency in these systems. To test this, we designed laboratory-scale woodchip bioreactors equipped with secondary adsorbent aggregate filters and investigated the capacity of these systems to remediate nutrients when operated under two hydraulic retention times (HRT) and in the presence of commonly used pesticides. The woodchip bioreactors effectively removed over 99% of nitrate per day when operated under a 72 h hydraulic retention time, with the secondary expanded shale aggregate filters consistently reducing phosphate concentrations by 80-87%. Treatment efficacy of both systems was maintained in the presence of the insecticide chlorpyrifos. Reducing HRT in the bioreactors to 21 min decreased nitrate removal efficiency; however, the insecticides bifenthrin, chlorpyrifos, and the herbicide oxyfluorfen were reduced by 76%, 63%, and 31%, respectively. Cultivation approaches led to the isolation of 45 different species from the woodchip bioreactors operated under a 21 min HRT, with Bacillus species being the most prevalent throughout the treatment. By contrast, pesticide application decreased the number and diversity of Bacillus isolates and enriched for Pseudomonas and Exiguobacterium species. Woodchip bioreactors and adsorbent aggregate filters provide effective treatment platforms to remediate agrochemicals, where they maintain treatment efficacy in the presence of pesticides and can be modulated through HRT management to achieve environmental and operational water quality goals.


Asunto(s)
Desnitrificación , Plaguicidas , Reactores Biológicos , Nitratos , Nutrientes
15.
Data Brief ; 24: 103914, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31080851

RESUMEN

Three different woodchip forms were tested for bromide sorption including ground woodchip, unwashed woodchips, and washed woodchips. We used six varying initial bromide concentrations to conduct the bromide sorption experiments with each woodchip form. Data on the initial and equilibrium bromide concentrations, wood mass, and initial and equilibrium solution pH from each of the six experiments are presented. Seven bromide tracer tests were conducted on field-scale denitrification beds. In this paper, data from each of the tracer tests including variation of bromide concentration over time and hydraulic indices of the tracer tests are presented. Interpretation of the data can be found in the research article entitled "Efficacy of bromide tracers for evaluating the hydraulic performance of denitrification beds treating agricultural drainage water" [1].

16.
J Environ Manage ; 242: 290-297, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31054393

RESUMEN

Denitrifying bioreactors remove nitrate (NO3-) from agricultural drainage and are slated to be an integral part of nitrogen reduction strategies in the Mississippi River Basin. However, incomplete denitrification can result in nitrous oxide (N2O) production and anaerobic conditions within bioreactors may be conducive to methane (CH4) production via methanogenesis. Greenhouse gas production has the potential to trade excess NO3- in surface water with excess greenhouses gases in the atmosphere. Our study examined N2O and CH4 production from pilot scale (6.38 m3) bioreactors across three hydraulic residence times (HRTs), 2, 8, and 16 h. Production was measured from both the surface of the bioreactors and dissolved in the bioreactor effluent. Nitrous oxide and CH4 was produced across all HRTs, with the majority dissolved in the effluent. Nitrous oxide production was significantly greater (P < 0.05) from 2 h HRTs (478.43 mg N2O m-3 day-1) than from 8 (29.95 mg N2O m-3 day-1) and 16 (36.61 mg N2O m-3 day-1) hour HRTs. Methane production was significantly less (P < 0.05) from 2 h HRTs (0.51 g C m3 day-1) compared to 8 (1.50 g C m3 day-1) and 16 (1.69 g C m3 day-1) hour HRTs. The 2 h HRTs had significantly greater (P = 0.05) impacts to climate change compared to 8 and 16 h HRTs. Results from this study suggest managing HRTs between 6 and 8 h in field bioreactors could minimize total greenhouse gas production and maximize NO3- removal.


Asunto(s)
Reactores Biológicos , Óxido Nitroso , Desnitrificación , Metano , Mississippi
17.
Front Microbiol ; 10: 635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001220

RESUMEN

Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions.

18.
Water Res ; 154: 1-11, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763870

RESUMEN

Stormwater is increasingly being valued as a freshwater resource in arid regions and can provide opportunities for beneficial reuse via aquifer recharge if adequate pollutant removal can be achieved. We envision a multi-unit operation approach to capture, treat, and recharge (CTR) stormwater using low energy, cost-effective technologies appropriate for larger magnitude, less frequent events. Herein, we tested nutrient, metal, and trace organic contaminant removal of a pilot-scale CTR system in the laboratory using biochar-amended woodchip bioreactors following eight months of aging under field conditions with exposure to real stormwater. Replicate columns with woodchips and biochar (33% by weight), woodchips and straw, or woodchips only were operated with continuous, saturated flow for eight months using water from a watershed that drained an urban area consisting of residential housing and parks in Sonoma, California. After aging, columns were challenged for five months by continuous exposure to synthetic stormwater amended with 50 µg L-1 of six trace organic contaminants (i.e., fipronil, diuron, 1H-benzotriazole, atrazine, 2,4-D, and TCEP) and five metals (Cd, Cu, Ni, Pb, Zn) frequently detected in stormwater in order to replicate the treatment unit operation of a CTR system. Throughout the eight-month aging and five-month challenge experiment, nitrate concentrations were below the detection limit after treatment (i.e., <0.05 mg N L-1). The removal efficiencies for metals in all treatments were >80% for Ni, Cu, Cd, and Pb. For Zn, about 50% removal occurred in the woodchip-biochar systems while the other systems achieved about 20% removal. No breakthrough of the trace organic compounds was observed in any biochar-containing columns. Woodchip columns without biochar removed approximately 99% of influent atrazine and 90% of influent fipronil, but exhibited relatively rapid breakthrough of TCEP, 2,4-D, 1H-benzotriazole, and diuron. The addition of straw to the woodchip columns provided no significant benefit compared to woodchips alone. Due to the lack of breakthrough of trace organics in the biochar-woodchip columns, we estimated column breakthrough with a diffusion-limited sorption model. Results of the model indicate breakthrough for the trace organics would occur between 10,000 and 32,000 pore volumes. Under ideal conditions this could be equivalent to decades of service, assuming failure by other processes (e.g., clogging, biofouling) does not occur. These results indicate that multiple contaminants can be removed in woodchip-biochar reactors employed in stormwater treatment systems with suitable flow control and that the removal of trace organic contaminants is enhanced significantly by addition of biochar.


Asunto(s)
Reactores Biológicos , Desnitrificación , California , Carbón Orgánico , Metales
19.
Environ Technol ; 38(11): 1362-1375, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27603564

RESUMEN

Nitrate removal rates in a mixture of pine woodchips and sewage sludge were determined in laboratory column studies at 5°C, 12°C, and 22°C, and at two different hydraulic residence times (HRTs; 58.2-64.0 hours and 18.7-20.6 hours). Baffles installed in the flow path were tested as a measure to reduce preferential flow behavior, and to increase the nitrate removal in the columns. The nitrate removal in the columns was simulated at 5°C and 12°C using a combined Arrhenius-Monod equation controlling the removal rate, and a first-order exchange model for incorporation of stagnant zones. Denitrification in the mixture of pine woodchips and sewage sludge reduced nitrate concentrations of 30 mg N L-1 at 5°C to below detection limits at a HRT of 58.2-64.0 hours. At a HRT of 18.7-20.6 hours, nitrate removal was incomplete. The Arrhenius frequency factor and activation energy retrieved from the low HRT data supported a biochemically controlled reaction rate; the same parameters, however, could not be used to simulate the nitrate removal at high HRT. The results show an inversely proportional relationship between the advection velocity and the nitrate removal rate, suggesting that bioreactor performance could be enhanced by promoting low advection velocities.


Asunto(s)
Reactores Biológicos , Desnitrificación , Nitratos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Compuestos de Amonio/análisis , Compuestos de Amonio/metabolismo , Nitratos/análisis , Nitritos/análisis , Nitritos/metabolismo , Pinus , Aguas del Alcantarillado , Temperatura , Contaminantes Químicos del Agua/análisis , Madera
20.
Water Res ; 71: 294-305, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25638338

RESUMEN

Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 µg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.


Asunto(s)
Contaminación del Aire/prevención & control , Desnitrificación , Nitratos/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Cinética , Modelos Teóricos , Nitratos/química , Óxido Nitroso/análisis , Movimientos del Agua , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA