Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 798
Filtrar
1.
Macromol Biosci ; : e2400205, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140453

RESUMEN

A new dual-functional implant based on gellan-xanthan hydrogel with calcium-magnesium silicate ceramic diopside and recombinant lysostaphin and bone morphogenetic protein 2 (BMP-2)-ray is developed. In this composite, BMP-2 is immobilized on microparticles of diopside while lysostaphin is mixed directly into the hydrogel, providing sustained release of BMP-2 to allow gradual bone formation and rapid release of lysostaphin to eliminate infection immediately after implantation. Introduction of diopside of up to 3% (w/v) has a negligible effect on the mechanical properties of the hydrogel but provides a high sorption capacity for BMP-2. The hydrogels show good biocompatibility and antibacterial activity. Lysostaphin released from the implants over a 3 h period efficiently kills planktonic cells and completely destroys 24 h pre-formed biofilms of Staphylococcus aureus. Furthermore, in vivo experiments in a mouse model of critically-sized cranial defects infected with S. aureus show a complete lack of osteogenesis when implants contain only BMP-2, whereas, in the presence of lysostaphin, complete closure of the defect with newly formed mineralized bone tissue is observed. Thus, the new implantable gellan-xanthan hydrogel with diopside and recombinant lysostaphin and BMP-2 shows both osteogenic and antibacterial properties and represents a promising material for the treatment and/or prevention of osteomyelitis after bone trauma.

2.
Food Chem ; 461: 140794, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39146680

RESUMEN

This study aimed to prepare soy protein isolate-xanthan gum complexes (SPI-XG) at pH 7.0 and as emulsifiers to prepare Pickering emulsions for delivering quercetin (Que). The results showed that SPI-XG exhibited a gel network structure in which protein particles were embedded. Fourier transform infrared spectroscopy (FTIR) and molecular docking elucidated that SPI-XG formed through hydrogen bonding, hydrophobic, and electrostatic interactions. Three-phase contact angle (θo/w) of SPI-XG approached 90° with biphasic wettability. SPI-XG adsorbed at the oil-water interface to form an interfacial layer with a gel network structure, which prevented droplet aggregation. Following in vitro simulated digestion, Que displayed higher bioaccessibility in SPI-XG stabilized Pickering emulsions (SPI-XG PEs) than SPI stabilized Pickering emulsions. In conclusion, SPI-XG PEs were a promising system for Que delivery.

3.
Lett Appl Microbiol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147561

RESUMEN

Xanthan gum is a microbial polysaccharide produced by Xanthomonas and widely used in various industries. To produce xanthan gum, the native Xanthomonas citri-386 was used in a cheese-whey-based culture medium. The culture conditions were investigated in batch experiments based on the response surface methodology to increase xanthan production and viscosity. Three independent variables in this study included feeding times of acetate, pyruvate, and citrate. The maximum xanthan gum production and viscosity within 120 hours by Xanthomonas citri-386 using Box Behnken Design were 25.7 g/L and 65 500 cP, respectively, with a 151% and 394% increase as compared to the control sample. Overall, the findings of this study recommend the use of X. citri-386 in the cheese whey base medium as an economical medium with optimal amounts of acetate, pyruvate, and citrate for commercial production of xanthan gum on an industrial scale. The adjustment of the pyruvate and acetate concentrations optimized xanthan gum production in the environment.

4.
J Texture Stud ; 55(4): e12853, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39148333

RESUMEN

The incidence and prevalence of dysphagia worldwide are increasing yearly requiring a change in food texture to avoid malnutrition, dehydration, or sever complications. Riceberry porridges fortified with protein hydrolysate (1.5%), bio-calcium (589 mg), and thickened with xanthan gum (XG) of varying concentrations (0%, 0.255, 0.50%, 0.75%, 1.0%, and 2.0%) showed suitability for use in enriching diets of these patients. Porridges were examined using specified tests from the International Dysphagia Diet Standardization Initiative (IDDSI) and National Dysphagia Diet (NDD), and coupled with rheological, textural analyses, in vitro swallowing simulator and sensory analysis performed by a trained panel. Porridges with 0%-0.25% and 0.50%-2.0% XG were classified as IDDSI level 3 and 4, respectively, and apparent viscosities of porridges showed samples with XG displayed shear thinning behavior beneficial for patients with dysphagia. Increasing XG concentrations increased the consistency coefficient and decreased the flow behavior index (p < .05) with positive correlation of XG concentration with textural properties including firmness, consistency, cohesiveness, adhesiveness, and stickiness values. The relationship between instrumental measurements, in vitro and in vivo swallowing behavior showed high correlations with regards to XG concentration (r = .995). The findings indicate Riceberry porridges containing XG have significantly improved textural properties over those without XG for patients with dysphagia.


Asunto(s)
Trastornos de Deglución , Deglución , Polisacáridos Bacterianos , Reología , Humanos , Deglución/fisiología , Masculino , Femenino , Viscosidad , Adulto , Persona de Mediana Edad , Oryza/química , Anciano
5.
Food Chem X ; 23: 101632, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100252

RESUMEN

Herein, three types of ovalbumin (OA)-polysaccharide conjugates were prepared with three polysaccharides (XG: xanthan gum; GG: guar gum; KGM: konjac glucomannan) for the fish oil emulsion stabilization. The glycation did not change the spectra bands and secondary structure percentages of OA, whereas it decreased the molecular surface hydrophobicity of OA. The initial emulsion droplet sizes were dependent on the polysaccharide types, OA preparation concentrations, polysaccharide: OA mass ratios, and glycation pH. The emulsion stability was mainly dependent on the polysaccharide types, polysaccharide: OA mass ratios, and glycation pH. However, it was minorly dependent on the OA preparation concentrations. The emulsions stabilized by conjugates with high polysaccharide: OA mass ratios (e.g., ≥3:5 for OA-GG) or appropriate glycation pH (e.g., 5.0-6.1 for OA-XG) showed no obvious creaming during the room temperature storage. This work provided basic knowledge on the structural modification and functional application of a protein.

6.
Heliyon ; 10(14): e34550, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104507

RESUMEN

The effect of plasticizers, namely glycerol, sorbitol, and citric acid, on the structural and mechanical properties of biodegradable films obtained from xanthan gum (XG) and starch was studied. The plasticizing effect of glycerol, sorbitol, and citric acid on XG-starch films is justified by the destruction of intermolecular contacts between starch and XG macromolecules and the redistribution of hydrogen bonds in the system as a result of the hydrotropic action of plasticizer molecules. The use of glycerol proved to be the most effective for regulating the deformation of films, while the use of sorbitol to preserve strength. The dependence of the film roughness on the type and concentration of plasticizers was characterized. The smallest values of protrusions on the surface of XG-starch films were found in the presence of sorbitol. Considering the effect of the concentration of plasticizers on the stickiness of the surface of XG-starch films and their structural and mechanical properties, 1.5 % concentration of glycerol, sorbitol and citric acid was determined as optimal.

7.
J Clin Med ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124837

RESUMEN

Background/Objectives: The use of food thickeners with ciprofloxacin tablets may result in a gelatinous appearance and experience delayed dissolution, which presents a challenge for the drug's efficacy, creating a healthcare economic issue. However, the pharmacokinetic impact of this compound in humans remains uncertain. Therefore, a comparative pharmacokinetic study of ciprofloxacin was conducted on healthy adult Japanese males. Methods: We compared the effects of administering tablets with water or thickened water and crushed tablets mixed with thickened water. The maximum blood concentration (Cmax) of ciprofloxacin determines the drug's efficacy. Results: There were variations in drug absorption across different administration methods. The group who took the tablets immersed in thickened water exhibited different results in the area under the blood drug concentration-time curve (AUC) and Cmax compared to the group who took the tablets in regular water. Notably, the group that consumed the crushed tablets mixed with thickened water demonstrated equivalent results for both AUC and Cmax. Conclusions: Administering crushed tablets in thickened water may yield pharmacokinetics comparable to those of tablets taken with water. However, the process of crushing tablets may result in the loss of active ingredients and compromise the formulation, necessitating a comprehensive assessment before administration.

8.
Food Chem ; 460(Pt 3): 140787, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39128371

RESUMEN

This study aimed to optimize an alternative frozen dessert formulation using the response surface method (RSM). The formulation utilized oat-based milk substitute (OBMS) due to its desirable texture, sensory appeal, and nutritional benefits for vegans and lactose intolerant individuals. Xanthan gum (XG) was also incorporated to enhance the rheological properties of the dessert. With a coefficient of consistency of 192.58 Pa.s and a hysteresis field of 10,999 Pa/s, the ice cream formulation with the greatest rheological structure was discovered to be the combination of 20% oats, 0.5% xanthan gum (XG), and pasteurized at 65 °C. It also showed <10% melting in the first 10 min, confirming that it has a very stable structure. At the same pasteurization conditions and XG ratios, it was observed that rheological stability decreased with increasing oat milk addition. However, the shear thinning behavior of frozen dessert was improved by creating a more complex network structure with increasing XG concentration. The overrun values of the frozen desserts ranged from 21.55% to 34.63%, with the majority being statistically similar. The vegan frozen dessert formulation obtained with 40% oats, 0.37% XG and pasteurization at 60 °C showed a high level of sensory acceptance. This research contributes to the field of vegan food product development by providing innovative rheological and sensory alternatives to traditional frozen desserts using oats and XG.

9.
Int J Biol Macromol ; : 134626, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128759

RESUMEN

Hydrogel dressings with multiple functions are ideal options for wound repair. This study developed hydrogel dressings by interpenetrating the physically crosslinked xanthan gum (XG)/carboxylated chitosan (CCS) network and the chemically crosslinked polyacrylamide (PAAm) network via a one-pot method. The XG-CCS/PAAm hydrogels were found to display tunable mechanical properties, due to the formation of strong network structure. The hydrogels exhibited the strongest tensile strength of 0.6 MPa at an XG/CCS ratio of 40/60, while the largest compressive strength of 4.5 MPa is achieved at an XG/CCS ratio of 60/40. Moreover, the hydrogel with an XG/CCS ratio of 60/40 exhibited desirable adhesion strength on porcine skin, which was 3.7 kPa. It also had a swelling ratio, as high as 1200 %. After loading with cephalexin, the XG-CCS/PAAm hydrogels can deliver the antibacterial drugs following a first-order kinetic. As a result, both E. coli and S. aureus can be completely inactivated by the cefalexin-loaded hydrogels after 12 h. Furthermore, the XG-CCS/PAAm hydrogels were found to exhibit excellent biocompatibility as well as effective wound healing ability, as proven by the in vitro and in vivo tests. In this regard, XG-CCS/PAAm hydrogels can act as promising multifunctional wound dressings.

10.
Gels ; 10(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39195013

RESUMEN

Cleansing products, particularly innovative cosmetic foams, must efficiently remove impurities with minimal impact on the skin barrier and have a favorable sensory profile. The choice of product ingredients is crucial to ensure the optimal characteristics. The current study aims to provide a comprehensive framework for understanding the variability in the characteristics of a cleansing foam to achieve desired properties. The novelty of this study lies in the combination of ingredients for their potential synergistic and complementary effects in cleansing dry skin, as well as the application of Quality by Design (QbD) elements to develop and optimize the formulation of cleansing foam. The effects of varying the concentration of mild surfactants, polyols, and gel-forming agents on the properties of the gels and of the generated foams were studied. Significant influences of the formulation factors were observed: an increased ratio of xanthan gum positively impacted the texture properties of the gel, whereas higher concentrations of surfactants had a negative impact on these parameters. Additionally, increasing the polyols ratio was found to negatively influence the foaming property and stability of the foam. The study established an optimal formulation of a cleansing foam with a ratio of 0.45% xanthan gum, 26.19% surfactants and 2.16% polyols to be used for dry skin hygiene.

11.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000661

RESUMEN

The escalating environmental concerns associated with petroleum-based adhesives have spurred an urgent need for sustainable alternatives. Chitosan, a natural polysaccharide, is a promising candidate; however, its limited water resistance hinders broader application. The aim of this study is to develop a new chitosan-based adhesive with improved properties. The polydopamine association with chitosan presents a significant increase in adhesiveness compared to pure chitosan. Polydopamine is synthesized by the enzymatic action of laccase from Trametes versicolor at pH = 4.5, in the absence or presence of chitosan. This pH facilitates chitosan's solubility and the occurrence of catechol in its reduced form (pH < 5.5), thereby increasing the final adhesive properties. To further enhance the adhesive properties, various crosslinking agents were tested. A multi-technique approach was used for the characterization of formulations. The formulation based on 3% chitosan, 50% polydopamine, and 3% xanthan gum showed a spectacular increase in adhesive properties when tested on glass, cardboard and textile. This formulation increased water resistance, maintaining the adhesion of a sample soaked in water for up to 10 h. For cardboard and textile, material rapture occurred, in mechanical tests, prior to adhesive bond failure. Furthermore, all the samples showed antiflame properties, expanding the benefits of their use. Comparison with commercial glues confirms the remarkable adhesive properties of the new formulation.

12.
Ophthalmol Ther ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060700

RESUMEN

INTRODUCTION: Patients with dry eye disease (DED) complain of a multitude of symptoms that affect their visual function and quality of life (QoL). This clinical investigation assessed the performance, tolerance, and safety of a novel preservative-free ophthalmic solution containing xanthan gum 0.2% and desonide sodium phosphate 0.025%. METHODS: This was an observational, prospective, multicentric, and post-market clinical investigation to assess the effect of three times a day instillation of the study formulation in patients suffering from DED. The primary objective was to achieve a 50% reduction in conjunctival hyperemia index as assessed with the OCULUS Keratograph after 1 month of treatment compared to baseline values. The secondary objectives included patient-reported outcomes, clinical performance, and safety. RESULTS: Thirty patients were enrolled (21 women, 9 men) with a mean age of 61.10 ± 14.53 years. The instillation of the study formulation was associated with a significant reduction in redness scores after 1 month of treatment compared to baseline (mean - 0.51 ± 0.51; p ≤ 0.0001). Although the primary endpoint was not completely met, a 50% reduction in the conjunctival hyperemia index was achieved in 23% of the participants, and 77% showed a reduction of 26% of the same index. In addition, the ophthalmic solution significantly increased tear film break-up time, and a significant reduction of corneal and conjunctival staining with fluorescein was achieved. It also reduced DED symptoms and had a very good safety profile. CONCLUSIONS: the study formulation produced a significant improvement in the signs, symptoms, and QoL of patients with mild to moderate DED with a good safety profile after 1 month of treatment.

13.
Int J Biol Macromol ; 276(Pt 2): 133788, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992540

RESUMEN

The continuous development of intelligent food packaging has led to an increased focus on using freshness-indicating inks, which could provide a high level of quality control and consumer experience. This study aimed to further promote the application of xanthan gum ink in food freshness indication by optimizing its performance in screen printing. A novel freshness-indicating ink was prepared using Lycium ruthenicum anthocyanin (LRA) as the core indicator, glucose as the pigment carrier, soybean oil as the linker, and xanthan gum (XG) as the thickener. Scanning electron microscopy (SEM) demonstrated that the ink was uniformly distributed on paper using screen printing. Rheological and particle size analyses revealed that the incorporation of XG significantly enhanced the interaction force between droplets in the ink system. Further tests on viscosity, fineness, and initial dryness indicated that XG, a natural microbial polysaccharide with excellent stability, could effectively improve the flowability of the ink. Specifically, at a 0.3 % XG content, the ink exhibited a unimodal particle size distribution with an average particle size of 851.02 nm and a zeta potential of -27 mV. This indicated the ink system was stable and uniform, with optimal rheological properties and printing suitability. Furthermore, the printed freshness indication labels exhibited a significant change in color as the freshness of the refrigerated meat changed. This study develops a natural and safe method for monitoring the freshness of refrigerated meat and provides an optimized idea for applying indicator inks.


Asunto(s)
Antocianinas , Tinta , Lycium , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Antocianinas/química , Antocianinas/análisis , Lycium/química , Color , Reología , Carne/análisis , Tamaño de la Partícula , Viscosidad
14.
Int J Biol Macromol ; 276(Pt 2): 133931, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032896

RESUMEN

Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.


Asunto(s)
Criogeles , Textiles , Aguas Residuales , Contaminantes Químicos del Agua , Purificación del Agua , Criogeles/química , Aguas Residuales/química , Biopolímeros/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Liofilización , Biodegradación Ambiental
15.
Food Chem ; 460(Pt 2): 140619, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39067426

RESUMEN

In this study, the interactions between wheat gliadin (GL) and xanthan gum (XG) were investigated to design new systems with potential applications as a gluten-free substitute product. Combining spectral with morphological and molecular docking methods allowed the establishment of the complexation mechanism between globular hydrophobic GL and the hydrophilic XG with an extended and partially disordered backbone. GL maintains intact its hydrophobic core even at high GL/XG ratios and organizes into small aggregate-type assemblies. The stable and uniform complexes have a low GL content, based on intermolecular hydrogen bonds and hydrophobic interactions. The GL/XG combining ratio influences the size, structure and interaction mechanism of the microparticles. The preferred sites of interaction and the binding affinities were determined by molecular docking on GL libraries and XG models. This research may provide significant knowledge for the development of low-GL wheat food products using a dietary fiber polysaccharide as a functional compound.

16.
Int J Biol Macromol ; 274(Pt 1): 133409, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925200

RESUMEN

This study presents the rheological properties of quince seed gum (Q) solution in comparison with xanthan gum (X) and locust bean gums (L) and the polymeric interactions of different ratios of Q:X and Q:L blends (1:1, 1:3 and 3:1). Q exhibits greater and stronger elastic properties than X and L. The frequency and temperature stability of Q and X are both higher than that of L. The viscoelastic properties of Q:X and Q:L solutions were found to be higher than those of the individual solutions. The higher polymer entanglements observed in Q:L blends resulted in enhanced synergistic interactions and thixotropy compared to Q:X. 3QX exhibited an enhanced elastic structure, but the best synergism was observed for 3QL due to the establishment of a stronger intermolecular bond for gelling. The lower tan δ observed with increasing Q indicate a Q-induced synergistic interaction with L. At all temperatures, 3QL showed the highest thixotropy. The combination of Q and L resulted in the formation of a true gel, with the higher gel strength being observed for QL and 3QL. This study shows that Q:L and Q:X combinations can yield desired flow properties. In particular, L provides a firmer gel network with Q.


Asunto(s)
Galactanos , Mananos , Gomas de Plantas , Polisacáridos Bacterianos , Reología , Semillas , Soluciones , Polisacáridos Bacterianos/química , Gomas de Plantas/química , Mananos/química , Galactanos/química , Semillas/química , Rosaceae/química , Viscosidad , Agua/química , Temperatura
17.
Int J Biol Macromol ; 274(Pt 2): 133239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897516

RESUMEN

The research focused on the fabrication of composite coatings using buckwheat starch (BS) and xanthan gum (XG) with incorporation of lemongrass (Cymbopogon citratus) essential oil (LEO) with varying concentration (0.75 %, 1.0 % and 1.25 % (w/v). BS was extracted from buckwheat groats (Fagopyrum esculentum) and its physico-chemical characteristics were determined. BS showed spherical and polygonal morphology and its XRD pattern was similar to starch extracted from other cereal sources. The amount of reducing sugar, starch and amylose content in extracted BS were 0.99 ± 0.33 %, 86.32 ± 0.22 % and 21.02 ± 1.89 % respectively, which indicates that BS is a suitable base material for the formation of edible coatings. XG was mixed with BS in different ratios (1:1, 2:1, 3:1 and 4:1) to optimize the best ratio of combination for composite coatings. The coating with a ratio of 2:1 was very smooth and was chosen for incorporation of LEO and the coatings physical, functional, mechanical, thermal and micro-structural characteristics were examined. The coating S5 with 1.25 % (w/v) concentration of LEO showed the best results with least moisture content (MC), minimum water vapor permeability (WVP) and maximum contact angle value. Moreover, the S5 formulation had the highest antioxidant (73.3 %) ability and maximum antimicrobial efficiency with inhibition zones of 22.09 ± 0.06 mm and 28.65 ± 0.14 mm against S. aureus and E. coli respectively. The coatings were then coated on plum fruit, and various parameters like weight loss, pH, shrinkage and TSS were calculated every 4th day during the 20 days of refrigeration period. The coated plums' ripening pace was delayed by the S5 formulation which improved moisture retention, maintained the plums' TSS value and overall pH. Therefore, composite coatings made up of BS, XG and 1.25 % (w/v) can be used as a cost-effective bio-active coating material for plum preservation under refrigeration conditions.


Asunto(s)
Fagopyrum , Aceites Volátiles , Polisacáridos Bacterianos , Almidón , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Fagopyrum/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Almidón/química , Cymbopogon/química , Películas Comestibles , Antibacterianos/química , Antibacterianos/farmacología
18.
Polymers (Basel) ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38932084

RESUMEN

The antifungal agent, ketoconazole, and the anti-inflammatory drug, piroxicam, were incorporated into matrices of xanthan or oleic acid-esterified xanthan (Xn) and polyurethane (PU), to develop topical drug delivery systems. Compared to matrices without bioactive compounds, which only showed a nominal compressive stress of 32.18 kPa (sample xanthan-polyurethane) at a strain of 71.26%, the compressive resilience of the biomaterials increased to nearly 50.04 kPa (sample xanthan-polyurethane-ketoconazole) at a strain of 71.34%. The compressive strength decreased to around 30.67 kPa upon encapsulating a second drug within the xanthan-polyurethane framework (sample xanthan-polyurethane-piroxicam/ketoconazole), while the peak sustainable strain increased to 87.21%. The Weibull model provided the most suitable fit for the drug release kinetics. Unlike the materials based on xanthan-polyurethane, those made with oleic acid-esterified xanthan-polyurethane released the active ingredients more slowly (the release rate constant showed lower values). All the materials demonstrated antimicrobial effectiveness. Furthermore, a higher volume of piroxicam was released from oleic acid-esterified xanthan-polyurethane-piroxicam (64%) as compared to xanthan-polyurethane-piroxicam (44%). Considering these results, materials that include polyurethane and either modified or unmodified xanthan showed promise as topical drug delivery systems for releasing piroxicam and ketoconazole.

19.
Int J Biol Macromol ; 272(Pt 1): 132739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825290

RESUMEN

A stable Madhuca indica oil-in-water nanoemulsion (99-210 nm, zeta potential: > - 30 mV) was produced employing Tween 20 (surfactant) and Transcutol P (co-surfactant) (3:1). The nanoemulsion (oil: Smix = 3:7, 5:5, and 7:3) were subsequently incorporated into oxcarbazepine-loaded carboxymethylxanthan gum (DS = 1.23) dispersion. The hydrogel microspheres were formed using the ionic gelation process. Higher oil concentration had a considerable impact on particle size, drug entrapment efficiency, and buoyancy. The maximum 92 % drug entrapment efficiency was achieved with the microspheres having oil: Smix ratio 5:5. FESEM study revealed that the microspheres were spherical in shape and had an orange peel-like surface roughness. FTIR analysis revealed a hydrogen bonding interaction between drug and polymer. Thermal and x-ray examinations revealed the transformation of crystalline oxcarbazepine into an amorphous form. The microspheres had a buoyancy period of 7.5 h with corresponding release of around 83 % drug in 8 h in simulated stomach fluid, governed by supercase-II transport mechanism. In vivo neurobehavioral studies on PTZ-induced rats demonstrated that the microspheres outperformed drug suspension in terms of rotarod retention, number of crossings, and rearing activity in open field. Thus, Madhuca indica oil-in-water nanoemulsion-entrapped carboxymethyl xanthan gum microspheres appeared to be useful for monitoring oxcarbazepine release and managing epileptic seizures.


Asunto(s)
Mananos , Microesferas , Animales , Ratas , Mananos/química , Hidrogeles/química , Tamaño de la Partícula , Epilepsia/tratamiento farmacológico , Masculino , Portadores de Fármacos/química , Emulsiones , Convulsiones/tratamiento farmacológico , Liberación de Fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Galactosa/análogos & derivados
20.
Food Chem ; 455: 139873, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850987

RESUMEN

The kind of compounding emulsifier used and the amount of compounding have a significant impact on the emulsion's stability. In this study, the average particle size, Zeta potential, emulsification index, laser confocal microstructure, and rheological properties shows that the ratio of monoglyceride-xanthan gum and sucrose ester-xanthan gum could maintain the good stability of the emulsion in a certain range, and the monoglyceride and sucrose ester compounding could effectively improve the stability of the emulsion in a specific ratio (7:3). The results of fluorescence spectroscopy, Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the simultaneous complexation of three substances was more likely to produce hydrophobic interactions with walnut proteins than the simultaneous complexation of two substances. Also confirmed were the hydrogen bonding connections between the proteins and the monoglyceride, sucrose ester, and xanthan gum. Monoglyceride and xanthan gum complexes were also found to stabilize more proteins.


Asunto(s)
Emulsionantes , Emulsiones , Juglans , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Emulsionantes/química , Juglans/química , Emulsiones/química , Tamaño de la Partícula , Leche/química , Reología , Interacciones Hidrofóbicas e Hidrofílicas , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA