Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bioessays ; 46(6): e2400008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697917

RESUMEN

Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.


Asunto(s)
Plasticidad Neuronal , Células de Purkinje , Células de Purkinje/metabolismo , Células de Purkinje/fisiología , Animales , Plasticidad Neuronal/genética , Humanos , Potenciales de Acción/fisiología , Sinapsis/fisiología , Sinapsis/metabolismo , Sinapsis/genética , Corteza Cerebelosa/citología , Corteza Cerebelosa/metabolismo , Corteza Cerebelosa/fisiología
2.
Front Cell Neurosci ; 18: 1349878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433862

RESUMEN

Protein kinase C γ (PKCγ), a neuronal isoform present exclusively in the central nervous system, is most abundantly expressed in cerebellar Purkinje cells (PCs). Targeted deletion of PKCγ causes a climbing fiber synapse elimination in developing PCs and motor deficit. However, physiological roles of PKCγ in adult mouse PCs are little understood. In this study, we aimed to unravel the roles of PKCγ in mature mouse PCs by deleting PKCγ from adult mouse PCs of PKCγfl/fl mice via cerebellar injection of adeno-associated virus (AAV) vectors expressing Cre recombinase under the control of the PC-specific L7-6 promoter. Whole cell patch-clamp recording of PCs showed higher intrinsic excitability in PCs virally lacking PKCγ [PKCγ-conditional knockout (PKCγ-cKO) PCs] than in wild-type (WT) mouse PCs in the zebrin-negative module, but not in the zebrin-positive module. AAV-mediated PKCγ re-expression in PKCγ-deficient mouse PCs in the zebrin-negative module restored the enhanced intrinsic excitability to a level comparable to that of wild-type mouse PCs. In parallel with higher intrinsic excitability, we found larger hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents in PKCγ-cKO PCs located in the zebrin-negative module, compared with those in WT mouse PCs in the same region. However, pharmacological inhibition of the HCN currents did not restore the enhanced intrinsic excitability in PKCγ-cKO PCs in the zebrin-negative module. These results suggested that PKCγ suppresses the intrinsic excitability in zebrin-negative PCs, which is likely independent of the HCN current inhibition.

3.
J Comp Neurol ; 531(16): 1633-1650, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37585320

RESUMEN

The parallel closed-loop topographic connections between subareas of the inferior olive (IO), cerebellar cortex, and cerebellar nuclei (CN) define the fundamental modular organization of the cerebellum. The cortical modules or zones are organized into longitudinal zebrin stripes which are extended across transverse cerebellar lobules. However, how cerebellar lobules, which are related to the cerebellar functional localization, are incorporated into the olivo-cortico-nuclear topographic organization has not been fully clarified. In the present study, we analyzed the lobular topography in the CN and IO by making 57 small bidirectional tracer injections in the lateral zebrin-positive stripes equivalent with C2, D1, and D2 zones in every hemispheric lobule in zebrin stripe-visualized mice. C2, D1, and D2 zones were connected to the lateral part of the posterior interpositus nucleus (lPIN), and caudal and rostral parts of the lateral nucleus (cLN, rLN), respectively, and from the rostral part of the medial accessory olive (rMAO), and ventral and dorsal lamellas of the PO (vPO, dPO), respectively, as reported. Within these areas, crus I was specifically connected to the ventral parts of the lPIN, cLN, and rLN, and from the rostrolateral part of the rMAO and the lateral parts of the vPO and dPO. The results indicated that the cerebellar modules have lobule-related subdivisions and that crus I is topographically distinct from other lobules. We speculate that crus I and crus I-connected subdivisions in the CN and IO are involved more in nonmotor functions than other neighboring areas in the mouse.


Asunto(s)
Núcleos Cerebelosos , Núcleo Olivar , Ratones , Animales , Vías Nerviosas , Corteza Cerebelosa , Cerebelo
4.
Cells ; 11(18)2022 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-36139493

RESUMEN

Despite their homogeneous appearance, Purkinje cells are remarkably diverse with respect to their molecular phenotypes, physiological properties, afferent and efferent connectivity, as well as their vulnerability to insults. Heterogeneity in Purkinje cells arises early in development, with molecularly distinct embryonic cell clusters present soon after Purkinje cell specification. Traditional methods have characterized cerebellar development and cell types, including Purkinje cell subtypes, based on knowledge of selected markers. However, recent single-cell RNA sequencing studies provide vastly increased resolution of the whole cerebellar transcriptome. Here we draw together the results of multiple single-cell transcriptomic studies in developing and adult cerebellum in both mouse and human. We describe how this detailed transcriptomic data has increased our understanding of the intricate development and function of Purkinje cells and provides first clues into features specific to human cerebellar development.


Asunto(s)
Proteínas del Tejido Nervioso , Células de Purkinje , Animales , Biomarcadores/metabolismo , Cerebelo/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Fenotipo
5.
Front Cell Neurosci ; 15: 707857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970120

RESUMEN

Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs-/- mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.

6.
J Comp Neurol ; 529(18): 3893-3921, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34333770

RESUMEN

Among the spinocerebellar projections vital for sensorimotor coordination of limbs and the trunk, the morphology of spinocerebellar axons originating from the lumbar cord has not been well characterized compared to those from thoracic and sacral cords. We reconstructed 26 single spinocerebellar axons labeled by biotinylated dextran injections into the gray matter of the lumbar spinal cord in mice. Axon terminals were mapped with the zebrin pattern of the cerebellar cortex. Reconstructed axons were primarily classified into ipsilaterally and contralaterally ascending axons, arising mainly from the dorsal and ventral horns, respectively. The majority of ipsilateral and contralateral axons took the dorsal-medullary and ventral-pontine pathways, respectively. The axons of both groups terminated mainly in the vermal and medial paravermal areas of lobules II-V and VIII-IXa, often bilaterally but predominantly ipsilateral to the axonal origin, with a weak preference to particular portions of zebrin stripes. The ipsilateral axons originating from the medial dorsal horn in the upper lumbar cord (n = 3) had abundant (43-147) mossy fiber terminals and no medullary collaterals. The ipsilateral axons originating from the lateral dorsal horn in the lower lumbar cord (n = 9) and the contralateral axons (n = 14) showed remarkable morphology variations. The number of their mossy fiber terminals varied from 2 to 172. Their collaterals, observed in 17 axons out of 23, terminated mainly in the medial cerebellar nucleus, nucleus X, and lateral reticular nucleus in various degrees. The results indicated that the lumbar spinocerebellar projection contains highly heterogeneous axonal populations regarding their pathway, branching, and termination patterns.


Asunto(s)
Axones/fisiología , Región Lumbosacra/fisiología , Médula Espinal , Tractos Espinocerebelares , Animales , Núcleos Cerebelosos , Sustancia Gris , Ratones , Vías Nerviosas/fisiología
7.
Neuroscience ; 462: 122-140, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32717297

RESUMEN

Heterogeneity of Purkinje cells (PCs) that are arranged into discrete longitudinally-striped compartments in the cerebellar cortex is related to the timing of PC generation. To understand the cerebellar compartmental organization, we mapped the PC birthdate (or differentiation timing) in the entire cerebellar cortex. We used the birthdate-tagging system of Neurog2-CreER (G2A) mice hybridized with the AldocV strain which visualizes the zebrin (aldolase C) longitudinal striped pattern. The birthdate-specific distribution pattern of PCs was arranged into longitudinally-oriented stripes consistently throughout almost all lobules except for the nodulus, paraflocculus, and flocculus, in which distinct stripes were observed. Boundaries of the birthdate stripes coincided with the boundary of zebrin stripes or located in the middle of a zebrin stripe. Each birthdate stripe contained PCs born in a particular period between embryonic day (E) 10.0 and E 13.5. In the vermis, PCs were chronologically distributed from lateral to medial stripes. In the paravermis, PCs of early birthdates were distributed in the long lateral zebrin-positive stripe (stripe 4+//5+) and the medially neighboring narrow zebrin-negative substripe (3d-//e2-), while PCs of late birthdates were distributed in the rest of all paravermal areas. In the hemisphere, PCs of early and late birthdates were intermingled in the majority of areas. The results indicate that the birthdate of a PC is a partial determinant for the zebrin compartment in which it is located. However, the correlation between the PC birthdate and the zebrin compartmentalization is complex and distinct among the vermis, paravermis, hemisphere, nodulus, and flocculus.


Asunto(s)
Vermis Cerebeloso , Células de Purkinje , Animales , Animales Modificados Genéticamente , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Corteza Cerebelosa/metabolismo , Cerebelo/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/metabolismo
8.
Elife ; 92020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32812869

RESUMEN

High-end technical approaches help to untangle the substructure and projection patterns of the cerebellum.


Asunto(s)
Cerebelo
9.
Elife ; 92020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32639229

RESUMEN

The cerebellar vermis, long associated with axial motor control, has been implicated in a surprising range of neuropsychiatric disorders and cognitive and affective functions. Remarkably little is known, however, about the specific cell types and neural circuits responsible for these diverse functions. Here, using single-cell gene expression profiling and anatomical circuit analyses of vermis output neurons in the mouse fastigial (medial cerebellar) nucleus, we identify five major classes of glutamatergic projection neurons distinguished by gene expression, morphology, distribution, and input-output connectivity. Each fastigial cell type is connected with a specific set of Purkinje cells and inferior olive neurons and in turn innervates a distinct collection of downstream targets. Transsynaptic tracing indicates extensive disynaptic links with cognitive, affective, and motor forebrain circuits. These results indicate that diverse cerebellar vermis functions could be mediated by modular synaptic connections of distinct fastigial cell types with posturomotor, oromotor, positional-autonomic, orienting, and vigilance circuits.


Asunto(s)
Núcleos Cerebelosos/fisiología , Vermis Cerebeloso/fisiología , Ratones/fisiología , Actividad Motora/fisiología , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Núcleo Olivar/fisiología , Células de Purkinje/fisiología
10.
Front Neurol ; 11: 315, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32390933

RESUMEN

The cerebellum has long been known to play an important role in motor and balance control, and accumulating evidence has revealed that it is also involved in multiple cognitive functions. However, the evidence from neuroimaging studies and clinical observations is not well-integrated at the anatomical or molecular level. The goal of this review is to summarize and link different aspects of the cerebellum, including molecular patterning, functional topography images, and clinical cerebellar disorders. More specifically, we explored the potential relationships between the cerebrocerebellar connections and the expression of particular molecules and, in particular, zebrin stripe (a Purkinje cell-specific antibody molecular marker, which is a glycolytic enzyme expressed in cerebellar Purkinje cells). We hypothesized that the zebrin patterns contribute to cerebellar functional maps-especially when cerebrocerebellar circuit changes exist in cerebellar-related diseases. The zebrin stripe receives input from climbing fibers and project to different parts of the cerebral cortex through its cerebrocerebellar connection. Since zebrin-positive cerebellar Purkinje cells are resistant to excitotoxicity and cell injury while zebrin-negative zones are more prone to damage, we suggest that motor control dysfunction symptoms such as ataxia and dysmetria present earlier and are easier to observe than non-ataxia symptoms due to zebrin-negative cell damage by cerebrocerebellar connections. In summary, we emphasize that the molecular zebrin patterns provide the basis for a new viewpoint from which to investigate cerebellar functions and clinico-neuroanatomic correlations.

11.
Cell Tissue Res ; 381(2): 273-284, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32418131

RESUMEN

The anterior pituitary gland is composed of five types of hormone-producing cells and folliculo-stellate cells. Folliculo-stellate cells do not produce anterior pituitary hormones but they are thought to play important roles as stem cells, phagocytes, or supporting cells of hormone-producing cells in the anterior pituitary. S100ß protein has been used as a folliculo-stellate cell marker in some animals, including rats. However, since no reliable molecular marker for folliculo-stellate cells has been reported in mice, genetic approaches for the investigation of folliculo-stellate cells in mice are not yet available. Aldolase C/Zebrin II is a brain-type isozyme and is a fructose-1,6-bisphosphate aldolase. In the present study, we first used immunohistochemistry to verify that aldolase C was produced in the anterior pituitary of rats. Moreover, using transgenic rats expressing green fluorescent protein under the control of the S100ß gene promoter, we identified aldolase C-immunoreactive signals in folliculo-stellate cells and marginal cells located in the parenchyma of the anterior pituitary and around Rathke's cleft, respectively. We also identified aldolase C-expressing cells in the mouse pituitary using immunohistochemistry and in situ hybridization. Aldolase C was not produced in any pituitary hormone-producing cells, while aldolase C-immunopositive signal co-localized with E-cadherin- and SOX2-positive cells. Using post-embedding immunoelectron microscopy, aldolase C-immunoreactive products were observed in the cytoplasm of marginal cells and folliculo-stellate cells of the mouse pituitary. Taken together, aldolase C is a common folliculo-stellate cell marker in the anterior pituitary gland of rodents.


Asunto(s)
Fructosa-Bifosfato Aldolasa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Adenohipófisis , Animales , Biomarcadores/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Adenohipófisis/citología , Adenohipófisis/metabolismo , Ratas , Ratas Transgénicas
12.
Brain Behav Evol ; 95(1): 45-55, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32155640

RESUMEN

While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII-) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII-) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/- stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).


Asunto(s)
Caimanes y Cocodrilos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/enzimología , Animales
13.
Elife ; 82019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31486767

RESUMEN

Despite the canonical homogeneous character of its organization, the cerebellum plays differential computational roles in distinct sensorimotor behaviors. Previously, we showed that Purkinje cell (PC) activity differs between zebrin-negative (Z-) and zebrin-positive (Z+) modules (Zhou et al., 2014). Here, using gain-of-function and loss-of-function mouse models, we show that transient receptor potential cation channel C3 (TRPC3) controls the simple spike activity of Z-, but not Z+ PCs. In addition, TRPC3 regulates complex spike rate and their interaction with simple spikes, exclusively in Z- PCs. At the behavioral level, TRPC3 loss-of-function mice show impaired eyeblink conditioning, which is related to Z- modules, whereas compensatory eye movement adaptation, linked to Z+ modules, is intact. Together, our results indicate that TRPC3 is a major contributor to the cellular heterogeneity that introduces distinct physiological properties in PCs, conjuring functional heterogeneity in cerebellar sensorimotor integration.


Asunto(s)
Variación Biológica Poblacional , Cerebelo/citología , Células de Purkinje/fisiología , Canales Catiónicos TRPC/metabolismo , Potenciales de Acción , Animales , Ratones
14.
J Comp Neurol ; 527(15): 2488-2511, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30887503

RESUMEN

The mammalian cerebellar cortex is compartmentalized, both anatomically and histochemically, into multiple parasagittal bands. To characterize the multiple zonal patterns of pontocerebellar mossy fiber projection, single neurons in the basilar pontine nucleus (BPN) were labeled by injecting biotinylated dextran amine into the BPN, and the entire axonal trajectory of single labeled neurons (n = 25) was reconstructed in relation to aldolase C compartments of Purkinje cells in rats. Single pontocerebellar axons, after passing through the contralateral middle cerebellar peduncle, ran transversely in the deep cerebellar white matter toward and often across the midline, and on their ways, gave rise to 2-10 primary collaterals at almost right angles in specific lobules only contralaterally or bilaterally with contralateral predominance. Each primary collateral further branched in a parasagittal plane to form a strip-shaped longitudinal termination zone with rosette-type swellings clustered in aldolase C-positive compartments in a single or multiple lobules, mainly in compartment 4+//5+, 5+//6+, and 6+//7+. Axons arising from the central, rostral, and lateral part of the BPN projected with multiple branches, mainly to simple lobule, crus II and paramedian lobule, to crus I and dorsal paraflocculus, and to ventral paraflocculus and lobule IXc, respectively. The results showed the pontocerebellar projection is closely related to lobular and compartmental organization of the cerebellum. A comparison of single axon morphologies of different mossy fiber systems indicates that the projection pattern of single pontocerebellar neurons with multiple collaterals innervating different longitudinal compartments arranged in a mediolateral direction represents a general feature of mossy fiber projection.


Asunto(s)
Axones/ultraestructura , Corteza Cerebelosa/citología , Fructosa-Bifosfato Aldolasa/metabolismo , Vías Nerviosas/citología , Animales , Axones/metabolismo , Corteza Cerebelosa/metabolismo , Femenino , Masculino , Vías Nerviosas/metabolismo , Ratas , Ratas Long-Evans
15.
J Comp Neurol ; 527(12): 1966-1985, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737986

RESUMEN

The basilar pontine nucleus (PN) is the key relay point for the cerebrocerebellar link. However, the projection pattern of pontocerebellar mossy fiber axons, which is essential in determining the functional organization of the cerebellar cortex, has not been fully clarified. We reconstructed the entire trajectory of 25 single pontocerebellar mossy fiber axons labeled by localized injection of biotinylated dextran amine into various locations in the PN and mapped all their terminals in an unfolded scheme of the cerebellum in 10 mice. The majority of axons (20/25 axons) entered the cerebellum through the middle cerebellar peduncle contralateral to the origin, while others entered through the ipsilateral pathway. A small number of axons (1/25 axons) had collaterals terminating in the cerebellar nuclei. Axons projected mostly to a combination of lobules, often bilaterally, and terminated in multiple zebrin (aldolase C) stripes, more frequently in zebrin-positive stripes (83.9%) than in zebrin-negative stripes, with 66.5 mossy fiber terminals on the average. Axons originating from the rostral (plus medial and lateral), central and caudal PN mainly terminated in the paraflocculus, crus I and lobule VIb-c, in the simplex lobule, crus II and paramedian lobule, and in lobules II-VIa, VIII and copula pyramidis, respectively. The results suggest that the interlobular branching pattern of pontocerebellar axons determines the group of cerebellar lobules that are involved in a related functional localization of the cerebellum. In the hemisphere, crus I may be functionally distinct from neighboring lobules (simple lobule and crus II) in the mouse cerebellum based on the pontocerebellar axonal projection pattern.


Asunto(s)
Axones/ultraestructura , Cerebelo/citología , Vías Nerviosas/citología , Puente/citología , Animales , Femenino , Masculino , Ratones
16.
Cerebellum ; 18(1): 56-66, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29909450

RESUMEN

Zebrin II/aldolase C expression in the normal cerebellum is restricted to a Purkinje cell subset and is the canonical marker for stripes and zones. This spatial restriction has been confirmed in over 30 species of mammals, birds, fish, etc. In a transgenic mouse model in which the Neurogenin 2 gene has been disrupted (Neurog2-/-), the cerebellum is smaller than normal and Purkinje cell dendrites are disordered, but the basic zone and stripe architecture is preserved. Here, we show that in the Neurog2-/- mouse, in addition to the normal Purkinje cell expression, zebrin II is also expressed in a population of cells with a morphology characteristic of microglia. This identity was confirmed by double immunohistochemistry for zebrin II and the microglial marker, Iba1. The expression of zebrin II in cerebellar microglia is not restricted by zone or stripe or lamina. A second zone and stripe marker, PLCß4, does not show the same ectopic expression. When microglia are compared in control vs. Neurog2-/- mice, no difference is seen in apparent number or distribution, suggesting that the ectopic zebrin II immunoreactivity in Neurog2-/- cerebellum reflects an ectopic expression rather than the invasion of a new population of microglia from the periphery. This ectopic expression of zebrin II in microglia is unique as it is not seen in numerous other models of cerebellar disruption, such as in Acp2-/- mice and in human pontocerebellar hypoplasia. The upregulation of zebrin II in microglia is thus specific to the disruption of Neurog2 downstream pathways, rather than a generic response to a cerebellar disruption.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Cerebelo/metabolismo , Microglía/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Fosfatasa Ácida/deficiencia , Fosfatasa Ácida/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al Calcio/metabolismo , Cerebelo/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Proteínas del Tejido Nervioso/genética , Fosfolipasa C beta/metabolismo
17.
J Comp Neurol ; 526(15): 2406-2427, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30004589

RESUMEN

Topographic connection between corresponding compartments of the cerebellar cortex, cerebellar nuclei, and inferior olive form parallel modules, which are essential for the cerebellar function. Compared to the striped cortical compartmentalization which are labeled by molecular markers, such as aldolase C (Aldoc) or zebrin II, the presumed corresponding organization of the cerebellar nuclei and inferior olivary nucleus has not been much clarified. We focused on the expression pattern of pcdh10 gene coding cell adhesion molecule protocadherin 10 (Pcdh10) in adult mice. In the cortex, pcdh10 was strongly expressed in (a) Aldoc-positive vermal stripes a+//2+ in lobules VI-VII, (b) paravermal narrow stripes c+, d+, 4b+, 5a+ in crus I and neighboring lobules, and (c) paravermal stripes 4+//5+ across all lobules from lobule III to paraflocculus. In the cerebellar nuclei, pcdh10 was expressed strongly in the caudal part of the medial nucleus and the lateral part of the posterior interposed nucleus which project less to the medulla or to the red nucleus than to other metencephalic, mesencephalic, and diencephalic areas. In the inferior olive, pcdh10 was expressed strongly in the rostral and medioventrocaudal parts of the medial accessory olive which has connection with the mesencephalic areas rather than the spinal cord. Olivocerebellar and corticonuclear axonal labeling confirmed that the three cortical pcdh10-positive areas were topographically connected to the nuclear and olivary pcdh10-positive areas, demonstrating their coincidence with modular structures in the olivo-cortico-nuclear loop. We speculate that some of these modules are functionally involved in various nonsomatosensorimotor tasks via their afferent and efferent connections.


Asunto(s)
Cadherinas/metabolismo , Núcleos Cerebelosos/metabolismo , Corteza Cerebral/metabolismo , Núcleo Olivar/metabolismo , Animales , Cadherinas/genética , Corteza Cerebelosa/anatomía & histología , Corteza Cerebelosa/metabolismo , Núcleos Cerebelosos/anatomía & histología , Corteza Cerebral/anatomía & histología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/anatomía & histología , Vías Nerviosas/metabolismo , Núcleo Olivar/anatomía & histología , Fenotipo , Protocadherinas , Células de Purkinje/fisiología
18.
Cerebellum ; 17(5): 654-682, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29876802

RESUMEN

The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.


Asunto(s)
Cerebelo/anatomía & histología , Cerebelo/fisiología , Animales , Humanos
19.
J Neurophysiol ; 120(1): 250-262, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29589816

RESUMEN

The cerebellum is organized into parasagittal zones defined by its climbing and mossy fiber inputs, efferent projections, and Purkinje cell (PC) response properties. Additionally, parasagittal stripes can be visualized with molecular markers, such as heterogeneous expression of the isoenzyme zebrin II (ZII), where sagittal stripes of high ZII expression (ZII+) are interdigitated with stripes of low ZII expression (ZII-). In the pigeon vestibulocerebellum, a ZII+/- stripe pair represents a functional unit, insofar as both ZII+ and ZII- PCs within a stripe pair respond best to the same pattern of optic flow. In the present study, we attempted to determine whether there were any differences in the responses between ZII+ and ZII- PCs within a functional unit in response to optic flow stimuli. In pigeons of either sex, we recorded complex spike activity (CSA) from PCs in response to optic flow, marked recording sites with a fluorescent tracer, and determined the ZII identity of recorded PCs by immunohistochemistry. We found that CSA of ZII+ PCs showed a greater depth of modulation in response to the preferred optic flow pattern compared with ZII- PCs. We suggest that these differences in the depth of modulation to optic flow stimuli are due to differences in the connectivity of ZII+ and ZII- PCs within a functional unit. Specifically, ZII+ PCs project to areas of the vestibular nuclei that provide inhibitory feedback to the inferior olive, whereas ZII- PCs do not. NEW & NOTEWORTHY Although the cerebellum appears to be a uniform structure, Purkinje cells (PCs) are heterogeneous and can be categorized on the basis of the expression of molecular markers. These phenotypes are conserved across species, but the significance is undetermined. PCs in the vestibulocerebellum encode optic flow resulting from self-motion, and those that express the molecular marker zebrin II (ZII+) exhibit more sensitivity to optic flow than those that do not express zebrin II (ZII-).


Asunto(s)
Potenciales de Acción , Proteínas del Tejido Nervioso/metabolismo , Células de Purkinje/fisiología , Animales , Columbidae , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Flujo Optico , Células de Purkinje/metabolismo
20.
Front Neuroanat ; 12: 18, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29599710

RESUMEN

This study was aimed at mapping the organization of the projections from the inferior olive (IO) to the ventral uvula in pigeons. The uvula is part of the vestibulocerebellum (VbC), which is involved in the processing of optic flow resulting from self-motion. As in other areas of the cerebellum, the uvula is organized into sagittal zones, which is apparent with respect to afferent inputs, the projection patterns of Purkinje cell (PC) efferents, the response properties of PCs and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed such that there are sagittal stripes of PCs with high ZII expression (ZII+), alternating with sagittal stripes of PCs with little to no ZII expression (ZII-). We have previously demonstrated that a ZII+/- stripe pair in the uvula constitutes a functional unit, insofar as the complex spike activity (CSA) of all PCs within a ZII+/- stripe pair respond to the same type of optic flow stimuli. In the present study we sought to map the climbing fiber (CF) inputs from the IO to the ZII+ and ZII- stripes in the uvula. We injected fluorescent Cholera Toxin B (CTB) of different colors (red and green) into ZII+ and ZII- bands of functional stripe pair. Injections in the ZII+ and ZII- bands resulted in retrograde labeling of spatially separate, but adjacent regions in the IO. Thus, although a ZII+/- stripe pair represents a functional unit in the pigeon uvula, CF inputs to the ZII+ and ZII- stripes of a unit arise from separate regions of the IO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA