Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Sci Rep ; 14(1): 21598, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285243

RESUMEN

Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.


Asunto(s)
Desarrollo Embrionario , Ratones Noqueados , Sirtuina 1 , Cigoto , Animales , Femenino , Humanos , Ratones , Blastocisto/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/genética , Porcinos , Cigoto/metabolismo , Masculino
2.
J Reprod Dev ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218670

RESUMEN

CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alpha-galactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneouslydouble-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.

3.
Cell Rep Methods ; 4(8): 100833, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39121862

RESUMEN

The type I CRISPR system has recently emerged as a promising tool, especially for large-scale genomic modification, but its application to generate model animals by editing zygotes had not been established. In this study, we demonstrate genome editing in zygotes using the type I-E CRISPR-Cas3 system, which efficiently generates deletions of several thousand base pairs at targeted loci in mice with 40%-70% editing efficiency without off-target mutations. To overcome the difficulties associated with detecting the variable deletions, we used a newly long-read sequencing-based multiplex genotyping approach. Demonstrating remarkable versatility, our Cas3-based technique was successfully extended to rats as well as mice, even by zygote electroporation methods. Knockin for SNP exchange and genomic replacement with a donor plasmid were also achieved in mice. This pioneering work with the type I CRISPR zygote editing system offers increased flexibility and broader applications in genetic engineering across different species.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Cigoto , Animales , Cigoto/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Ratas , Ratones , Femenino
4.
EMBO J ; 43(15): 3214-3239, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38907033

RESUMEN

Cell polarity networks are defined by quantitative features of their constituent feedback circuits, which must be tuned to enable robust and stable polarization, while also ensuring that networks remain responsive to dynamically changing cellular states and/or spatial cues during development. Using the PAR polarity network as a model, we demonstrate that these features are enabled by the dimerization of the polarity protein PAR-2 via its N-terminal RING domain. Combining theory and experiment, we show that dimer affinity is optimized to achieve dynamic, selective, and cooperative binding of PAR-2 to the plasma membrane during polarization. Reducing dimerization compromises positive feedback and robustness of polarization. Conversely, enhanced dimerization renders the network less responsive due to kinetic trapping of PAR-2 on internal membranes and reduced sensitivity of PAR-2 to the anterior polarity kinase, aPKC/PKC-3. Thus, our data reveal a key role for a dynamically oligomeric RING domain in optimizing interaction affinities to support a robust and responsive cell polarity network, and highlight how optimization of oligomerization kinetics can serve as a strategy for dynamic and cooperative intracellular targeting.


Asunto(s)
Membrana Celular , Polaridad Celular , Proteína Quinasa C , Multimerización de Proteína , Membrana Celular/metabolismo , Proteína Quinasa C/metabolismo , Animales , Unión Proteica
5.
Front Cell Dev Biol ; 12: 1398684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887513

RESUMEN

Research Question: What is the utilization rate of embryos that exert inadequate zygote cleavage into three daughter cells? Design: This study used a retrospective dataset from a single IVF Unit. A total of 3,060 embryos from 1,811 fresh IVF cycles were analyzed. The cleavage pattern, morphokinetics, and outcome were recorded. Only 2pn embryos, fertilized by ejaculated sperm, and cultured in a time-lapse system for at least 5 days were included. We generated three study groups according to the embryo's cleavage pattern: (I) Control, normal cleavage (n = 551); (II) fast cleavage, zygote to three cells within 5 h (n = 1,587); and (III) instant direct tripolar cleavage (IDC) from zygote to three cells (n = 922). Results: The rate of usable fast cleavage blastocysts was 108/1,587 (6.81%) and usable control blastocysts was 180/551 (32.67%). The time of PN fading and from fading to first cleavage differed significantly between the three groups. Although the pregnancy rate of control and fast cleavage blastocysts were comparable (40.35% and 42.55%, respectively), the amount of instant direct cleavage embryos that reached blastocyst stage was neglectable (only four embryos out of 922 analyzed IDC embryos) and unsuitable for statistical comparison of pregnancy rates. Conclusion: Our results indicate the need to culture instant direct cleavage embryos for 5 days, up to the blastocyst stage, and avoid transfer of embryos that are fated to arrest even when their morphological grade on day 3 is acceptable, whereas fast cleavage embryos could be transferred on day 3 when there is no alternative.

6.
Front Cell Dev Biol ; 12: 1280797, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606321

RESUMEN

To study the genetic variation leading to the arrest phenotype of pronuclear (PN) zygotes. We recruited a family characterized by recurrent PN arrest during in vitro fertilization (IVF) and intracytoplasmic sperm injection cycles (ICSI) and performed whole-exome sequencing for 2 individuals. The transcriptome profiles of PN-arrest zygotes were assessed by single-cell RNA sequencing analysis. The variants were then validated by PCR amplification and Sanger sequencing in the affected individuals and other family members. A family characterized by recurrent PN arrest during IVF and ICSI cycles were enrolled after giving written informed consent. Peripheral blood samples were taken for DNA extraction. Three PN-arrest zygotes from patient III-3 were used for single-cell RNA-seq as described. This phenotype was reproduced after multiple cycles of egg retrieval and after trying different fertilization methods and multiple ovulation regimens. The mutant genes of whole exon sequencing were screened and verified. The missense variant c. C1630T (p.R544W) in RGS12 was responsible for a phenotype characterized by paternal transmission. RGS12 controls Ca2+ oscillation, which is required for oocyte activation after fertilization. Single-cell transcriptome profiling of PN-arrest zygotes revealed defective established translation, RNA processing and cell cycle, which explained the failure of complete oocyte activation. Furthermore, we identified proximal genes involved in Ca2+ oscillation-cytostatic factor-anaphase-promoting complex (Ca2+ oscillation-CSF-APC) signaling, including upregulated CaMKII, ORAI1, CDC20, and CDH1 and downregulated EMI1 and BUB3. The findings indicate abnormal spontaneous Ca2+ oscillations leading to oocytes with prolonged low CSF level and high APC level, which resulted in defective nuclear envelope breakdown and DNA replication. We have identified an RGS12 variant as the potential cause of female infertility characterized by arrest at the PN stage during multiple IVF and ICSI.

7.
Genome Biol ; 25(1): 84, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566207

RESUMEN

BACKGROUND: Epigenetic marks are reprogrammed during sexual reproduction. In flowering plants, DNA methylation is only partially remodeled in the gametes and the zygote. However, the timing and functional significance of the remodeling during plant gametogenesis remain obscure. RESULTS: Here we show that DNA methylation remodeling starts after male meiosis in rice, with non-CG methylation, particularly at CHG sites, being first enhanced in the microspore and subsequently decreased in sperm. Functional analysis of rice CHG methyltransferase genes CMT3a and CMT3b indicates that CMT3a functions as the major CHG methyltransferase in rice meiocyte, while CMT3b is responsible for the increase of CHG methylation in microspore. The function of the two histone demethylases JMJ706 and JMJ707 that remove H3K9me2 may contribute to the decreased CHG methylation in sperm. During male gametogenesis CMT3a mainly silences TE and TE-related genes while CMT3b is required for repression of genes encoding factors involved in transcriptional and translational activities. In addition, CMT3b functions to repress zygotic gene expression in egg and participates in establishing the zygotic epigenome upon fertilization. CONCLUSION: Collectively, the results indicate that DNA methylation is dynamically remodeled during male gametogenesis, distinguish the function of CMT3a and CMT3b in sex cells, and underpin the functional significance of DNA methylation remodeling during rice reproduction.


Asunto(s)
Metilación de ADN , Oryza , Oryza/genética , Oryza/metabolismo , Semillas/metabolismo , Metiltransferasas/metabolismo , Gametogénesis , Regulación de la Expresión Génica de las Plantas
8.
CRISPR J ; 7(2): 111-119, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38635329

RESUMEN

Integration of a point mutation to correct or edit a gene requires the repair of the CRISPR-Cas9-induced double-strand break by homology-directed repair (HDR). This repair pathway is more active in late S and G2 phases of the cell cycle, whereas the competing pathway of nonhomologous end-joining (NHEJ) operates throughout the cell cycle. Accordingly, modulation of the cell cycle by chemical perturbation or simply by the timing of gene editing to shift the editing toward the S/G2 phase has been shown to increase HDR rates. Using a traffic light reporter in mouse embryonic stem cells and a fluorescence conversion reporter in human-induced pluripotent stem cells, we confirm that a transient cold shock leads to an increase in the rate of HDR, with a corresponding decrease in the rate of NHEJ repair. We then investigated whether a similar cold shock could lead to an increase in the rate of HDR in the mouse embryo. By analyzing the efficiency of gene editing using single nucleotide polymorphism changes and loxP insertion at three different genetic loci, we found that a transient reduction in temperature after zygote electroporation of CRISPR-Cas9 ribonucleoprotein with a single-stranded oligodeoxynucleotide repair template did indeed increase knockin efficiency, without affecting embryonic development. The efficiency of gene editing with and without the cold shock was first assessed by genotyping blastocysts. As a proof of concept, we then confirmed that the modified embryo culture conditions were compatible with live births by targeting the coat color gene tyrosinase and observing the repair of the albino mutation. Taken together, our data suggest that a transient cold shock could offer a simple and robust way to improve knockin outcomes in both stem cells and zygotes.


Asunto(s)
Edición Génica , Hipotermia , Animales , Humanos , Ratones , Sistemas CRISPR-Cas/genética , Cigoto/metabolismo , Hipotermia/metabolismo , Reparación del ADN por Recombinación/genética
9.
J Reprod Dev ; 70(3): 152-159, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38462486

RESUMEN

Totipotency refers to the ability of a single cell to give rise to all the different cell types in the body. Terminally differentiated germ cells (sperm and oocytes) undergo reprogramming, which results in the acquisition of totipotency in zygotes. Since the 1990s, numerous studies have focused on the mechanisms of totipotency. With the emergence of the concept of epigenetic reprogramming, which is important for the undifferentiated and differentiated states of cells, the epigenomes of germ cells and fertilized oocytes have been thoroughly analyzed. However, in early immunostaining studies, detailed epigenomic information was difficult to obtain. In recent years, the explosive development of next-generation sequencing has made it possible to acquire genome-wide information and the rise of genome editing has facilitated the analysis of knockout mice, which was previously difficult. In addition, live imaging can effectively analyze zygotes and 2-cell embryos, for which the number of samples is limited, and provides biological insights that cannot be obtained by other methods. In this review, the progress of our research using these advanced techniques is traced back from the present to its earliest years.


Asunto(s)
Blastocisto , Cromatina , Animales , Ratones , Cromatina/metabolismo , Blastocisto/metabolismo , Femenino , Desarrollo Embrionario/fisiología , Epigénesis Genética , Cigoto/metabolismo
10.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436556

RESUMEN

The complex structures of multicellular organisms originate from a unicellular zygote. In most angiosperms, including Arabidopsis thaliana, the zygote is distinctly polar and divides asymmetrically to produce an apical cell, which generates the aboveground part of the plant body, and a basal cell, which generates the root tip and extraembryonic suspensor. Thus, zygote polarity is pivotal for establishing the apical-basal axis running from the shoot apex to the root tip of the plant body. The molecular mechanisms and spatiotemporal dynamics behind zygote polarization remain elusive. However, advances in live-cell imaging of plant zygotes have recently made significant insights possible. In this Cell Science at a Glance article and the accompanying poster, we summarize our understanding of the early steps in apical-basal axis formation in Arabidopsis, with a focus on de novo transcriptional activation after fertilization and the intracellular dynamics leading to the first asymmetric division of the zygote.


Asunto(s)
Arabidopsis , Cigoto , Semillas , Arabidopsis/genética , Meristema , Activación Transcripcional
11.
J Int Med Res ; 52(3): 3000605241233985, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38548469

RESUMEN

OBJECTIVE: This study aimed to compare the pregnancy outcomes of Day 2 (D2) fresh embryo transfer and D3 fresh embryo transfer in women with only one zygote with two pronuclei (2PN). METHODS: Data on 432 in vitro fertilization-embryo transfer cycles with only one 2PN zygote from January 2016 to January 2022 were retrospectively collected. A total of 302 fresh embryo transfers on D2 (n = 193) and D3 (n = 109) were analyzed, and pregnancy outcomes were compared. RESULTS: The patients' characteristics were not different between D2 and D3 embryo transfer. There were no significant differences in the rates of clinical pregnancy, early abortion, or live birth between D2 and D3 embryo transfer. A multivariate logistic regression model controlling for age, the fertilization method, the number of oocytes harvested, and the number of high-quality embryos transferred showed that the live birth rate was similar between D2 and D3 embryo transfer. CONCLUSION: In in vitro fertilization-embryo transfer cycles with only one 2PN zygote, D2 fresh embryo transfer may provide similar pregnancy outcomes to those of D3 embryo transfer. D2 embryo transfer may be an option because of the risk of cycle cancellation due to the absence of viable embryos on D3.


Asunto(s)
Fertilización In Vitro , Cigoto , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Índice de Embarazo , Fertilización In Vitro/métodos , Transferencia de Embrión/métodos
12.
BMC Biol ; 22(1): 26, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302906

RESUMEN

BACKGROUND: The ability of recombinant adeno-associated virus to transduce preimplantation mouse embryos has led to the use of this delivery method for the production of genetically altered knock-in mice via CRISPR-Cas9. The potential exists for this method to simplify the production and extend the types of alleles that can be generated directly in the zygote, obviating the need for manipulations of the mouse genome via the embryonic stem cell route. RESULTS: We present the production data from a total of 13 genetically altered knock-in mouse models generated using CRISPR-Cas9 electroporation of zygotes and delivery of donor repair templates via transduction with recombinant adeno-associated virus. We explore the efficiency of gene targeting at a total of 12 independent genetic loci and explore the effects of allele complexity and introduce strategies for efficient identification of founder animals. In addition, we investigate the reliability of germline transmission of the engineered allele from founder mice generated using this methodology. By comparing our production data against genetically altered knock-in mice generated via gene targeting in embryonic stem cells and their microinjection into blastocysts, we assess the animal cost of the two methods. CONCLUSIONS: Our results confirm that recombinant adeno-associated virus transduction of zygotes provides a robust and effective delivery route for donor templates for the production of knock-in mice, across a range of insertion sizes (0.9-4.7 kb). We find that the animal cost of this method is considerably less than generating knock-in models via embryonic stem cells and thus constitutes a considerable 3Rs reduction.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Ratones , Animales , Dependovirus/genética , Reproducibilidad de los Resultados , Cigoto , Marcación de Gen , Técnicas de Sustitución del Gen/métodos
13.
Anim Biosci ; 37(6): 1021-1030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419548

RESUMEN

OBJECTIVE: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. METHODS: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. RESULTS: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. CONCLUSION: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

14.
Parasitol Int ; 100: 102856, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38199522

RESUMEN

The Plasmodium life cycle involves differentiation into multiple morphologically distinct forms, a process regulated by developmental stage-specific gene expression. Histone proteins are involved in epigenetic regulation in eukaryotes, and the histone variant H3.3 plays a key role in the regulation of gene expression and maintenance of genomic integrity during embryonic development in mice. However, the function of H3.3 through multiple developmental stages in Plasmodium remains unknown. To examine the function of H3.3, h3.3-deficient mutants (Δh3.3) were generated in P. berghei. The deletion of h3.3 was not lethal in blood stage parasites, although it had a minor effect of the growth rate in blood stage; however, the in vitro ookinete conversion rate was significantly reduced, and the production of the degenerated form was increased. Regarding the mosquito stage development of Δh3.3, oocysts number was significantly reduced, and no sporozoite production was observed. The h3.3 gene complemented mutant have normal development in mosquito stage producing mature oocysts and salivary glands contained sporozoites, and interestingly, the majority of H3.3 protein was detected in female gametocytes. However, Δh3.3 male and female gametocyte production levels were comparable to the wild-type levels. Transcriptome analysis of Δh3.3 male and female gametocytes revealed the upregulation of several male-specific genes in female gametocytes, suggesting that H3.3 functions as a transcription repressor of male-specific genes to maintain sexual identity in female gametocytes. This study provides new insights into the molecular biology of histone variants H3.3 which plays a critical role on zygote-to-oocyst development in primitive unicellular eukaryotes.


Asunto(s)
Histonas , Malaria , Parásitos , Plasmodium berghei , Plasmodium , Animales , Femenino , Masculino , Ratones , Epigénesis Genética , Histonas/genética , Malaria/parasitología , Oocistos , Plasmodium berghei/genética , Plasmodium berghei/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Cigoto/metabolismo
15.
Plant Cell Physiol ; 65(5): 729-736, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38288629

RESUMEN

Genome-editing tools such as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system have become essential tools for increasing the efficiency and accuracy of plant breeding. Using such genome-editing tools on maize, one of the most important cereal crops of the world, will greatly benefit the agriculture and the mankind. Conventional genome-editing methods typically used for maize involve insertion of a Cas9-guide RNA expression cassette and a selectable marker in the genome DNA; however, using such methods, it is essential to eliminate the inserted DNA cassettes to avoid legislative concerns on gene-modified organisms. Another major hurdle for establishing an efficient and broadly applicable DNA-free genome-editing system for maize is presented by recalcitrant genotypes/cultivars, since cell/tissue culture and its subsequent regeneration into plantlets are crucial for producing transgenic and/or genome-edited maize. In this study, to establish a DNA-free genome-editing system for recalcitrant maize genotypes/cultivars, Cas9-gRNA ribonucleoproteins were directly delivered into zygotes isolated from the pollinated flowers of the maize-B73 cultivar. The zygotes successfully developed and were regenerated into genome-edited plantlets by co-culture with phytosulfokine, a peptide phytohormone. The method developed herein made it possible to obtain DNA- and selectable-marker-free genome-edited recalcitrant maize genotypes/cultivars with high efficiency. This method can advance the molecular breeding of maize and other important cereals, regardless of their recalcitrant characteristics.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma de Planta , Zea mays , Zea mays/genética , Edición Génica/métodos , Plantas Modificadas Genéticamente , Cigoto/metabolismo , Fitomejoramiento/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , ADN de Plantas/genética
16.
Reprod Biomed Online ; 48(1): 103401, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37976657

RESUMEN

RESEARCH QUESTION: Does ejaculatory abstinence impact fertilization outcomes in intracytoplasmic sperm injection (ICSI) cycles in infertile couples? DESIGN: This single-centre retrospective observational study included 6919 ICSI cycles from 2013 to 2022. The primary outcome was the assessment of oocyte fertilization, measured in terms of the rate of formation of two-pronuclear (2PN), 3PN and 1PN zygotes. Secondary outcomes were blastulation, cumulative positive ß-human chorionic gonadotrophin test and clinical pregnancy rates. Relationships between ejaculatory abstinence and fertilization outcomes, and ejaculatory abstinence and clinical outcomes were evaluated with multivariable analysis, including possible confounders. RESULTS: A positive association was observed between ejaculatory abstinence and semen sample volume (P < 0.001), sperm concentration (P < 0.001) and total motile sperm count (P < 0.001). No association was found between the 1PN zygote rate and ejaculatory abstinence (P = 0.97). Conversely, for each additional day of ejaculatory abstinence, the likelihood of obtaining 2PN zygotes from all inseminated oocytes decreased by 3% [adjusted odds ratio (aOR) 0.97, 95% CI 0.94-0.99], whilst the likelihood of obtaining 3PN zygotes from all inseminated oocytes increased significantly by 14% (aOR 1.14, 95% CI 1.07-1.22). No significant associations were found between ejaculatory abstinence and blastulation, cumulative pregnancy or miscarriage rates. CONCLUSIONS: A longer ejaculatory abstinence period significantly decreases the rate of 2PN zygotes, and increases the rate of 3PN zygotes without directly affect blastulation and pregnancy rates.


Asunto(s)
Fertilización In Vitro , Inyecciones de Esperma Intracitoplasmáticas , Embarazo , Femenino , Humanos , Masculino , Estudios Retrospectivos , Semen , Índice de Embarazo , Fertilización
17.
Mol Reprod Dev ; 91(1): e23712, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882473

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 (Cas9) system is the most efficient and widely used technology for genome editing in all sorts of organisms, including livestock animals. Here, we examined the feasibility of CRISPR/Cas9-derived genome editing (GE) in vitrified porcine zygotes, where the flexible planning of experiments in time and space is expected. OCT4 and CD46 genes were targeted, and the Cas9/sgRNA ribonucleoprotein complexes (RNP) were electroporated into zygotes at 2 h after warming. Vitrification or GE alone did not significantly reduce the developmental rates to the blastocyst stage. However, vitrification followed by GE significantly reduced blastocyst development. Sequencing analysis of the resultant blastocysts revealed efficient GE for both OCT4 (nonvitrified: 91.0%, vitrified: 95.1%) and CD46 (nonvitrified: 94.5%, vitrified: 93.2%), with no significant difference among them. Immunocytochemical analysis showed that GE-blastocysts lacked detectable proteins. They were smaller in size, and the cell numbers were significantly reduced compared with the control (p < 0.01). Finally, we demonstrated that double GE efficiently occurs (100%) when the OCT4-RNP and CD46-RNP are simultaneously introduced into zygotes after vitrification/warming. This is the first demonstration that vitrified porcine zygotes can be used in GE as efficiently as nonvitrified ones.


Asunto(s)
Edición Génica , Cigoto , Porcinos/genética , Animales , Cigoto/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Desarrollo Embrionario , Electroporación , Blastocisto/metabolismo , Criopreservación
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003730

RESUMEN

Feeder cells and the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) in a culture medium promote mitosis and cell division in cultured cells. These are also added to nutrient medium for the cultivation of highly active in mitosis and dividing zygotes, produced in vitro or isolated from pollinated ovaries. In the study, an in vitro fertilization (IVF) system was used to study the precise effects of feeder cells and 2,4-D on the growth and development of rice (Oryza sativa L.) zygote. The elimination of 2,4-D from the culture medium did not affect the early developmental profiles of the zygotes, but decreased the division rates of multicellular embryos. The omission of feeder cells resulted in defective karyogamy, fusion between male and female nuclei, and the subsequent first division of the cultured zygotes. The culture of zygotes in a conditioned medium corrected developmental disorders. Proteome analyses of the conditioned medium revealed the presence of abundant hydrolases possibly released from the feeder cells. Exogenously applied α-amylase ameliorated karyogamy and promoted zygote development. It is suggested that hydrolytic enzymes, including α-amylase, released from feeder cells may be involved in the progression of zygotic development.


Asunto(s)
Oryza , Cigoto , Medios de Cultivo Condicionados/farmacología , Mitosis , Fertilización In Vitro , Células Cultivadas , alfa-Amilasas , Ácido 2,4-Diclorofenoxiacético
19.
Harmful Algae ; 129: 102521, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951620

RESUMEN

Heterosigma akashiwo (Raphidophyceae) is widely recognized as a species responsible for harmful algal blooms worldwide. The species has long been speculated to possess a more complex life history, attributed to the diverse morphological variations observed during cell cultivation. However, the understanding of its life history has remained insufficient due to limitations in observing transitions between life cycle stages in vitro and challenges associated with in situ investigations. In this study, a combination of in vitro (laboratory-based) and in situ (field-based) observations was employed to define the life cycle stages of H. akashiwo and elucidate the pathways of transition between these stages. Notably, novel homothallic sexual reproduction processes involving the fusion of hologametes and the subsequent formation of zygotes were observed for the first time in vitro. These zygotes were found to either divide into vegetative cells (Pathway I) or undergo enlargement, resulting in the formation of multiple cells with multiple nuclei (Pathway II). Furthermore, this study provides the first documentation of large cells and cell clusters in situ, including intermediate stages referred to as large cells with ongoing cytoplasmic division that serve as a bridge between these two cell types. The observed zygotes in vitro exhibited a large size (21.9-51.8 µm) and multinucleated characteristics, similar to the large cells (38.2-45.8 µm) and cell clusters observed in situ. This finding suggests that the large cells observed in situ were zygotes undergoing cell division to form cell clusters (Pathway III). Moreover, based on the striking similarities in cell morphology and nuclear size between the cells comprising the cell cluster (2.7-4.4 µm) and the cyst clusters of this species, along with the synchronized germination characteristics of cyst clusters, it is proposed that the cell cluster serves as a precursor to cysts. By integrating the in situ and in vitro observations, this study provides a comprehensive understanding of the previously poorly understood life history of H. akashiwo.


Asunto(s)
Quistes , Dinoflagelados , Estramenopilos , Animales , Floraciones de Algas Nocivas , División Celular , Estadios del Ciclo de Vida
20.
Breed Sci ; 73(3): 349-353, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37840979

RESUMEN

Somaclonal variation was studied by whole-genome sequencing in rice plants (Oryza sativa L., 'Nipponbare') regenerated from the zygotes, mature embryos, and immature embryos of a single mother plant. The mother plant and its seed-propagated progeny were also sequenced. A total of 338 variants of the mother plant sequence were detected in the progeny, and mean values ranged from 9.0 of the seed-propagated plants to 37.4 of regenerants from mature embryos. The natural mutation rate of 1.2 × 10-8 calculated using the variants in the seed-propagated plants was consistent with the values reported previously. The ratio of single nucleotide variants (SNVs) among the variants in the seed-propagated plants was 91.1%, which is higher than 56.1% previously reported, and not significantly different from those in the regenerants. Overall, the ratio of transitions to transversions of SNVs was lower in the regenerants as shown previously. Plants regenerated from mature embryos had significantly more variants than different progeny types. Therefore, using zygotes and immature embryos can reduce somaclonal variation during the genetic manipulation of rice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA