Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.575
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1381746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726340

RESUMEN

Background: A serious consequence of diabetes is diabetic nephropathy (DN), which is commonly treated by statins. Studies evaluating the effects of statin medication have yielded inconsistent results regarding the potential association with diabetic nephropathy. To manage diabetic nephropathy's onset and improve the quality of life of patients, it is imperative to gain a comprehensive understanding of its contributing factors. Data and methods: Our study was conducted using the National Health and Nutrition Examination Survey (NHANES) as well as weighted multivariate logistic regression models to determine the odds ratio (OR) and 95% confidence intervals (95%CI) for diabetic nephropathy. We conducted stratified analyses to examine the impact of statins and the duration of their usage on diabetic nephropathy in different subgroups. A nomogram model and the receiver operating characteristic (ROC) curve were also developed to predict DN risk. Results: Statin use significantly increased the incidence of DN (OR=1.405, 95%CI (1.199,1.647), p<0.001). Individuals who used statins for 5 to 7 years were more likely to develop diabetic nephropathy (OR=1.472, 95%CI (1.057,2.048), p=0.022) compared to those who used statins for 1-3 years (OR=1.334, 95%CI (1.058,1.682), p=0.015) or <1 year (OR=1.266, 95%CI (1.054,1.522), p = 0.012). Simvastatin has a greater incidence of diabetic nephropathy (OR=1.448, 95%CI(1.177, 1.78), P < 0.001). Conclusion: Taking statins long-term increases the risk of DN. Statin use is associated with an increased risk of DN. Caution should be exercised when prescribing atorvastatin and simvastatin for long-term statin therapy.


Asunto(s)
Nefropatías Diabéticas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Encuestas Nutricionales , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Nefropatías Diabéticas/epidemiología , Nefropatías Diabéticas/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Estados Unidos/epidemiología , Adulto , Anciano , Incidencia , Factores de Riesgo
2.
BMC Nephrol ; 25(1): 156, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724923

RESUMEN

BACKGROUND: Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS: Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS: Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS: Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.


Asunto(s)
Materiales Biocompatibles , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Trasplante de Islotes Pancreáticos , Animales , Masculino , Ratas , Nefropatías Diabéticas/patología , Trasplante de Islotes Pancreáticos/métodos , Materiales Biocompatibles/uso terapéutico , Islotes Pancreáticos/patología , Estrés Oxidativo , Ratas Sprague-Dawley , Resultado del Tratamiento
3.
Front Endocrinol (Lausanne) ; 15: 1356131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711978

RESUMEN

Objective: Diabetic nephropathy (DN) is a major microvascular complication of diabetes and the leading cause of end-stage renal disease. Early detection and prevention of DN are important. Retinol-binding protein 4 (RBP4) has been considered as a single diagnostic marker for the detection of renal impairment. However, the results have been inconsistent. The present meta-analysis aimed to determine the diagnostic potential of RBP4 in patients in type 2 diabetes mellitus (T2DM) with DN. Methods: We searched PubMed, Web of Science, Embase, Wanfang and CNKI databases from inception until January 2024. The meta-analysis was performed by Stata version 15.0, and sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were pooled. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was utilized to assess the quality of each included study. In addition, heterogeneity and publication bias were evaluated. Results: Twenty-nine studies were included in the meta-analysis. The pooled sensitivity and specificity were 0.76 [95% confidence interval (CI), 0.71-0.80] and 0.81 (95% CI, 0.76-0.85), respectively. The results showed a pooled PLR of 4.06 (95% CI, 3.16-5.21), NLR of 0.29 (95% CI, 0.24-0.36) and DOR of 13.76 (95% CI, 9.29-20.37). The area under the summarized receiver operating characteristic curve was given a value of 0.85 (95% CI, 0.82-0.88). No obvious publication bias existed in the Deeks' funnel plot asymmetry test. Conclusion: Our findings suggest that RBP4 has a promising diagnostic value with good sensitivity and specificity for patients with T2DM with DN.


Asunto(s)
Nefropatías Diabéticas , Proteínas Plasmáticas de Unión al Retinol , Humanos , Nefropatías Diabéticas/diagnóstico , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Proteínas Plasmáticas de Unión al Retinol/análisis , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Biomarcadores/sangre , Sensibilidad y Especificidad
4.
Front Microbiol ; 15: 1356176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741742

RESUMEN

Background: Imbalance in intestinal microbiota caused by microbial species and proportions or metabolites derived from microbes are associated with hypertension, as well as diabetic nephropathy. However, the involvement of the intestinal microbiota and metabolites in hypertension and diabetic nephropathy comorbidities (HDN) remains to be elucidated. Methods: We investigated the effects of intestinal microbiota on HDN in a rat model and determined the abundance of the intestinal microbiota using 16S rRNA sequencing. Changes in fecal and serum metabolites were analyzed using ultra-high-performance liquid chromatography-mass spectrometry. Results: The results showed abundance of Proteobacteria and Verrucomicrobia was substantially higher, whereas that of Bacteroidetes was significant lower in the HDN group than in the sham group. Akkermansia, Bacteroides, Blautia, Turicibacter, Lactobacillus, Romboutsia, and Fusicatenibacter were the most abundant, and Prevotella, Lachnospiraceae_NK4A136_group, and Prevotella_9 were the least abundant in the HDN group. Further analysis with bile acid metabolites in serum showed that Blautia was negatively correlated with taurochenodeoxycholic acid, taurocholic acid, positively correlated with cholic acid and glycocholic acid in serum. Conclusions: These findings suggest that the gut microbiota and metabolites in feces and serum substantially differed between the HDN and sham groups. The F/B ratio was higher in the HDN group than in the sham group. Blautia is potentially associated with HDN that correlated with differentially expressed bile acid metabolites, which might regulate the pathogenesis of HDN via the microorganism-gut-metabolite axis.

5.
Heliyon ; 10(9): e30036, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38707305

RESUMEN

Objective: There has been some evidence that dietary fiber may be associated with diabetic nephropathy (DN), but the relationship is still unclear. The purpose of this study was to examine the association between dietary fiber intake and DN. Methods: This cross-sectional study used National Health and Nutrition Examination Survey (NHANES) data collected between 2007 and 2020. Weighted multivariate logistic regression was used to examine the relation between dietary fiber intake and DN. In addition, fitted smoothed curves were used to explore potential non-linear relationships. If non-linearity was observed, inflection points were further calculated by a recursive algorithm. Results: The study finally included 5964 subjects ≥20 years of age. The mean age was 60.8 ± 13.4 years with males (52.4 %), and non-Hispanic Whites (62.4 %), and the weighted prevalence of DN was 36.7 %. Dietary fiber was negatively associated with the risk of DN after controlling for all confounding variables (OR = 0.89, 95%CI: 0.80, 0.99). Smoothed curve fit plots of the dose relationship showed that dietary fiber intake was linearly related to DN, whereas males (inflection point of 8.0 g/d) and non-Hispanic Blacks (inflection point of 14.9 g/d) followed a non-linear inverted U-shaped curve relationship. In United States adults aged 20 and older, dietary fiber intake may be associated with a reduced risk of DN. Conclusion: Appropriate increases in dietary fiber intake may offer potential benefits for DN. In conclusion, it appears that increasing dietary fiber intake may be one of the most effective strategies for the prevention and management of DN.

6.
Phytother Res ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725104

RESUMEN

Diabetic nephropathy (DN) is the most common and serious complication of diabetes, posing a significant threat to human health. Currently, safe and effective preventive strategies for DN are lacking. The study aimed to explore the preventive effect and the underlying mechanism of quercetin against DN. In the in vivo experiments, we established a mouse model of type 2 diabetes mellitus (T2DM) induced by a combination of high-fat diet (HFD) and streptozotocin (STZ) to explore the preventive effect of quercetin on DN and its protective role against renal tubular epithelial cell apoptosis. Subsequently, in vitro experiments using human tubular epithelial cells (HK-2 cells) were conducted to further validate the protective effects of quercetin on renal tubular epithelial cell apoptosis. Additionally, we employed RNA sequencing analysis (RNA-seq) and network pharmacology analysis to comprehensively elucidate the molecular mechanisms involved. In vivo, we observed a significant increase in the ratio of urinary microalbumin to creatinine in diabetic mice compared to control mice, accompanied by the activation of renal tubular epithelial cell apoptosis. Remarkably, all of these changes were reversed after quercetin treatment. In vitro, high-glucose-induced apoptosis in HK-2 cells was significantly attenuated by quercetin. Subsequent RNA sequencing analysis and network pharmacology analysis revealed that quercetin was most likely to inhibit high-glucose-induced HK-2 cell apoptosis through the PI3K/AKT signaling pathway. Western Blotting results further demonstrated that quercetin could inhibit the activation of the PI3K/AKT signaling pathway in HK-2 cells induced by high glucose. Our results supported that quercetin could prevent DN by inhibiting tubular epithelial cell apoptosis via the PI3K/AKT pathway. Quercetin might be a promising candidate for the prevention of DN.

7.
BMJ Open ; 14(5): e080858, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719315

RESUMEN

OBJECTIVES: To evaluate whether nephrotic syndrome (NS) and further corticosteroid (CS) use increase the risk of osteoporosis in Asian population during the period January 2000-December 2010. DESIGN: Nationwide population-based retrospective cohort study. SETTING: All healthcare facilities in Taiwan. PARTICIPANTS: A total of 28 772 individuals were enrolled. INTERVENTIONS: 26 614 individuals with newly diagnosed NS between 2000 and 2010 were identified and included in out study. 26 614 individuals with no NS diagnosis prior to the index date were age matched as controls. Diagnosis of osteoporosis prior to the diagnosis of NS or the same index date was identified, age, sex and NS-associated comorbidities were adjusted. PRIMARY OUTCOME MEASURE: To identify risk differences in developing osteoporosis among patients with a medical history of NS. RESULTS: After adjusting for covariates, osteoporosis risk was found to be 3.279 times greater in the NS cohort than in the non-NS cohort, when measured over 11 years after NS diagnosis. Stratification revealed that age older than 18 years, congestive heart failure, hyperlipidaemia, chronic kidney disease, liver cirrhosis and NS-related disease including diabetes mellitus, hepatitis B infection, hepatitis C infection, lymphoma and hypothyroidism, increased the risk of osteoporosis in the NS cohort, compared with the non-NS cohort. Additionally, osteoporosis risk was significantly higher in NS patients with CS use (adjusted HR (aHR)=3.397). The risk of osteoporosis in NS patients was positively associated with risk of hip and vertebral fracture (aHR=2.130 and 2.268, respectively). A significant association exists between NS and subsequent risk for osteoporosis. CONCLUSION: NS patients, particularly those treated with CS, should be evaluated for subsequent risk of osteoporosis.


Asunto(s)
Síndrome Nefrótico , Osteoporosis , Humanos , Taiwán/epidemiología , Osteoporosis/epidemiología , Osteoporosis/complicaciones , Femenino , Estudios Retrospectivos , Masculino , Persona de Mediana Edad , Síndrome Nefrótico/epidemiología , Síndrome Nefrótico/complicaciones , Adulto , Anciano , Factores de Riesgo , Comorbilidad , Adulto Joven , Adolescente , Corticoesteroides/efectos adversos
8.
Diabetes Metab Syndr Obes ; 17: 1987-1997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746045

RESUMEN

Purpose: Diabetic nephropathy (DN), a major complication of diabetes mellitus, significantly impacts global health. Identifying individuals at risk of developing DN is crucial for early intervention and improving patient outcomes. This study aims to develop and validate a machine learning-based predictive model using integrated biomarkers. Methods: A cross-sectional analysis was conducted on a baseline dataset involving 2184 participants without DN, categorized based on their development of DN over a follow-up period of 36 months: DN (n=1270) and Non-DN (n=914). Various demographic and clinical parameters were analyzed. The findings were validated using an independent dataset comprising 468 participants, with 273 developing DN and 195 remaining as Non-DN over the follow-up period. Machine learning algorithms, alongside traditional descriptive statistics and logistic regression were used for statistical analyses. Results: Elevated levels of serum creatinine, urea, and reduced eGFR, alongside an increased prevalence of retinopathy and peripheral neuropathy, were prominently observed in those who developed DN. Validation on the independent dataset further confirmed the model's robustness and consistency. The SVM model demonstrated superior performance in the training set (AUC=0.79, F1-score=0.74) and testing set (AUC=0.83, F1-score=0.82), outperforming other models. Significant predictors of DN included serum creatinine, eGFR, presence of diabetic retinopathy, and peripheral neuropathy. Conclusion: Integrating machine learning algorithms with clinical and biomarker data at baseline offers a promising avenue for identifying individuals at risk of developing diabetic nephropathy in type 2 diabetes patients over a 36-month period.

9.
Dis Model Mech ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747698

RESUMEN

Diabetic nephropathy (DN) is a substantial healthcare challenge as a complication of diabetes, owing to the high risk of morbidity and mortality involved. Although significant progress has been made in understanding the pathogenesis of DN, more efficient models are required to develop new therapeutics. Here, we created a DN model in zebrafish by crossing diabetic Tg(acta1:dnIGF1R-EGFP) and proteinuria-tracing Tg(l-fabp::VDBP-GFP) lines, named zMIR/VDBP. Overfed adult zMIR/VDBP fish developed severe hyperglycemia and proteinuria, which were not observed in wild-type zebrafish. Renal histopathology revealed human DN-like characteristics, such as glomerular basement membrane thickening, foot process effacement, and glomerular sclerosis. Glomerular dysfunction is restored upon calorie restriction. RNA sequencing (RNA-seq) analysis demonstrated that zebrafish DN kidneys exhibited transcriptional patterns similar to human DN pathogenesis. Notably, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway was activated, a phenomenon observed in the early phase of human DN. In addition, metformin improved hyperglycemia and proteinuria in DN zebrafish by modulating AKT phosphorylation. Our results indicated that zMIR/VDBP fish are suitable for elucidating the mechanisms underlying human DN and could be a powerful tool for therapeutic discovery.

10.
Kidney Int Rep ; 9(5): 1419-1428, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707823

RESUMEN

Introduction: The pathogenesis of renal disease in obesity and metabolic syndrome (MS) is mostly unknown. This is in part because of the limited information about renal morphological changes in these conditions. We evaluated renal histology in subjects with MS and those without MS, who are participants in the European Nephrectomy Biobank (ENBiBA) project. Methods: MS was defined with at least 3 of the following criteria: (i) body mass index (BMI) ≥27 kg/m2; (ii) prediabetes: fasting glucose of 100-125 mg/dl or HbA1c >5.7%; (iii) systolic or diastolic blood pressure >140/90 mm Hg or the use of medications; and (iv) triglycerides >150 mg/dl or high-density lipoprotein cholesterol <40 (in men) or 50 mg/dl (in women). The absence of these criteria defined patients without MS. Exclusion criteria were diabetes or known causes of renal disease. Results: A total of 157 cases were evaluated: 49 without and 108 with MS. Those with MS were older (54 ± 16 vs. 66 ± 11, P < 0.0001), had more prevalent chronic kidney disease (CKD, estimated glomerular filtration rate [eGFR] <60 ml/min): 24% (23%) versus 4% (8%) (P = 0.02), and had higher albumin-to-creatinine ratio (10 [4-68] vs. 4.45 [0-27], P = 0.05) than those without MS. Global sclerosis (3% [1-7] vs. 7% [3-13], P < 0.0001), nodular sclerosis, mesangial expansion, glomerulomegaly; moderate + severe hyalinosis, and arteriosclerosis were more frequent in those with MS than in those without (88 [82] vs. 29 [59]; 83 [77] vs. 30 [61]; P < 0.05). These vascular changes were independent of differences in age. Conclusion: In MS, ischemic renal disease may play a role in renal disease. In addition, some patients may develop lesions compatible with diabetic nephropathy such as increased mesangial expansion and nodular sclerosis. Further analyses are needed to study the consequences of the pandemic of obesity on renal health.

11.
Curr Diabetes Rev ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712372

RESUMEN

ACKGROUND: Diabetes mellitus (DM) frequently results in Diabetic Nephropathy (DN), which has a significant negative impact on the quality of life of diabetic patients. Sphingolipid metabolism is associated with diabetes, but its relationship with DN is unclear. Therefore, screening biomarkers related to sphingolipid metabolism is crucial for treating DN. METHODS: To identify Differentially Expressed Genes (DEGs) in the GSE142153 dataset, we conducted a differential expression analysis (DN samples versus control samples). The intersection genes were obtained by overlapping DEGs and Sphingolipid Metabolism-Related Genes (SMRGs). Furthermore, The Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) algorithms were used to filter biomarkers. We further analyzed the Gene Set Enrichment analysis (GSEA) and the immunoinfiltrational analysis based on biomarkers. RESULTS: We identified 2,186 DEGs associated with DN. Then, five SMR-DEGs were obtained. Subsequently, biomarkers associated with sphingolipid metabolism (S1PR1 and SELL) were identified by applying machine learning and expression analysis. In addition, GSEA showed that these biomarkers were correlated with cytokine cytokine receptor interaction'. Significant variations in B cells, DCs, Tems, and Th2 cells between the two groups suggested that these cells might have a role in DN. CONCLUSION: Overall, we obtained two sphingolipid metabolism-related biomarkers (S1PR1 and SELL) associated with DN, which laid a theoretical foundation for treating DN.

12.
Heliyon ; 10(9): e29364, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720731

RESUMEN

Background: The Jinchan Yishen Tongluo Formula (JCYSTLF) has the effect of delaying senescence in diabetic kidneys. However, the mechanism is not clear. Purpose: Combination methods to investigate the anti-senescence mechanism of JCYSTLF in diabetic kidneys. Methods: The main compounds of JCYSTLF were characterized by LC-MS/MS, and the anti-senescence targets of JCYSTLF were screened via network analysis. Then, we performed in vivo and in vitro experiments to validate the results. Results: The target profiles of compounds were obtained by LC-MS/MS to characterize the primary function of JCYSTLF. Senescence was identified as a key biological functional module of JCYSTLF in the treatment of DN via constructing compounds-target-biological network analysis. Further analysis of senescence-related targets recognized the HIF-1α/autophagy pathway as the core anti-senescence mechanism of JCYSTLF in diabetic kidneys. Animal experiments showed, in comparison with valsartan, JCYSTLF showed an improvement in urinary albumin and renal pathological damage. JCYSTLF enhanced the ability of diabetic kidneys to clear senescence-related proteins via regulating autophagy confirmed by autophagy inhibitor CQ. However, HIF-1α inhibitor 2-ME weakened the role of JCYSLTF in regulating autophagy in diabetic kidneys. Meanwhile, over-expressed HIF-1α in HK-2 cells decreased the levels of SA-ß-gal, p21 and p53 induced by AGEs. Upregulated HIF-1α could reverse the blocking of autophagy induced by AGEs in HK-2 cells evaluated by ptfLC3. Conclusion: We provided in vitro and in vivo evidence for the anti-senescence role of JCYSTLF in regulating the HIF-1α/autophagy pathway.

13.
Front Pediatr ; 12: 1384591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720942

RESUMEN

Celiac disease, firstly described in children, is a type of T-cell enteropathy that occurs in individuals genetically predisposed to gluten exposure. The estimated global prevalence of celiac disease is continuously increasing. Although, traditionally, celiac disease was diagnosed in children with failure to thrive and digestive issues, it is now recognized that may present with a wide range of symptoms beyond gastrointestinal ones. Celiac disease continues to pose significant challenges due to the continuous advancement of knowledge in understanding its pathophysiology, diagnosing the condition, managing its effects, and exploring potential therapeutic approaches. The prevalence of celiac disease is increased among individuals with chronic kidney disease, also. The most frequent associations are with diabetic nephropathy, IgA nephropathy and urolithiasis. A gut-kidney axis has been recognized to play a significant role in chronic kidney diseases. This literature review aims to review the chronic renal pathology associated with celiac disease, with emphasis on childhood.

14.
Mol Biol Rep ; 51(1): 620, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709349

RESUMEN

BACKGROUND: Recent years of evidence suggest the crucial role of renal tubular cells in developing diabetic kidney disease. Scopoletin (SCOP) is a plant-based coumarin with numerous biological activities. This study aimed to determine the effect of SCOP on renal tubular cells in developing diabetic kidney disease and to elucidate mechanisms. METHODS AND RESULTS: In this study, SCOP was evaluated in vitro using renal proximal tubular (HK-2) cells under hyperglycemic conditions to understand its mechanism of action. In HK-2 cells, SCOP alleviated the high glucose-generated reactive oxygen species (ROS), restored the levels of reduced glutathione, and decreased lipid peroxidation. High glucose-induced alteration in the mitochondrial membrane potential was markedly restored in the SCOP-treated cells. Moreover, SCOP significantly reduced the high glucose-induced apoptotic cell population in the Annexin V-FITC flow cytometry study. Furthermore, high glucose markedly elevated the mRNA expression of fibrotic and extracellular matrix (ECM) components, namely, transforming growth factor (TGF)-ß, alfa-smooth muscle actin (α-SMA), collagen I, and collagen III, in HK-2 cells compared to the untreated cells. SCOP treatment reduced these mRNA expressions compared to the high glucose-treated cells. Collagen I and TGF-ß protein levels were also significantly reduced in the SCOP-treated cells. Further findings in HK-2 cells revealed that SCOP interfered with the epithelial-mesenchymal transition (EMT) in the high glucose-treated HK-2 cells by normalizing E-cadherin and downregulating the vimentin and α-SMA proteins. CONCLUSIONS: In conclusion, SCOP modulates the high glucose-generated renal tubular cell oxidative damage and accumulation of ECM components and may be a promising molecule against diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Glucosa , Túbulos Renales Proximales , Estrés Oxidativo , Especies Reactivas de Oxígeno , Escopoletina , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Glucosa/metabolismo , Glucosa/farmacología , Glucosa/toxicidad , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Estrés Oxidativo/efectos de los fármacos , Escopoletina/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Fibrosis , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos
15.
Carbohydr Res ; 540: 109125, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38703663

RESUMEN

Di-d-psicose anhydride (DPA), derived from functional rare saccharide as d-psicose, is investigated for its strong chelating ability. Methylglyoxal (MGO), an important precursor of advanced glycation end-products (AGEs), promotes obesity, and causes complications such as diabetic nephropathy. On mesangial cells, DPA can substantially reduce the negative effects of MGO. DPA effectively trapping MGO in mesangial cells. The bonding properties of the DPA-MGO adduct were discussed by mass spectrometry and nuclear magnetic resonance (NMR). The NMR spectra of the DPA-MGO adduct provide evidence for chelation bonding. The inhibition of AGE formation and the mass spectrometry results of the DPA-MGO adduct indicate that DPA can scavenge MGO at a molar ratio of 1:1. DPA suppressed 330 % of the up-regulated receptor for an AGEs protein expression to a normal level and restored the suppressed glyoxalase 1 level to 86 % of the normal group. This research provides important evidence and theoretical basis for the development of AGE inhibitors derived from rare saccharide.

16.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38695335

RESUMEN

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Asunto(s)
Cobalto , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratas Sprague-Dawley , Túbulos Renales/patología , Túbulos Renales/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Indazoles/farmacología , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Línea Celular
17.
Tissue Cell ; 88: 102395, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38692159

RESUMEN

Polyuria is an early sign of diabetic nephropathy (DN) that produces dehydration in diabetic patients. This could be caused by alteration of renal aquaporin 2 (AQP2) expression. This study aimed to describe the relation between autophagy modulation via intermittent fasting (IF) and renal AQP2 expression and polyuria in case of DN. We divided the rats into control, DN and IF groups. After 2 and 4 weeks of diabetes induction, blood glucose (BG), serum creatinine (Scr), urine volume, and 24 hours urine protein (UP) were examined. Diabetic nephropathy histopathological index (DNHI) was calculated to evaluate histopathological changes. Immunohistochemistry and real-time PCR were performed to measure the levels of AQP2 and the autophagy marker; LC3 in kidney tissue. DNHI was correlated to the PCR and immunoexpression of AQP2 and LC3. Intermittent fasting significantly decreased the BG, Scr, urine volume, 24 hours UP, and DNHI as compared diabetes. Diabetes significantly elevated the immunoreactivity and mRNA expression levels of AQP2 and LC3 as compared to the control. However, the IF decreased AQP2 and stimulated autophagy in cyclic fashion. Our data revealed significant positive correlations between AQP2 and LC3 at the level of immunoexpression and mRNA at 2nd weeks. Taken together, these data showed that autophagy stimulation didn't regulate AQP2 expression in case of diabetic nephropathy, however IF decreased polyuria through improvement of glycemic state.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38695075

RESUMEN

Diabetic nephropathy remains the leading cause of end-stage kidney disease in many countries, and additional therapeutic targets are needed to prevent its development and progression. Some angiogenic factors are involved in the pathogenesis of diabetic nephropathy. Vasohibin-2 (VASH2) is a novel proangiogenic factor, and our previous study showed that glomerular damage is inhibited in diabetic Vash2 homozygous knockout mice. Therefore, we established a VASH2-targeting peptide vaccine as a tool for anti-VASH2 therapy in diabetic nephropathy. In this study, the preventive effects of the VASH2-targeting peptide vaccine against glomerular injury were examined in a streptozotocin (STZ)-induced diabetic mouse model. The mice were subcutaneously injected with the vaccine at two doses 2 weeks apart and then intraperitoneally injected with 50 mg/kg STZ for 5 consecutive days. Glomerular injury was evaluated 20 weeks after the first vaccination. Treatment with the VASH2-targeting peptide vaccine successfully induced circulating anti-VASH2 antibody without inflammation in major organs. Although the vaccination did not affect blood glucose levels, it significantly prevented hyperglycemia-induced increases in urinary albumin excretion and glomerular volume. The vaccination did not affect increased VASH2 expression but significantly inhibited renal angiopoietin-2 (Angpt2) expression in the diabetic mice. Furthermore, it significantly prevented glomerular macrophage infiltration. The preventive effects of vaccination on glomerular injury were also confirmed in db/db mice. Taken together, the results of this study suggest that the VASH2-targeting peptide vaccine may prevent diabetic glomerular injury in mice by inhibiting Angpt2-mediated microinflammation.

19.
Diabetes Obes Metab ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695216

RESUMEN

AIM: The paradoxical protective association between overweight/obesity and diabetic microvascular complications (DMC), a phenomenon well-known as the obesity paradox, has been considered a non-causal association based on methodological influences. We aimed to investigate the association of generalized and abdominal obesity, as measured by body mass index (BMI) and waist circumference (WC), respectively, with DMC in patients with type 2 diabetes (T2D), using a causal inference approach. MATERIALS AND METHODS: We enrolled 1436 patients with clinically diagnosed T2D but not DMC at baseline in a community-based prospective cohort in China between 2017 and 2019 and followed them annually until 2022 with new-onset DMC recorded. Marginal structural Cox models with inverse probability weighting were constructed to determine the causal association. Subgroup analyses were performed to identify potential effect modifiers. RESULTS: We observed 360 incident DMC cases, including 109 cases of diabetic nephropathy (DN) and 277 cases of diabetic retinopathy (DR) during four follow-up visits. Multivariable-adjusted hazard ratios (95% confidence intervals) for overall DMC, DN and DR were 1.037 (1.005-1.071), 1.117 (1.062-1.175) and 1.018 (0.980-1.059) for 1 kg/m2 increase in BMI, and 1.005 (0.994-1.017), 1.034 (1.018-1.051) and 1.000 (0.987-1.014) for 1 cm increase in WC, respectively. Similar patterns were observed across the BMI and WC categories, while the positive association appeared to be more pronounced in women. CONCLUSIONS: Generalized but not abdominal obesity was associated with an increased risk for the overall DMC, whereas both obesities were causally related to DN, albeit not DR, in T2D. Routine weight management should not be neglected in diabetes care, particularly in women.

20.
Diabetes Obes Metab ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38699995

RESUMEN

Chronic kidney disease (CKD) is a major global health problem, affecting about 9.5% of the population and 850 million people worldwide. In primary care, most CKD is caused by diabetes and/or hypertension, but a substantial proportion of cases may have alternative causes. During the early stages, CKD is asymptomatic, and many people are unaware that they are living with the disease. Despite the lack of symptoms, CKD is associated with elevated risks of cardiovascular disease, progressive kidney disease, kidney failure and premature mortality. Risk reduction strategies are effective and cost-effective but require early diagnosis through testing of the estimated glomerular filtration rate and albuminuria in high-risk populations. Once diagnosed, the treatment of CKD centres around lifestyle interventions, blood pressure and glycaemic control, and preventative treatments for cardiovascular disease and kidney disease progression. Most patients with CKD should be managed with statins, renin-angiotensin-aldosterone system inhibitors and sodium-glucose cotransporter-2 inhibitors. Additional treatment options to reduce cardiorenal risk are available in patients with diabetes, including glucagon-like peptide-1 receptor agonists and non-steroidal mineralocorticoid receptor antagonists. The Kidney Failure Risk Equation is a new tool that can support the identification of patients at high risk of progressive kidney disease and kidney failure and can be used to guide referrals to nephrology. This review summarizes the latest guidance relevant to managing adults with, or at risk of, CKD and provides practical advice for managing patients with CKD in primary care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...