Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37106650

RESUMEN

Ginsenosides, the main active compounds in Panax species, are glycosides of protopanaxadiol (PPD) or protopanaxatriol (PPT). PPT-type ginsenosides have unique pharmacological activities on the central nervous system and cardiovascular system. As an unnatural ginsenoside, 3,12-Di-O-ß-D-glucopyranosyl-dammar-24-ene-3ß,6α,12ß,20S-tetraol (3ß,12ß-Di-O-Glc-PPT) can be synthesized through enzymatic reactions but is limited by the expensive substrates and low catalytic efficiency. In the present study, we successfully produced 3ß,12ß-Di-O-Glc-PPT in Saccharomyces cerevisiae with a titer of 7.0 mg/L by expressing protopanaxatriol synthase (PPTS) from Panax ginseng and UGT109A1 from Bacillus subtilis in PPD-producing yeast. Then, we modified this engineered strain by replacing UGT109A1 with its mutant UGT109A1-K73A, overexpressing the cytochrome P450 reductase ATR2 from Arabidopsis thaliana and the key enzymes of UDP-glucose biosynthesis to increase the production of 3ß,12ß-Di-O-Glc-PPT, although these strategies did not show any positive effect on the yield of 3ß,12ß-Di-O-Glc-PPT. However, the unnatural ginsenoside 3ß,12ß-Di-O-Glc-PPT was produced in this study by constructing its biosynthetic pathway in yeast. To the best of our knowledge, this is the first report of producing 3ß,12ß-Di-O-Glc-PPT through yeast cell factories. Our work provides a viable route for the production of 3ß,12ß-Di-O-Glc-PPT, which lays a foundation for drug research and development.

2.
Biotechnol Adv ; 64: 108125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36870581

RESUMEN

As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.


Asunto(s)
Kluyveromyces , Kluyveromyces/genética , Kluyveromyces/metabolismo , Ingeniería Metabólica , Biología Sintética
3.
Microb Cell Fact ; 21(1): 199, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175998

RESUMEN

As part of the transition from a fossil resources-based economy to a bio-based economy, the production of platform chemicals by microbial cell factories has gained strong interest. 2,3-butanediol (2,3-BDO) has various industrial applications, but its production by microbial fermentation poses multiple challenges. We have engineered the bacterial 2,3-BDO synthesis pathway, composed of AlsS, AlsD and BdhA, in a pdc-negative version of an industrial Saccharomyces cerevisiae yeast strain. The high concentration of glycerol caused by the excess NADH produced in the pathway from glucose to 2,3-BDO was eliminated by overexpression of NoxE and also in a novel way by combined overexpression of NDE1, encoding mitochondrial external NADH dehydrogenase, and AOX1, encoding a heterologous alternative oxidase expressed inside the mitochondria. This was combined with strong downregulation of GPD1 and deletion of GPD2, to minimize glycerol production while maintaining osmotolerance. The HGS50 strain produced a 2,3-BDO titer of 121.04 g/L from 250 g/L glucose, the highest ever reported in batch fermentation, with a productivity of 1.57 g/L.h (0.08 g/L.h per gCDW) and a yield of 0.48 g/g glucose or with 96% the closest to the maximum theoretical yield ever reported. Expression of Lactococcus lactis NoxE, encoding a water-forming NADH oxidase, combined with similar genetic modifications, as well as expression of Candida albicans STL1, also minimized glycerol production while maintaining high osmotolerance. The HGS37 strain produced 130.64 g/L 2,3-BDO from 280 g/L glucose, with productivity of 1.58 g/L.h (0.11 g/L.h per gCDW). Both strains reach combined performance criteria adequate for industrial implementation.


Asunto(s)
Glicerol , Saccharomyces cerevisiae , Butileno Glicoles/metabolismo , Fermentación , Glucosa/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica , NAD/metabolismo , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
FEMS Yeast Res ; 22(1)2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35922083

RESUMEN

The cell wall is a dynamic organelle that determines the shape and provides the cell with mechanical strength. This study investigated whether modulation of cell wall composition can influence the production or secretion of small metabolites by yeast cell factories. We deleted and upregulated several cell wall-related genes KRE2, CWP1, CWP2, ECM33, PUN1, and LAS21 in yeast Saccharomyces cerevisiae engineered for p-coumaric acid or ß-carotene production. Deletions of las21∆ and ecm33∆ impaired the yeast growth on medium with cell wall stressors, calcofluor white, and caffeine. Both overexpression and deletion of ECM33 significantly improved the specific yield of p-coumaric acid and ß-carotene. We observed no change in secretion in any cell wall-altered mutants, suggesting the cell wall is not a limiting factor for small molecule secretion at the current production levels. We evaluated the cell wall morphology of the ECM33 mutant strains using transmission electron microscopy. The ecm33∆ mutants had an increased chitin deposition and a less structured cell wall, while the opposite was observed in ECM33-overexpressing strains. Our results point at the cell wall-related gene ECM33 as a potential target for improving production in engineered yeast cell factories.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pared Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta Caroteno/metabolismo
5.
Microb Cell Fact ; 21(1): 163, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35974372

RESUMEN

BACKGROUND: Microbial derived-surfactants display low eco-toxicity, diverse functionality, high biodegradability, high specificity, and stability under extreme conditions. Sophorolipids are emerging as key biosurfactants of yeast origins, used in various industrial sectors to lower surface tension. Recently, sophorolipid complexes have been applied in biomedicals and agriculture to eradicate infectious problems related to human and plant fungal pathogens. This study aimed to characterize the functional properties and antifungal activities of sophorolipids produced by a newly characterized Starmerella riodocensis GT-SL1R sp. nov. strain. RESULTS: Starmerella riodocensis GT-SL1R sp. nov. strain was belonged to Starmerella clade with 93.12% sequence similarity using the ITS technique for strain identification. Sophorolipids production was examined, using co-carbon substrates glucose and palm oil, with a yield on the substrate between 30 and 46%. Using shake-flasks, the S. riodocensis GT-SL1R strain produced biosurfactants with an emulsification activity of 54.59% against kerosene compared to the S. bombicola BCC5426 strain with an activity of 60.22%. Maximum productivities of GT-SL1R and the major sophorolipid-producer S. bombicola were similar at 0.8 gl-1 h-1. S. riodocensis GT-SL1R produced mixed forms of lactonic and acidic sophorolipids, shown by TCL, FTIR, and HPLC. Importantly, the complex sophorolipid mixture displayed antifungal activity against an opportunistic yeast pathogen Candida albicans by effectively reducing hyphal and biofilm formation. CONCLUSIONS: Sophorolipids derived from S. riodocensis demonstrate potential industrial and biomedical applications as green surfactant and antifungal agent. Since numerous renewable bioresources and industrial wastes could be used by microbial cell factories in the biosynthesis of biosurfactants to reduce the production cost, sophorolipids hold a promising alternative to current antimicrobials in treatments against infectious diseases in humans, animals, and plants.


Asunto(s)
Candida albicans , Saccharomycetales , Animales , Antibacterianos , Antifúngicos/farmacología , Biopelículas , Glucolípidos , Humanos , Ácidos Oléicos , Aceite de Palma , Tensoactivos/química , Tensoactivos/farmacología , Levaduras
6.
Life (Basel) ; 12(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35455001

RESUMEN

A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.

7.
J Appl Microbiol ; 133(2): 707-719, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35462447

RESUMEN

AIMS: To overcome the defective unstable production of p-coumaric acid (p-CA) using episomal plasmids and simultaneously achieve genetic stability and high-copy integration in Saccharomyces cerevisiae. METHODS AND RESULTS: Two-micron plasmids were used to obtain high titres of p-CA, but p-CA production was decreased significantly in a nonselective medium after 72 h. To overcome the defect of unstable p-CA production during fermentation, delta integration with the triosephosphate isomerase gene from Schizosaccharomyces pombe (POT1) was employed as a selection marker to integrate heterologous p-CA synthesis cassette, and the high-level p-CA-producing strain QT3-20 was identified. In shake flask fermentation, the final p-CA titre of QT3-20 reached 228.37 mg L-1 at 168 h, 11-fold higher than integrated strain QU3-20 using URA3 as the selective marker, and 9-fold higher than the best-performing episomal expression strain NKE1. Additionally, the p-CA titre and gene copy number remained stable after 100 generations of QT3-20 in a nonselective medium. CONCLUSION: We achieved high-copy genome integration and stable heterologous production of p-CA via a POT1-mediated strategy in S. cerevisiae. SIGNIFICANCE AND IMPACT OF STUDY: With superior genetic stability and production stability in a nonselective medium during fermentation, the high-level p-CA-producing strain constructed via POT1-mediated delta integration could serve as an efficient platform strain, to eliminate the threat of unstable and insufficient supply for future production of p-CA derivatives, make downstream processing and biosynthesis much simpler.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Ácidos Cumáricos/metabolismo , Fermentación , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
8.
Metab Eng ; 70: 181-195, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35091068

RESUMEN

Yeasts are widely used cell factories for commercial heterologous protein production, however, specific productivities are usually tightly coupled to biomass formation. This greatly impacts production processes, which are commonly not run at the maximum growth rate, thereby resulting in suboptimal productivities. To tackle this issue, we evaluated transcriptomics datasets of the yeast Pichia pastoris (syn. Komagataella phaffii), which is known for its high secretory efficiency and biomass yield. These showed a clear downregulation of genes related to protein translation with decreasing growth rates, thus revealing the yeast translation machinery as cellular engineering target. By overexpressing selected differentially expressed translation factors, translation initiation was identified to be the main rate-limiting step. Specifically, overexpression of factors associated with the closed-loop conformation, a structure that increases stability and rates of translation initiation before start codon scanning is initiated, showed the strongest effects. Overexpression of closed-loop factors alone or in combination increased titers of different heterologous proteins by up to 3-fold in fed-batch processes. Furthermore, translation activity, correlating to the obtained secreted recombinant protein yields, selected transcript levels and total protein content were higher in the engineered cells. Hence, translation factor overexpression, globally affects the cell. Together with the observed impact on the transcriptome and total protein content, our results indicate that the capacity of P. pastoris for protein production is not at its limit yet.


Asunto(s)
Pichia , Biomasa , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales
9.
Microb Cell Fact ; 20(1): 114, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098954

RESUMEN

BACKGROUND: The current shift from a fossil-resource based economy to a more sustainable, bio-based economy requires development of alternative production routes based on utilization of biomass for the many chemicals that are currently produced from petroleum. Muconic acid is an attractive platform chemical for the bio-based economy because it can be converted in chemicals with wide industrial applicability, such as adipic and terephthalic acid, and because its two double bonds offer great versatility for chemical modification. RESULTS: We have constructed a yeast cell factory converting glucose and xylose into muconic acid without formation of ethanol. We consecutively eliminated feedback inhibition in the shikimate pathway, inserted the heterologous pathway for muconic acid biosynthesis from 3-dehydroshikimate (DHS) by co-expression of DHS dehydratase from P. anserina, protocatechuic acid (PCA) decarboxylase (PCAD) from K. pneumoniae and oxygen-consuming catechol 1,2-dioxygenase (CDO) from C. albicans, eliminated ethanol production by deletion of the three PDC genes and minimized PCA production by enhancing PCAD overexpression and production of its co-factor. The yeast pitching rate was increased to lower high biomass formation caused by the compulsory aerobic conditions. Maximal titers of 4 g/L, 4.5 g/L and 3.8 g/L muconic acid were reached with glucose, xylose, and a mixture, respectively. The use of an elevated initial sugar level, resulting in muconic acid titers above 2.5 g/L, caused stuck fermentations with incomplete utilization of the sugar. Application of polypropylene glycol 4000 (PPG) as solvent for in situ product removal during the fermentation shows that this is not due to toxicity by the muconic acid produced. CONCLUSIONS: This work has developed an industrial yeast strain able to produce muconic acid from glucose and also with great efficiency from xylose, without any ethanol production, minimal production of PCA and reaching the highest titers in batch fermentation reported up to now. Utilization of higher sugar levels remained conspicuously incomplete. Since this was not due to product inhibition by muconic acid or to loss of viability, an unknown, possibly metabolic bottleneck apparently arises during muconic acid fermentation with high sugar levels and blocks further sugar utilization.


Asunto(s)
Carboxiliasas/metabolismo , Catecol 1,2-Dioxigenasa/metabolismo , Hidroliasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Xilosa/metabolismo , Carboxiliasas/genética , Catecol 1,2-Dioxigenasa/genética , Clonación Molecular , ADN de Hongos , Fermentación , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Hidroliasas/genética , Hidroxibenzoatos/metabolismo , Microbiología Industrial , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas , Piruvato Descarboxilasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ácido Shikímico/análogos & derivados , Ácido Shikímico/metabolismo , Ácido Sórbico/aislamiento & purificación , Ácido Sórbico/metabolismo
10.
Microb Cell ; 8(6): 111-130, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-34055965

RESUMEN

One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.

11.
Front Bioeng Biotechnol ; 8: 589468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195154

RESUMEN

As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.

12.
Metab Eng ; 59: 131-141, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32114024

RESUMEN

A major hurdle in the production of bioethanol with second-generation feedstocks is the high cost of the enzymes for saccharification of the lignocellulosic biomass into fermentable sugars. Simultaneous saccharification and fermentation with Saccharomyces cerevisiae yeast that secretes a range of lignocellulolytic enzymes might address this problem, ideally leading to consolidated bioprocessing. However, it has been unclear how many enzymes can be secreted simultaneously and what the consequences would be on the C6 and C5 sugar fermentation performance and robustness of the second-generation yeast strain. We have successfully expressed seven secreted lignocellulolytic enzymes, namely endoglucanase, ß-glucosidase, cellobiohydrolase I and II, xylanase, ß-xylosidase and acetylxylan esterase, in a single second-generation industrial S. cerevisiae strain, reaching 94.5 FPU/g CDW and enabling direct conversion of lignocellulosic substrates into ethanol without preceding enzyme treatment. Neither glucose nor the engineered xylose fermentation were significantly affected by the heterologous enzyme secretion. This strain can therefore serve as a promising industrial platform strain for development of yeast cell factories that can significantly reduce the enzyme cost for saccharification of lignocellulosic feedstocks.


Asunto(s)
Etanol/metabolismo , Microbiología Industrial , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , beta-Glucosidasa/biosíntesis , beta-Glucosidasa/genética
13.
FEMS Yeast Res ; 20(2)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32009173

RESUMEN

Yeasts are prominent hosts for the production of recombinant proteins from industrial enzymes to therapeutic proteins. Particularly, the similarity of protein secretion pathways between these unicellular eukaryotic microorganisms and higher eukaryotic organisms has made them a preferential host to produce secretory recombinant proteins. However, there are several bottlenecks, in terms of quality and quantity, restricting their use as secretory recombinant protein production hosts. In this mini-review, we discuss recent developments in synthetic biology approaches to constructing yeast cell factories endowed with enhanced capacities of protein folding and secretion as well as designed targeted post-translational modification process functions. We focus on the new genetic tools for optimizing secretory protein expression, such as codon-optimized synthetic genes, combinatory synthetic signal peptides and copy number-controllable integration systems, and the advanced cellular engineering strategies, including endoplasmic reticulum and protein trafficking pathway engineering, synthetic glycosylation, and cell wall engineering, for improving the quality and yield of secretory recombinant proteins.


Asunto(s)
Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Pichia/genética , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/metabolismo
14.
Metab Eng ; 56: 17-27, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31434008

RESUMEN

1,2,4-Butanetriol can be used to produce energetic plasticizer as well as several pharmaceutical compounds. Although Saccharomyces cerevisiae has some attractive characters such as high robustness for industrial production of useful chemicals by fermentation, 1,2,4-butanetriol production by S. cerevisiae has not been reported. 1,2,4-butanteriotl is produced by an oxidative xylose metabolic pathway completely different from the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways conventionally used for xylose assimilation in S. cerevisiae. In the present study, S. cerevisiae was engineered to produce 1,2,4-butanetriol by overexpression of xylose dehydrogenase (XylB), xylonate dehydratase (XylD), and 2-ketoacid decarboxylase. Further improvement of the recombinant strain was performed by the screening of optimal 2-ketoacid decarboxylase suitable for 1,2,4-butanetriol production and the enhancement of Fe uptake ability to improve the XylD enzymatic activity. Eventually, 1.7 g/L of 1,2,4-butanetriol was produced from 10 g/L xylose with a molar yield of 24.5%. Furthermore, 1.1 g/L of 1,2,4-butanetriol was successfully produced by direct fermentation of rice straw hydrolysate.


Asunto(s)
Butanoles/metabolismo , Hierro/metabolismo , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Saccharomyces cerevisiae , Xilosa/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Microb Cell Fact ; 17(1): 178, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30445960

RESUMEN

BACKGROUND: Mannosylglycerate (MG) is one of the most widespread compatible solutes among marine microorganisms adapted to hot environments. This ionic solute holds excellent ability to protect proteins against thermal denaturation, hence a large number of biotechnological and clinical applications have been put forward. However, the current prohibitive production costs impose severe constraints towards large-scale applications. All known microbial producers synthesize MG from GDP-mannose and 3-phosphoglycerate via a two-step pathway in which mannosyl-3-phosphoglycerate is the intermediate metabolite. In an early work, this pathway was expressed in Saccharomyces cerevisiae with the goal to confirm gene function (Empadinhas et al. in J Bacteriol 186:4075-4084, 2004), but the level of MG accumulation was low. Therefore, in view of the potential biotechnological value of this compound, we decided to invest further effort to convert S. cerevisiae into an efficient cell factory for MG production. RESULTS: To drive MG production, the pathway for the synthesis of GDP-mannose, one of the MG biosynthetic precursors, was overexpressed in S. cerevisiae along with the MG biosynthetic pathway. MG production was evaluated under different cultivation modes, i.e., flask bottle, batch, and continuous mode with different dilution rates. The genes encoding mannose-6-phosphate isomerase (PMI40) and GDP-mannose pyrophosphorylase (PSA1) were introduced into strain MG01, hosting a plasmid encoding the MG biosynthetic machinery. The resulting engineered strain (MG02) showed around a twofold increase in the activity of PMI40 and PSA1 in comparison to the wild-type. In batch mode, strain MG02 accumulated 15.86 mgMG g DCW -1 , representing a 2.2-fold increase relative to the reference strain (MG01). In continuous culture, at a dilution rate of 0.15 h-1, there was a 1.5-fold improvement in productivity. CONCLUSION: In the present study, the yield and productivity of MG were increased by overexpression of the GDP-mannose pathway and optimization of the mode of cultivation. A maximum of 15.86 mgMG g DCW -1 was achieved in batch cultivation and maximal productivity of 1.79 mgMG g DCW -1  h-1 in continuous mode. Additionally, a positive correlation between MG productivity and growth rate/dilution rate was established, although this correlation is not observed for MG yield.


Asunto(s)
Biotecnología/métodos , Manosa/análogos & derivados , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos/microbiología , Regulación Fúngica de la Expresión Génica , Ácidos Glicéricos/química , Manosa/biosíntesis , Manosa/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
16.
FEMS Yeast Res ; 15(1): 1-16, 2015 02.
Artículo en Inglés | MEDLINE | ID: mdl-25130199

RESUMEN

The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.


Asunto(s)
Pichia/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Biología Sintética/métodos , Yarrowia/metabolismo , Biofarmacia , Expresión Génica , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico , Saccharomyces cerevisiae/genética , Yarrowia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA