RESUMEN
Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.
Asunto(s)
Citrus , Raíces de Plantas , Xilema , Citrus/fisiología , Xilema/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Sequías , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiologíaRESUMEN
Amazonian savannas are isolated patches of open habitats found within the extensive matrix of Amazonian tropical forests. There remains limited evidence on how Amazonian plants from savannas differ in the traits related to drought resistance and water loss control. Previous studies have reported several xeromorphic characteristics of Amazonian savanna plants at the leaf and branch levels that are linked to soil, solar radiation, rainfall and seasonality. How anatomical features relate to plant hydraulic functioning in this ecosystem is less known and instrumental if we want to accurately model transitions in trait states between alternative vegetation in Amazonia. In this context, we combined studies of anatomical and hydraulic traits to understand the structure-function relationships of leaf and wood xylem in plants of Amazonian savannas. We measured 22 leaf, wood and hydraulic traits, including embolism resistance (as P50), Hydraulic Safety Margin (HSM) and isotope-based water use efficiency (WUE), for the seven woody species that account for 75% of the biomass of a typical Amazonian savanna on rocky outcrops in the state of Mato Grosso, Brazil. Few anatomical traits are related to hydraulic traits. Our findings showed wide variation exists among the seven species studied here in resistance to embolism, water use efficiency and structural anatomy, suggesting no unique dominant functional plant strategy to occupy an Amazonian savanna. We found wide variation in resistance to embolism (-1.6 ± 0.1 MPa and -5.0 ± 0.5 MPa) with species that are less efficient in water use (e.g. Kielmeyera rubriflora, Macairea radula, Simarouba versicolor, Parkia cachimboensis and Maprounea guianensis) showing higher stomatal conductance potential, supporting xylem functioning with leaf succulence and/or safer wood anatomical structures and that species that are more efficient in water use (e.g. Norantea guianensis and Alchornea discolor) can exhibit riskier hydraulic strategies. Our results provide a deeper understanding of how branch and leaf structural traits combine to allow for different hydraulic strategies among coexisting plants. In Amazonian savannas, this may mean investing in buffering water loss (e.g. succulence) at leaf level or safer structures (e.g. thicker pit membranes) and architectures (e.g. vessel grouping) in their branch xylem.
RESUMEN
The resistance of xylem conduits to embolism is a major factor defining drought tolerance and can set the distributional limits of species across rainfall gradients. Recent work suggests that the proximity of vessels to neighbors increases the vulnerability of a conduit. We therefore investigated whether the relative vessel area of xylem correlates with intra- and inter-generic variation in xylem embolism resistance in species pairs or triplets from the genera Acer, Cinnamomum, Ilex, Quercus and Persea, adapted to environments differing in aridity. We used the optical vulnerability method to assess embolism resistance in stems and conducted anatomical measurements on the xylem in which embolism resistance was quantified. Vessel lumen fraction (VLF) correlated with xylem embolism resistance across and within genera. A low VLF likely increases the resistance to gas movement between conduits, by diffusion or advection, whereas a high VLF enhances gas transport thorough increased conduit-to-conduit connectivity and reduced distances between conduits and therefore the likelihood of embolism propagation. We suggest that the rate of gas movement due to local pressure differences and xylem network connectivity is a central driver of embolism propagation in angiosperm vessels.
Asunto(s)
Embolia , Magnoliopsida , Hojas de la Planta , Xilema , Resistencia a la Sequía , Agua , SequíasRESUMEN
BACKGROUND AND AIMS: Xylem is a crucial tissue for plant survival, performing the functions of water transport, mechanical support and storage. Functional trade-offs are a result of the different assemblages of xylem cell types within a certain wood volume. We assessed how the volume allocated to different xylem cell types can be associated with wood functional trade-offs (hydraulics, mechanical and storage) in species from the Cerrado, the Brazilian savanna. We also assessed the xylem anatomical characters linked to wood density across species. METHODS: We analysed cross-sections of branches collected from 75 woody species belonging to 42 angiosperm families from the Cerrado. We estimated the wood volume fraction allocated to different cell types and performed measurements of vessel diameter and wood density. KEY RESULTS: The largest volume of wood is allocated to fibres (0.47), followed by parenchyma (0.33) and vessels (0.20). Wood density is positively correlated to cell wall (fibre and vessel wall), and negatively to the fractions of fibre lumen and gelatinous fibres. We observed a trade-off between hydraulics (vessel diameter) and mechanics (cell wall fraction), and between mechanics and storage (parenchyma fraction). The expected positive functional relationships between hydraulics (vessel diameter) and water and carbohydrate storage (parenchyma and fibre lumen fractions) were not detected, though larger vessels are linked to a larger wood volume allocated to gelatinous fibres. CONCLUSIONS: Woody species from the Cerrado show evidence of functional trade-offs between water transport, mechanical support and storage. Gelatinous fibres might be potentially linked to water storage and release by their positive relationship to increased vessel diameter, thus replacing the functional role of parenchyma and fibre lumen cells. Species can profit from the increased mechanical strength under tension provided by the presence of gelatinous fibres, avoiding expensive investments in high wood density.
Asunto(s)
Pradera , Xilema , Brasil , Carbohidratos , Agua/metabolismo , Madera/fisiología , Xilema/fisiologíaRESUMEN
Auxins are known to regulate xylem development in plants, but their effects on water transport efficiency are poorly known. Here we used tomato plants with the diageotropica mutation (dgt), which has impaired function of a cyclophilin 1 cis-trans isomerase involved in auxin signaling, and the corresponding wild type (WT) to explore the mutation's effects on plant hydraulics and leaf gas exchange. The xylem of the dgt mutant showed a reduced hydraulically weighted vessel diameter (Dh) (24-43%) and conduit number (25-58%) in petioles and stems, resulting in lower theoretical hydraulic conductivities (Kt); on the other hand, no changes in root Dh and Kt were observed. The measured stem and leaf hydraulic conductances of the dgt mutant were lower (up to 81%), in agreement with the Kt values; however, despite dgt and WT plants showing similar root Dh and Kt, the measured root hydraulic conductance of the dgt mutant was 75% lower. The dgt mutation increased the vein and stomatal density, which could potentially increase photosynthesis. Nevertheless, even though it had the same photosynthetic capacity as WT plants, the dgt mutant showed a photosynthetic rate c. 25% lower, coupled with a stomatal conductance reduction of 52%. These results clearly demonstrate that increases in minor vein and stomatal density only result in higher leaf gas exchange when accompanied by higher hydraulic efficiency.
Asunto(s)
Fotosíntesis , Agua , Ácidos Indolacéticos , Hojas de la Planta/fisiología , Agua/fisiología , Xilema/fisiologíaRESUMEN
BACKGROUND AND AIMS: Plants have the potential to adjust the configuration of their hydraulic system to maintain its function across spatial and temporal gradients. Species with wide environmental niches provide an ideal framework to assess intraspecific xylem adjustments to contrasting climates. We aimed to assess how xylem structure in the widespread species Nothofagus pumilio varies across combined gradients of temperature and moisture, and to what extent within-individual variation contributes to population responses across environmental gradients. METHODS: We characterized xylem configuration in branches of N. pumilio trees at five sites across an 18° latitudinal gradient in the Chilean Andes, sampling at four elevations per site. We measured vessel area, vessel density and the degree of vessel grouping. We also obtained vessel diameter distributions and estimated the xylem-specific hydraulic conductivity. Xylem traits were studied in the last five growth rings to account for within-individual variation. KEY RESULTS: Xylem traits responded to changes in temperature and moisture, but also to their combination. Reductions in vessel diameter and increases in vessel density suggested increased safety levels with lower temperatures at higher elevation. Vessel grouping also increased under cold and dry conditions, but changes in vessel diameter distributions across the elevational gradient were site-specific. Interestingly, the estimated xylem-specific hydraulic conductivity remained constant across elevation and latitude, and an overwhelming proportion of the variance of xylem traits was due to within-individual responses to year-to-year climatic fluctuations, rather than to site conditions. CONCLUSIONS: Despite conspicuous adjustments, xylem traits were coordinated to maintain a constant hydraulic function under a wide range of conditions. This, combined with the within-individual capacity for responding to year-to-year climatic variations, may have the potential to increase forest resilience against future environmental changes.
Asunto(s)
Fagales , Xilema , Chile , Bosques , Árboles , AguaRESUMEN
Global warming will likely lead to temperature increases in many regions of South America where temperatures are already considered to be high for olive production. Thus, experimental studies are needed to assess how water use in olive trees may be affected by global warming. The objectives of this study were to (i) evaluate the response of olive tree sap flow, stomatal conductance, and xylem anatomy to elevated temperature and (ii) determine whether fruit load may affect the temperature responses. A warming experiment using well-irrigated olive trees (cv. Arbequina) in open-top chambers (OTCs) with two temperature levels was performed from fruit set to the end of fruit growth in two seasons. Temperature levels were a near ambient control (T0) and a treatment 4°C above the control (T+). Trees were in the chambers for either one (2015-2016) or two seasons (2014-2015, 2015-2016) and were evaluated only in the second season when all trees were 3 years old. Whole-tree sap flow on leaf area basis, stomatal conductance, and aspects of xylem anatomy were measured. Sap flow was slightly higher in T+ than T0 trees heated for one season early in fruit development (summer) likely due to the elevated temperature and increase in vapor pressure deficit. Later in fruit development (fall), sap flow was substantially higher in the T+ trees heated for one season. Total vessel number per shoot was greater in the T+ than the T0 trees at this time due to more small-diameter vessels in the T+ trees, but this did not appear to explain the greater sap flow. The T+ trees that were heated for two seasons had less fruit load than the T0 trees due to little flowering. In contrast to trees heated for one season, sap flow was less in T+ than controls late in fruit development the second season, which was likely related to lower fruit load. An independent experiment using untreated trees confirmed that sap flow decreases when fruit load is below a threshold value. The results emphasize that multiple, interacting factors should be considered when predicting warming effects on water use in olive orchards.