Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.339
Filtrar
1.
Chin Herb Med ; 16(2): 282-292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38706831

RESUMEN

Objective: Myocardial infarction (MI) is linked to an imbalance in the supply and demand of blood oxygen in the heart muscles. Beta-blockers and calcium antagonists are just two of the common medications used to treat MI. However, these have reportedly been shown to be either ineffective or to have undesirable side effects. Extract of Ginkgo biloba leaves (GBE), a Chinese herbal product offers special compatibility benefits in therapeutic settings relating to inflammatory diseases and oxidative stress. In order to better understand how GBE affects MI in rats insulted by isoprenaline (ISO), the current study was designed. Methods: The heart weight index, serum lipid profile, cardiac marker enzymes, endogenous antioxidants [catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), nitrites and malondialdehyde (MDA)], inflammatory mediators [tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)], immunohistochemical expressions of B-cell lymphoma factor-2 (Bcl-2), extracellular signal-regulated kinase (ERK1/2), and mammalian target of rapamycin (mTOR) and histopathological analysis were used to assess the cardioprotective properties of GBE. Results: The findings showed that GBE effectively attenuated myocardial infarction by boosting the body's natural antioxidant defense system and reducing the release of inflammatory cytokines as well as heart injury marker enzymes. The expression of Bcl-2, ERK1/2 and mTOR was increased while the histomorphological alterations were reversed. Conclusion: The cardioprotective effects of GBE may be due to a mechanism involving increased Bcl-2/mTOR/ERK1/2/Na+, K+-ATPase activity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38708522

RESUMEN

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSC). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSC with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38709429

RESUMEN

In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/ß) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.

4.
Comp Biochem Physiol B Biochem Mol Biol ; 273: 110987, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740177

RESUMEN

The Macrobrachium amazonicum complex is composed of at least the Macrobrachium amazonicum and Macrobrachium pantanalense species, with the latter described from specimens originally identified as part of an endemic M. amazonicum population in the Brazilian Pantanal region. While there may be a reproductive barrier between these two Macrobrachium species, both are phylogenetically close, with small genetic distance. However, there is currently no available biochemical information of Macrobrachium pantanalense (Na+, K+)-ATPase. Here, we report the kinetic characteristics of the gill (Na+, K+)-ATPase in two populations of M. pantanalense from Baiazinha Lagoon (Miranda, MS, Brazil) and Araguari River (Uberlândia, MG, Brazil), and compare them with Macrobrachium amazonicum populations from the Paraná-Paraguay River Basin. (Na+, K+)-ATPase activities were 67.9 ± 3.4 and 93.3 ± 4.1 nmol Pi min-1 mg-1 protein for the Baiazinha Lagoon and Araguari River populations, respectively. Two ATP hydrolyzing sites were observed for the Araguari River population while a single ATP site was observed for the Baiazinha Lagoon shrimps. Compared to the Araguari River population, a 3-fold greater apparent affinity for Mg2+ and Na+ was estimated for the Baiazinha Lagoon population, but no difference in K+ affinity and ouabain inhibition was seen. The kinetic differences observed in the gill (Na+, K+)-ATPase between the two populations of M. pantanalense, compared with those of various M. amazonicum populations, highlight interspecific divergence within the Macrobrachium genus, now examined from a biochemical perspective.

5.
Mol Biol Rep ; 51(1): 496, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587695

RESUMEN

BACKGROUND: The iono- and osmoregulatory capacities of marine teleosts, such as European sea bass (Dicentrarchus labrax) are expected to be challenged by high carbon dioxide exposure, and the adverse effects of elevated CO2 could be amplified when such fish migrate into less buffered hypo-osmotic estuarine environments. Therefore, the effects of increased CO2 on the physiological responses of European sea bass (Dicentrarchus labrax) acclimated to 32 ppt, 10 ppt and 2.5 ppt were investigated. METHODS: Following acclimation to different salinities for two weeks, fish were exposed to present-day (400 µatm) and future (1000 µatm) atmospheric CO2 for 1, 3, 7 and 21 days. Blood pH, plasma ions (Na+, K+, Cl-), branchial mRNA expression of ion transporters such as Na+/K+-ATPase (NKA), Na+/K+/2Cl- co-transporters (NKCC) and ammonia transporters (e.g. Rhesus glycoproteins Rhbg, Rhcg1 and Rhcg2) were examined to understand the iono- and osmoregulatory consequences of elevated CO2. RESULTS: A transient but significant increase in the blood pH of exposed fish acclimated at 10 ppt (day 1) and 2.5 ppt (day 21) was observed possibly due to an overshoot of the blood HCO3- accumulation while a significant reduction of blood pH was observed after 21 days at 2.5ppt. However, no change was seen at 32 ppt. Generally, Na + concentration of control fish was relatively higher at 10 ppt and lower at 2.5 ppt compared to 32 ppt control group at all sampling periods. Additionally, NKA was upregulated in gill of juvenile sea bass when acclimated to lower salinities compared to 32 ppt control group. CO2 exposure generally downregulated NKA mRNA expression at 32ppt (day 1), 10 ppt (days 3, 7 and 21) and 2.5ppt (days 1 and 7) and also a significant reduction of NKCC mRNA level of the exposed fish acclimated at 32 ppt (1-3 days) and 10 ppt (7-21 days) was observed. Furthermore, Rhesus glycoproteins were generally upregulated in the fish acclimated at lower salinities indicating a higher dependance on gill ammonia excretion. Increased CO2 led to a reduced expression of Rhbg and may therefore reduce ammonia excretion rate. CONCLUSION: Juvenile sea bass were relatively successful in keeping acid base balance under an ocean acidification scenario. However, this came at a cost for ionoregulation with reduced NKA, NKCC and Rhbg expression rates as a consequence.


Asunto(s)
Lubina , Animales , Lubina/genética , Dióxido de Carbono , Amoníaco , Concentración de Iones de Hidrógeno , Agua de Mar , Macaca mulatta , Glicoproteínas , ARN Mensajero
6.
Mol Cell Biochem ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594455

RESUMEN

Cardiomyocytes undergo a variety of cell death events during myocardial ischemia‒reperfusion injury (MIRI). Understanding the causes of cardiomyocyte mortality is critical for the prevention and treatment of MIRI. Among the various types of cell death, autosis is a recently identified type of autophagic cell death with distinct morphological and chemical characteristics. Autosis can be attenuated by autophagy inhibitors but not reversed by apoptosis or necrosis inhibitors. In recent years, it has been shown that during the late phase of reperfusion, autosis is activated, which exacerbates myocardial injury. This article describes the characteristics of autosis, autophagic cell death, and the relationship between autophagic cell death and autosis; reviews the mechanism of autosis in MIRI; and discusses its clinical significance.

7.
J Physiol Sci ; 74(1): 23, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561668

RESUMEN

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.


Asunto(s)
Glicósidos Cardíacos , Neoplasias de la Tiroides , Humanos , Glicósidos Cardíacos/farmacología , Glicósidos Cardíacos/metabolismo , Glicósidos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/farmacología , Proteínas de Neoplasias/metabolismo
8.
Mol Biol Rep ; 51(1): 517, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622478

RESUMEN

BACKGROUND: We previously demonstrated that insulin-like growth factor-1 (IGF-1) regulates sodium/potassium adenosine triphosphatase (Na+/K+-ATPase) in vascular smooth muscle cells (VSMC) via phosphatidylinositol-3 kinase (PI3K). Taking into account that others' work show that IGF-1 activates the PI3K/protein kinase B (Akt) signaling pathway in many different cells, we here further questioned if the Akt/mammalian target of rapamycin (mTOR)/ribosomal protein p70 S6 kinase (S6K) pathway stimulates Na+/K+-ATPase, an essential protein for maintaining normal heart function. METHODS AND RESULTS: There were 14 adult male Wistar rats, half of whom received bolus injections of IGF-1 (50 µg/kg) for 24 h. We evaluated cardiac Na+/K+-ATPase expression, activity, and serum IGF-1 levels. Additionally, we examined the phosphorylated forms of the following proteins: insulin receptor substrate (IRS), phosphoinositide-dependent kinase-1 (PDK-1), Akt, mTOR, S6K, and α subunit of Na+/K+-ATPase. Additionally, the mRNA expression of the Na+/K+-ATPase α1 subunit was evaluated. Treatment with IGF-1 increases levels of serum IGF-1 and stimulates Na+/K+-ATPase activity, phosphorylation of α subunit of Na+/K+-ATPase on Ser23, and protein expression of α2 subunit. Furthermore, IGF-1 treatment increased phosphorylation of IRS-1 on Tyr1222, Akt on Ser473, PDK-1 on Ser241, mTOR on Ser2481 and Ser2448, and S6K on Thr421/Ser424. The concentration of IGF-1 in serum positively correlates with Na+/K+-ATPase activity and the phosphorylated form of mTOR (Ser2448), while Na+/K+-ATPase activity positively correlates with the phosphorylated form of IRS-1 (Tyr1222) and mTOR (Ser2448). CONCLUSION: These results indicate that the Akt/mTOR/S6K signalling pathway may be involved in the IGF-1 regulating cardiac Na+/K+-ATPase expression and activity.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Proteínas Proto-Oncogénicas c-akt , Animales , Masculino , Ratas , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas S6 Ribosómicas
9.
Toxicol In Vitro ; 98: 105815, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636607

RESUMEN

The action of calix[4]arenes C-424, C-425 and C-1193 has been investigated on suspended cholesterol/egg phosphatidylcholine lipid bilayer in a voltage-clamp mode. Comparative analysis with the membrane action by calix[4]arene-bis-α-hydroxymethylphosphonic acid (C-99) has shown that the substitution of bridge carbons for sulphur and addition of another methyl group to two alkyl tales in the lower rim of former dipropoxycalix[4]arene C-99 transformed mobile carrier that C-99 created in lipid bilayer (Shatursky et al., 2014) into a transmembrane pore as exposure of the bilayer membrane to sulphur-containing derivative dibutoxythiocalix[4]arene C-1193 resulted in microscopic transmembrane current patterns indicative of a channel-like mode of facilitated diffusion. Within all calix[4]arenes tested a net steady-state voltage-dependent transmembrane current was readily achieved only after addition of calix[4]-arene C-1193. In comparison with the membrane action of C-99 the current induced by calix[4]-arene C-1193 exhibited a much weakened anion selectivity passing slightly more current at positive potentials applied from the side of bilayer membrane to which the calix[4]-arene was added. Testing C-1193 for the membrane action against smooth muscle cells of rat uterus or swine myometrium and synaptosomes of rat brain nerve terminals revealed an increase in intracellular concentration of Ca2+ with reduction of the effective hydrodynamic diameter of the smooth muscle cells and enhanced basal extracellular level of neurotransmitters (glutamate and γ-aminobutyric acid) after C-1193-induced depolarization of the nerve terminals.

10.
Am J Physiol Cell Physiol ; 326(5): C1505-C1519, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557355

RESUMEN

Glaucoma is a blinding disease. Reduction of intraocular pressure (IOP) is the mainstay of treatment, but current drugs show side effects or become progressively ineffective, highlighting the need for novel compounds. We have synthesized a family of perhydro-1,4-oxazepine derivatives of digoxin, the selective inhibitor of Na,K-ATPase. The cyclobutyl derivative (DcB) displays strong selectivity for the human α2 isoform and potently reduces IOP in rabbits. These observations appeared consistent with a hypothesis that in ciliary epithelium DcB inhibits the α2 isoform of Na,K-ATPase, which is expressed strongly in nonpigmented cells, reducing aqueous humor (AH) inflow. This paper extends assessment of efficacy and mechanism of action of DcB using an ocular hypertensive nonhuman primate model (OHT-NHP) (Macaca fascicularis). In OHT-NHP, DcB potently lowers IOP, in both acute (24 h) and extended (7-10 days) settings, accompanied by increased aqueous humor flow rate (AFR). By contrast, ocular normotensive animals (ONT-NHP) are poorly responsive to DcB, if at all. The mechanism of action of DcB has been analyzed using isolated porcine ciliary epithelium and perfused enucleated eyes to study AH inflow and AH outflow facility, respectively. 1) DcB significantly stimulates AH inflow although prior addition of 8-Br-cAMP, which raises AH inflow, precludes additional effects of DcB. 2) DcB significantly increases AH outflow facility via the trabecular meshwork (TM). Taken together, the data indicate that the original hypothesis on the mechanism of action must be revised. In the OHT-NHP, and presumably other species, DcB lowers IOP by increasing AH outflow facility rather than by decreasing AH inflow.NEW & NOTEWORTHY When applied topically, a cyclobutyl derivative of digoxin (DcB) potently reduces intraocular pressure in an ocular hypertensive nonhuman primate model (Macaca fascicularis), associated with increased aqueous humor (AH) flow rate (AFR). The mechanism of action of DcB involves increased AH outflow facility as detected in enucleated perfused porcine eyes and, in parallel, increased (AH) inflow as detected in isolated porcine ciliary epithelium. DcB might have potential as a drug for the treatment of open-angle human glaucoma.


Asunto(s)
Humor Acuoso , Digoxina , Presión Intraocular , Macaca fascicularis , Hipertensión Ocular , Animales , Presión Intraocular/efectos de los fármacos , Digoxina/farmacología , Humor Acuoso/metabolismo , Humor Acuoso/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Hipertensión Ocular/fisiopatología , Hipertensión Ocular/metabolismo , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Glaucoma/metabolismo , Glaucoma/fisiopatología , Conejos , Humanos , Cuerpo Ciliar/efectos de los fármacos , Cuerpo Ciliar/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Masculino , Malla Trabecular/efectos de los fármacos , Malla Trabecular/metabolismo
11.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574977

RESUMEN

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Asunto(s)
Neuronas Dopaminérgicas , Ferroptosis , Mitofagia , Enfermedad de Parkinson , ATPasa Intercambiadora de Sodio-Potasio , Animales , Mitofagia/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/tratamiento farmacológico , Humanos , Masculino , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Haploinsuficiencia , Ratones Noqueados
12.
Artículo en Inglés | MEDLINE | ID: mdl-38451282

RESUMEN

The treatment of non-small cell lung cancer (NSCLC) is known as a significant level of unmet medical need in spite of the progress in targeted therapy and personalized therapy. Overexpression of the Na+/K+-ATPase contributes to NSCLC progression, suggesting its potentiality in antineoplastic approaches. Epi-reevesioside F, purified from Reevesia formosana, showed potent anti-NSCLC activity through inhibiting the Na+/K+-ATPase, leading to internalization of α1- and α3-subunits in Na+/K+-ATPase and suppression of Akt-independent mTOR-p70S6K-4EBP1 axis. Epi-reevesioside F caused a synergistic amplification of apoptosis induced by gefitinib but not cisplatin, docetaxel, etoposide, paclitaxel, or vinorelbine in both NCI-H460 and A549 cells. The synergism was validated by enhanced activation of the caspase cascade. Bax cleavage, tBid formation, and downregulation of Bcl-xL and Bcl-2 contributed to the synergistic apoptosis induced by the combination treatment of epi-reevesioside F and gefitinib. The increase of membrane DR4 and DR5 levels, intracellular Ca2+ concentrations, and active m-calpain expression were responsible for the caspase-8 activation and Bax cleavage. The increased α-tubulin acetylation and activation of MAPK (i.e., p38 MAPK, Erk, and JNK) depending on cell types contributed to the synergistic mechanism under combination treatment. These signaling pathways that converged on profound c-Myc downregulation led to synergistic apoptosis in NSCLC. In conclusion, the data suggest that epi-reevesioside F inhibits the Na+/K+-ATPase and displays potent anti-NSCLC activity. Epi-reevesioside F sensitizes gefitinib-induced apoptosis through multiple pathways that converge on c-Myc downregulation. The data support the inhibition of Na+/K+-ATPase as a switch-on mechanism to sensitize gefitinib-induced anti-NSCLC activity.

13.
J Bioenerg Biomembr ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517564

RESUMEN

Na,K-ATPase is a crucial enzyme responsible for maintaining Na+, K+-gradients across the cell membrane, which is essential for numerous physiological processes within various organs and tissues. Due to its significance in cellular physiology, inhibiting Na,K-ATPase can have profound physiological consequences. This characteristic makes it a target for various pharmacological applications, and drugs that modulate the pump's activity are thus used in the treatment of several medical conditions. Cytochrome c (Cytc) is a protein with dual functions in the cell. In the mitochondria, it is essential for ATP synthesis and energy production. However, in response to apoptotic stimuli, it is released into the cytosol, where it triggers programmed cell death through the intrinsic apoptosis pathway. Aside from its role in canonical intrinsic apoptosis, Cytc also plays additional roles. For instance, Cytc participates in certain non-apoptotic functions -those which are less well-understood in comparison to its role in apoptosis. Within this in vitro study, we have shown the impact of Cytc on Na,K-ATPase for the first time. Cytc has a biphasic action on Na,K-ATPase, with activation at low concentrations (0.06 ng/ml; 6 ng/ml) and inhibition at high concentration (120 ng/ml). Cytc moreover displays isoform/subunit specificity and regulates the Na+ form of the enzyme, while having no effect on the activity or kinetic parameters of the K+-dependent form of the enzyme. Changing the affinity of p-chloromercuribenzoic acid (PCMB) by Cytc is therefore both a required and sufficient condition for confirming that PCMB and Cytc share the same target, namely the thiol groups of cysteine in Na,K-ATPase.

14.
Neurosci Lett ; 826: 137730, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38485080

RESUMEN

PURPOSE: Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS: Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS: Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION: These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.


Asunto(s)
Acetilcolinesterasa , Senoterapéuticos , Ratas , Femenino , Ratones , Animales , Catalasa/metabolismo , Acetilcolinesterasa/metabolismo , Ratas Wistar , Ratones Endogámicos C57BL , Antioxidantes/farmacología , Estrés Oxidativo , Quercetina/farmacología , Encéfalo/metabolismo , Superóxido Dismutasa/metabolismo , Adenosina Trifosfatasas
15.
Biomed Pharmacother ; 174: 116447, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518606

RESUMEN

Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.


Asunto(s)
Canales Epiteliales de Sodio , Eritropoyetina , Ratas Sprague-Dawley , Síndrome de Dificultad Respiratoria , Sepsis , ATPasa Intercambiadora de Sodio-Potasio , Ubiquitinación , Animales , Canales Epiteliales de Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Eritropoyetina/farmacología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Ubiquitinación/efectos de los fármacos , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Masculino , Ratas , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología , Lipopolisacáridos , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad
16.
Int. j. morphol ; 42(1): 205-215, feb. 2024. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-1528814

RESUMEN

SUMMARY: This study assessed the effects of Acacia Senegal (AS) combined with insulin on Na+/K+-ATPase (NKA) activity and mRNA expression, serum glucose, renal function, and oxidative stress in a rat model of diabetic nephropathy (DN). Sixty rats were equally divided into six groups: normal control, normal+AS, diabetic (DM), DM+insulin, DM+AS, and DM+insulin+AS groups. Diabetes mellitus (type 1) was induced by a single injection of streptozotocin (65 mg/kg), and insulin and AS treatments were carried until rats were culled at the end of week 12. Serum glucose and creatinine levels, hemoglobin A1c (HbA1c) were measured. Renal homogenate levels of NKA activity and gene expression, malondialdehyde, superoxide dismutase (SOD), catalase and reduced glutathione (GSH) were evaluated as well as kidney tissue histology and ultrastructure. Diabetes caused glomerular damage and modulation of blood and tissue levels of creatinine, glucose, HbA1c, malondialdehyde, NKA activity and gene expression, SOD, catalase and GSH, which were significantly (p<0.05) treated with AS, insulin, and insulin plus AS. However, AS+insulin treatments were more effective. In conclusion, combined administration of AS with insulin to rats with DN decreased NKA activity and gene expression as well as oxidative stress, and improved glycemic state and renal structure and function.


Este estudio evaluó los efectos de Acacia senegal (AS) combinada con insulina sobre la actividad Na+/K+- ATPasa (NKA) y la expresión de ARNm, la glucosa sérica, la función renal y el estrés oxidativo en un modelo de nefropatía diabética (ND) en ratas. Sesenta ratas se dividieron equitativamente en seis grupos: control normal, normal+AS, diabética (DM), DM+insulina, DM+AS y DM+insulina+AS. La diabetes mellitus (tipo 1) se indujo mediante una única inyección de estreptozotocina (65 mg/kg), y los tratamientos con insulina y AS se llevaron a cabo hasta que las ratas fueron sacrificadas al final de la semana 12. Se midieron niveles séricos de glucosa y creatinina, hemoglobina A1c (HbA1c). Se evaluaron los niveles de homogeneizado renal de actividad NKA y expresión génica, malondialdehído, superóxido dismutasa (SOD), catalasa y glutatión reducido (GSH), así como la histología y ultraestructura del tejido renal. La diabetes causó daño glomerular y modulación de los niveles sanguíneos y tisulares de creatinina, glucosa, HbA1c, malondialdehído, actividad y expresión génica de NKA, SOD, catalasa y GSH, los cuales fueron tratados significativamente (p<0,05) con AS, insulina e insulina más AS. Sin embargo, los tratamientos con AS+insulina fueron más efectivos. En conclusión, la administración combinada de AS con insulina a ratas con DN disminuyó la actividad de NKA y la expresión genética, así como el estrés oxidativo, y mejoró el estado glucémico y la estructura y función renal.


Asunto(s)
Animales , Masculino , Ratas , Extractos Vegetales/administración & dosificación , ATPasa Intercambiadora de Sodio-Potasio/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Acacia/química , Superóxido Dismutasa , Hemoglobina Glucada/análisis , Extractos Vegetales/farmacología , Expresión Génica , Ratas Sprague-Dawley , ATPasa Intercambiadora de Sodio-Potasio/genética , Estrés Oxidativo , Microscopía Electrónica de Transmisión , Modelos Animales de Enfermedad , Quimioterapia Combinada , Control Glucémico , Insulina/administración & dosificación , Riñón/efectos de los fármacos , Malondialdehído
17.
Mol Brain ; 17(1): 8, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350944

RESUMEN

Inositol pyrophosphates are key signaling molecules that regulate diverse neurobiological processes. We previously reported that the inositol pyrophosphate 5-InsP7, generated by inositol hexakisphosphate kinase 1 (IP6K1), governs the degradation of Na+/K+-ATPase (NKA) via an autoinhibitory domain of PI3K p85α. NKA is required for maintaining electrochemical gradients for proper neuronal firing. Here we characterized the electrophysiology of IP6K1 knockout (KO) neurons to further expand upon the functions of IP6K1-regulated control of NKA stability. We found that IP6K1 KO neurons have a lower frequency of action potentials and a specific deepening of the afterhyperpolarization phase. Our results demonstrate that deleting IP6K1 suppresses neuronal excitability, which is consistent with hyperpolarization due to an enrichment of NKA. Given that impaired NKA function contributes to the pathophysiology of various neurological diseases, including hyperexcitability in epilepsy, our findings may have therapeutic implications.


Asunto(s)
Inositol , ATPasa Intercambiadora de Sodio-Potasio , Transducción de Señal , Transporte de Proteínas , Neuronas/fisiología
18.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338921

RESUMEN

Bipolar disorder (BD) is a severe and common chronic mental illness characterized by recurrent mood swings between depression and mania. The biological basis of the disease is poorly understood, and its treatment is unsatisfactory. Na+, K+-ATPase is a major plasma membrane transporter and signal transducer. The catalytic α subunit of this enzyme is the binding site for cardiac steroids. Three α isoforms of the Na+, K+-ATPase are present in the brain. Previous studies have supported the involvement of the Na+, K+-ATPase and endogenous cardiac steroids (ECS) in the etiology of BD. Decreased brain ECS has been found to elicit anti-manic and anti-depressive-like behaviors in mice and rats. However, the identity of the specific α isoform involved in these behavioral effects is unknown. Here, we demonstrated that decreasing ECS through intracerebroventricular (i.c.v.) administration of anti-ouabain antibodies (anti-Ou-Ab) decreased the activity of α1+/- mice in forced swimming tests but did not change the activity in wild type (wt) mice. This treatment also affected exploratory and anxiety behaviors in α1+/- but not wt mice, as measured in open field tests. The i.c.v. administration of anti-Ou-Ab decreased brain ECS and increased brain Na+, K+-ATPase activity in wt and α1+/- mice. The serum ECS was lower in α1+/- than wt mice. In addition, a study in human participants demonstrated that serum ECS significantly decreased after treatment. These results suggest that the Na+, K+-ATPase α1 isoform is involved in depressive- and manic-like behaviors and support that the Na+, K+-ATPase/ECS system participates in the etiology of BD.


Asunto(s)
Depresión , ATPasa Intercambiadora de Sodio-Potasio , Humanos , Ratones , Ratas , Animales , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ouabaína/metabolismo , Isoformas de Proteínas/metabolismo , Esteroides
19.
Artículo en Inglés | MEDLINE | ID: mdl-38224831

RESUMEN

Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.


Asunto(s)
Penaeidae , Animales , Penaeidae/metabolismo , Salinidad , Adenosina Trifosfatasas/metabolismo , Temperatura , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Branquias/metabolismo
20.
Cell Rep ; 43(2): 113679, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38236777

RESUMEN

Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.


Asunto(s)
Peroxiredoxina VI , Fosfoproteínas , ATPasa Intercambiadora de Sodio-Potasio , Proteínas de la Membrana , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...