Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.481
Filtrar
1.
Med. clín (Ed. impr.) ; 162(7): 336-342, abril 2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-232082

RESUMEN

Alpha-1 antitrypsin deficiency (AATD) is a rare hereditary condition caused by decreased plasma and tissue levels of alpha-1 antitrypsin (AAT) that can lead to serious lung and liver disease in children and adults. AATD patients face challenges such as under diagnosis, clinical variability, and limited treatment options for liver disease. Early detection and biomarkers for predicting outcomes are needed to improve patient outcome. Currently, the only approved pharmacological therapy is augmentation therapy, which can delay the progression of emphysema. However, alternative strategies such as gene therapy, induced pluripotent stem cells, and prevention of AAT polymerization inside hepatocytes are being investigated. This review aims to summarize and update current knowledge on AATD, identify areas of controversy, and formulate questions for further research. (AU)


El déficit de alfa-1 antitripsina (DAAT) es una enfermedad hereditaria poco frecuente causada por la disminución de los niveles plasmáticos y tisulares de alfa-1 antitripsina (AAT) que puede provocar enfermedades pulmonares y hepáticas graves en niños y adultos. Aquellos con DAAT se enfrentan a retos como el infradiagnóstico, la variabilidad clínica y a las limitadas opciones de tratamiento para la enfermedad hepática. La detección precoz y los biomarcadores para predecir los resultados clínicos son necesarios para mejorar la evolución de los pacientes. En la actualidad, el único tratamiento farmacológico aprobado es la terapia de reposición, que puede retrasar la progresión del enfisema. Sin embargo, se están investigando estrategias alternativas como la terapia génica, las células madre pluripotentes inducidas y la prevención de la polimerización de la AAT en el interior de los hepatocitos. Esta revisión pretende resumir y actualizar los conocimientos actuales sobre la AATD, identificar las áreas de controversia y formular preguntas para futuras investigaciones. (AU)


Asunto(s)
Humanos , Biomarcadores , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Deficiencia de alfa 1-Antitripsina/diagnóstico , Deficiencia de alfa 1-Antitripsina/terapia , Pulmón
2.
J Inherit Metab Dis ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627985

RESUMEN

Sulfite intoxication is the hallmark of four ultrarare disorders that are caused by impaired sulfite oxidase activity due to genetic defects in the synthesis of the molybdenum cofactor or of the apoenzyme sulfite oxidase. Delays on the diagnosis of these disorders are common and have been caused by their unspecific presentation of acute neonatal encephalopathy with high early mortality, followed by the evolution of dystonic cerebral palsy and also by the lack of easily available and reliable diagnostic tests. There is significant variation in survival and in the quality of symptomatic management of affected children. One of the four disorders, molybdenum cofactor deficiency type A (MoCD-A) has recently become amenable to causal treatment with synthetic cPMP (fosdenopterin). The evidence base for the rational use of cPMP is very limited. This prompted the formulation of these clinical guidelines to facilitate diagnosis and support the management of patients. The guidelines were developed by experts in diagnosis and treatment of sulfite intoxication disorders. It reflects expert consensus opinion and evidence from a systematic literature search.

3.
Plant Cell Environ ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629794

RESUMEN

Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level, and consequently affecting the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.

4.
Eur J Med Genet ; 69: 104939, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38614309

RESUMEN

ADH5/ALDH2 deficiency is a rare inherited syndrome characterized by short stature, microcephaly, delayed mental development, and hematopoietic dysfunction and has recently been proposed as a disease paradigm. Acute and severe presentations include aplastic anemia, myelodysplastic syndrome, or leukemia, requiring bone marrow transplantation during childhood. Conversely, non-hematological manifestations may exhibit a prolonged and nonspecific clinical trajectory, with growth failure and developmental delay, most of which are often overlooked, particularly in patients with milder symptoms. Here, we describe the clinical course of a girl with a wide spectrum of clinical presentations, including nonspecific hematopoietic disorders, growth retardation, mild developmental delay, amblyopia, hemophagocytic lymphohistiocytosis, and verruca vulgaris, culminating in a genetic diagnosis of AMeD syndrome at 12 years of age. We also summarized the clinical manifestations of previously reported cases of AMeD syndrome. Cumulatively, 13 females and 5 males have been documented, with a cardinal triad of symptoms, aplastic anemia, short stature, and intellectual disability. Additional characteristic observations included pigmentary deposition in approximately half of the cases and skeletal difficulties in one-quarter. We propose that early diagnosis of patients who exhibit relatively mild phenotypes of skin or skeletal lesions is important for managing and improving the quality of life of patients with AMeD syndrome.

5.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1028-1043, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621910

RESUMEN

This study aims to decipher the mechanism of Buzhong Yiqi Decoction(BZYQD) in the treatment of spleen deficiency syndrome via gut microbiota. The mouse models of spleen deficiency syndrome were established by fecal microbiota transplantation(FMT, from patients with spleen deficiency syndrome) and administration of Sennae Folium(SF, 10 g·kg~(-1)), respectively, and treated with BZYQD for 5 d. The pseudosterile mice(administrated with large doses of antibiotics) and the mice transplanted with fecal bacteria from healthy human were taken as the controls. The levels of IgA, interleukin(IL)-2, IL-1ß, interferon(IFN)-γ, tumor necrosis factor-alpha(TNF-α), and 5-hydroxytryptamine(5-HT) in the intestinal tissue of two models were measured by enzyme-linked immunosorbent assay, and the CD8~+/CD3~+ ratio was determined by flow cytometry. The composition and changes of the gut microbiota were determined by 16S rRNA high-throughput sequencing and qPCR. Furthermore, the correlation analysis was performed to study the mediating role of gut microbiota in the treatment. The results showed that BZYQD elevated the IgA level, lowered the IL-1ß, TNF-α, and 5-HT levels, and decreased the CD8~+/CD3~+ ratio in the intestinal tissue of the two models. Moreover, BZYQD had two-way regulatory effects on the levels of IL-2 and IFN-γ. BZYQD inhibited the overgrowth and reduced the richness of gut microbiota in the SF model, and improved the gut microbiota structure in the two models. Algoriphagus, Mycobacterium, and CL500_29_marine_group were the common differential genera in the two models compared with the control. Acinetobacter, Parabacteroides, and Ruminococcus were the differential genera unique to the FMT model, and Sphingorhabdus, Lactobacillus, and Anaeroplasma were the unique differential genera in the SF model. BZYQD was capable of regulating all these genera. The qPCR results showed that BZYQD increased the relative abundance of Akkermansia muciniphila and decreased that of Bacteroides uniformis in the two models. The correlation analysis revealed that the levels of above intestinal cytokines were significantly correlated with characteristic gut microorganisms in different mo-dels. The IL-1ß level had a significantly positive correlation with Acinetobacter and CL500_29_marine_group in the two models, while the different levels of IL-2 and IFN-γ in the two models may be related to its different gut microbiota structures. In conclusion, BZYQD could regulate the disordered gut microbiota structure in different animal models of spleen deficiency syndrome to improve the intestinal immune status, which might be one of the mechanisms of BZYQD in treating spleen deficiency syndrome.


Asunto(s)
Microbioma Gastrointestinal , Bazo , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , ARN Ribosómico 16S/genética , Interleucina-2/farmacología , Serotonina , Inmunoglobulina A/farmacología
6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1343-1352, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621982

RESUMEN

A research strategy combining transcriptome data mining and experimental verification was adopted to identify the marker genes characterizing the syndrome elements of phlegm, stasis, and deficiency in steroid-induced osteonecrosis of the femoral head(SONFH). Firstly, the common differentially expressed gene sets of SONFH with the syndromes of phlegm-stasis obstructing collaterals, vessel obstruction, and liver-kidney deficiency were obtained from the clinical transcriptomic analysis of a previous study. The differential expression trend analysis and functional gene mining were then employed to predict the candidate marker gene sets representing phlegm, stasis, and deficiency. The whole blood samples from SONFH patients, whole blood samples from SONFH rats, and affected femoral head tissue samples were collected for qPCR, which aimed to determine the expression levels of the candidate marker genes mentioned above. Furthermore, the receiver operating characteristic curve(ROC) was established to objectively evaluate the syndrome differentiation effectiveness of the candidate marker genes mentioned above. The transcriptome data analysis results showed that the candidate marker genes for phlegm was ELOVL fatty acid elongase 6(ELOVL6), and those for stasis were ankyrin 1(ANK1), glycophorin A/B(GYPA/B), and Rh-associated glycoprotein(RHAG). The candidate marker genes for deficiency were solute carrier family 2 member 1(SLC2A1) and stomatin(STOM). The qPCR results showed that compared with that in the non-SONFH group, ELOVL6 had the lowest expression level in the peripheral blood of the SONFH patients with the syndrome of phlegm-stasis obstructing collaterals(P<0.05). Compared with that in the normal control group, ELOVL6 had the lowest expression level in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 4 weeks(P<0.01), and it showed better syndrome differentiation effectiveness of rats modeled for 4 weeks(AUC=0.850, P=0.006) than at other modeling time points(8, 12, 16, and 21 weeks, AUC of 0.689, 0.766, 0.588, and 0.662, respectively). Compared with that in the non-SONFH group, the expression levels of ANK1, GYPA, and RHAG were the lowest in the peripheral blood of SONFH patients with the vessel obstruction syndrome(P<0.05). The expression levels of the three genes were the lowest in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 12 weeks(P<0.05, P<0.01), and their syndrome differentiation effectiveness in the rats modeled for 12 weeks(GYPA: AUC=0.861, P=0.012; ANK1: AUC=0.855, P=0.006; RHAG: AUC=0.854, P=0.009) was superior to that for 4, 8, 16, and 21 weeks(GYPA: AUC=0.646, 0.573, 0.691, and 0.617, respectively; ANK: AUC1=0.630, 0.658, 0.657, and 0.585, respectively; RHAG: AUC=0.592, 0.511, 0.515, and 0.536, respectively). Compared with the non-SONFH group, both SLC2A1 and STOM had the lowest expression levels in the peripheral blood of patients with the syndrome of liver and kidney deficiency(P<0.05). Compared with the normal control group, their expression levels were the lowest in the peripheral blood and affected femoral head tissue of SONFH rats modeled for 21 weeks(P<0.05, except STOM in the peripheral blood of rats). Moreover, the syndrome differentiation effectiveness of SLC2A1 in the rats modeled for 21 weeks(AUC=0.806, P=0.009) was superior to that for 4, 8, 12, and 16 weeks(AUC=0.520, 0.580, 0.741, 0.774, respectively), and STOM was meaningless in syndrome differentiation. In summary, the candidate marker gene for phlegm in SONFH is ELOVL6; the candidate marker genes for stasis are GYPA, RHAG, and ANK1; the candidate marker gene for deficiency is SLC2A1. The results help to reveal the biological connotations of phlegm, stasis, and deficiency in SONFH at the genetic level.


Asunto(s)
Experimentación Animal , Osteonecrosis , Enfermedades Vasculares , Humanos , Ratas , Animales , Transcriptoma , Cabeza Femoral , Síndrome , Esteroides/efectos adversos
7.
J Inherit Metab Dis ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623632

RESUMEN

Long chain 3-hydroxyacyl-CoA dehydrogenase (LCHADD) is the only fatty acid oxidation disorder to develop a progressive chorioretinopathy resulting in vision loss; newborn screening (NBS) for this disorder began in the United States around 2004. We compared visual outcomes among 40 participants with LCHADD or trifunctional protein deficiency diagnosed symptomatically to those who were diagnosed via NBS or a family history. Participants completed ophthalmologic testing including measures of visual acuity, electroretinograms (ERG), fundal imaging, contrast sensitivity, and visual fields. Records were reviewed to document medical and treatment history. Twelve participants presented symptomatically with hypoglycemia, failure to thrive, liver dysfunction, cardiac arrest, or rhabdomyolysis. Twenty eight were diagnosed by NBS or due to a family history of LCHADD. Participants diagnosed symptomatically were older but had similar percent males and genotypes as those diagnosed by NBS. Treatment consisted of fasting avoidance, dietary long-chain fat restriction, MCT, C7, and/or carnitine supplementation. Visual acuity, rod- and cone-driven amplitudes on ERG, contrast sensitivity scores, and visual fields were all significantly worse among participants diagnosed symptomatically compared to NBS. In mixed-effects models, both age and presentation (symptomatic vs. NBS) were significant independent factors associated with visual outcomes. This suggests that visual outcomes were improved by NBS, but there was still lower visual function with advancing age in both groups. Early diagnosis and treatment by NBS is associated with improved visual outcomes and retinal function compared to participants who presented symptomatically. Despite the impact of early intervention, chorioretinopathy was greater with advancing age, highlighting the need for novel treatments.

8.
J Investig Med ; : 10815589241249998, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632835

RESUMEN

Multiple myeloma (MM), constituting 10% of hematological malignancies, poses significant morbidity and mortality, especially with skeletal involvement. Bisphosphonate use in MM may lead to severe hypocalcemia due to vitamin D deficiency (VDD), exacerbating bone marrow plasma cell burden. We aimed to assess VDD prevalence and its impact on outcomes in MM patients. A retrospective cross-sectional analysis (2008-2018) of nationwide inpatient data identified adult MM hospitalizations with VDD using ICD-10-CM codes. Univariate and multivariate analyses were conducted to evaluate prevalence, demographics, and outcomes, with significance set at p < 0.05. Among 330,175 MM hospitalizations, 3.48% had VDD. VDD was more prevalent among 50-75-year-olds (61.72% vs. 59.74%), females (53.36% vs. 44.34%), Blacks (23.34% vs. 22.94%), Whites (65.84% vs. 65.79%), higher income brackets (26.13% vs. 23.85%), and those with comorbidities like hypertension (71.12% vs. 69.89%), dyslipidemia (42.47% vs. 34.98%), obesity (13.63% vs. 10.19%), and alcohol abuse (1.61% vs. 1.34%). In regression analysis, VDD in MM patients correlated with higher morbidity (aOR: 1.24, 95%CI: 1.14-1.36) and major disability (aOR: 1.26, 95%CI: 1.20-1.30). MM patients with VDD exhibit worse outcomes, underscoring the importance of recognizing and managing VDD promptly. Further prospective studies are needed to validate our findings and explore the impact of vitamin D supplementation on MM patient outcomes.

9.
Front Plant Sci ; 15: 1369543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633457

RESUMEN

Plants assimilate inorganic nitrogen (N) to glutamine. Glutamine is the most abundant amino acid in most plant species, the N-supplying precursor of all N-containing compounds in the cell and the first organic nitrogen molecule formed from inorganic nitrogen taken up by the roots. In addition to its role in plant nutrition, glutamine most likely also has a function as a signaling molecule in the regulation of nitrogen metabolism. We investigated whether glutamine influences the high-affinity transporter system for nitrate uptake. Therefore, we analyzed the expression of the nitrate transporter NRT2.4, which is inducible by N deficiency, in Arabidopsis thaliana grown under different nitrogen starvation scenarios, comparing nitrate or glutamine as the sole nitrogen source. Using the reporter line ProNRT2.4:GFP and two independent knockout lines, nrt2.4-1 and nrt2.4-2, we analyzed gene expression and amino acid profiles. We showed that the regulation of NRT2.4 expression depends on available nitrogen in general, for example on glutamine as a nitrogen source, and not specifically on nitrate. In contrast to high nitrate concentrations, amino acid profiles changed to an accumulation of amino acids containing more than one nitrogen during growth in high glutamine concentrations, indicating a switch to nitrogen storage metabolism. Furthermore, we demonstrated that the nrt2.4-2 line shows unexpected effects on NRT2.5 gene expression and the amino acids profile in shoots under high glutamine supply conditions compared to Arabidopsis wild type and nrt2.4-1, suggesting non-NRT2.4-related metabolic consequences in this knockout line.

10.
Heliyon ; 10(7): e29169, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38633631

RESUMEN

Gastric cancer (GC) is one of the most prominent malignancies that originate in the epithelial cells of the gastric mucosa and is one of the main causes of cancer-related mortality worldwide. New circulating biomarkers of exosomal RNA might have great potential for non-invasive early prognosis of GC. Sijunzi Decoction (SJZD) is a typical representative formula of the method of benefiting Qi and strengthening the spleen in Traditional Chinese Medicine (TCM). However, the effects and mechanism of SJZD in treating GC remain unclear. This study looked for biomarkers of exosomal RNA for early prognosis of GC, and explored the mechanism of SJZD in treating GC. A gastric cancer model with spleen deficiency syndrome was established in nude mice, and the curative effects of SJZD were investigated. Differentially expressed miRNAs in plasma and saliva exosomes were sequenced and analyzed. Potential target genes of these miRNAs were predicted and applied for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment annotation. Overlapping miRNAs in saliva and plasma samples were analyzed, and qRT-PCR was performed for verification. miR-151a-3p was selected, and qRT-PCR further determined that miR-151a-3p was downregulated in saliva and plasma exosomes from the SJZD group. The intersected miR-151a-3p target genes were predicted and enriched in the extrinsic apoptotic signaling pathways. SJZD significantly ameliorates gastric cancer with spleen deficiency syndrome in mouse models, and exosomal miRNAs, particularly miR-151-3p, might be modulated by SJZD in plasma and saliva. The exosomal miR-151-3p in saliva may serve as a non-invasive potential marker for gastric cancer diagnosis and prognosis.

11.
Front Endocrinol (Lausanne) ; 15: 1343738, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633754

RESUMEN

Background: Glycine is an integral component of the human detoxification system as it reacts with potentially toxic exogenous and endogenously produced compounds and metabolites via the glycine conjugation pathway for urinary excretion. Because individuals with obesity have reduced glycine availability, this detoxification pathway may be compromised. However, it should be restored after bariatric surgery because of increased glycine production. Objective: To examine the impact of obesity-associated glycine deficiency on the glycine conjugation pathway. We hypothesize that the synthesis rates of acylglycines from endogenous and exogenous sources are significantly reduced in individuals with obesity but increase after bariatric surgery. Methods: We recruited 21 participants with class III obesity and 21 with healthy weight as controls. At baseline, [1,2-13C2] glycine was infused to study the glycine conjugation pathway by quantifying the synthesis rates of several acylglycines. The same measurements were repeated in participants with obesity six months after bariatric surgery. Data are presented as mean ± standard deviation, and p-value< 0.05 is considered statistically significant. Results: Baseline data of 20 participants with obesity were first compared to controls. Participants with obesity were significantly heavier than controls (mean BMI 40.5 ± 7.1 vs. 20.8 ± 2.1 kg/m2). They had significantly lower plasma glycine concentration (168 ± 30 vs. 209 ± 50 µmol/L) and slower absolute synthesis rates of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Pre- and post-surgery data were available for 16 participants with obesity. Post-surgery BMI decreased from 40.9 ± 7.3 to 31.6 ± 6.0 kg/m2. Plasma glycine concentration increased from 164 ± 26 to 212 ± 38 µmol/L) and was associated with significantly higher rates of excretion of acetylglycine, isobutyrylglycine, tigylglycine, isovalerylglycine, and hexanoylglycine. Benzoic acid (a xenobiotic dicarboxylic acid) is excreted as benzoylglycine; its synthesis rate was significantly slower in participants with obesity but increased after bariatric surgery. Conclusion: Obesity-associated glycine deficiency impairs the human body's ability to eliminate endogenous and exogenous metabolites/compounds via the glycine conjugation pathway. This impairment is ameliorated when glycine supply is restored after bariatric surgery. These findings imply that dietary glycine supplementation could treat obesity-associated metabolic complications due to the accumulation of intramitochondrial toxic metabolites. Clinical trial registration: https://clinicaltrials.gov/study/NCT04660513, identifier NCT04660513.

12.
J Clin Med ; 13(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38610814

RESUMEN

Anemia is a common hematological disorder that affects 12% of the community-dwelling population, 40% of hospitalized patients, and 47% of nursing home residents. Our understanding of the impact of inflammation on iron metabolism and erythropoiesis is still lacking. In older adults, anemia can be divided into nutritional deficiency anemia, bleeding anemia, and unexplained anemia. The last type of anemia might be caused by reduced erythropoietin (EPO) activity, progressive EPO resistance of bone marrow erythroid progenitors, and the chronic subclinical pro-inflammatory state. Overall, one-third of older patients with anemia demonstrate a nutritional deficiency, one-third have a chronic subclinical pro-inflammatory state and chronic kidney disease, and one-third suffer from anemia of unknown etiology. Understanding anemia's pathophysiology in people aged 65 and over is crucial because it contributes to frailty, falls, cognitive decline, decreased functional ability, and higher mortality risk. Inflammation produces adverse effects on the cells of the hematological system. These effects include iron deficiency (hypoferremia), reduced EPO production, and the elevated phagocytosis of erythrocytes by hepatic and splenic macrophages. Additionally, inflammation causes enhanced eryptosis due to oxidative stress in the circulation. Identifying mechanisms behind age-related inflammation is essential for a better understanding and preventing anemia in older adults.

13.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611459

RESUMEN

Aluminum (Al) toxicity and phosphorus (P) deficiency are widely recognized as major constraints to agricultural productivity in acidic soils. Under this scenario, the development of ryegrass plants with enhanced P use efficiency and Al resistance is a promising approach by which to maintain pasture production. In this study, we assessed the contribution of growth traits, P efficiency, organic acid anion (OA) exudation, and the expression of Al-responsive genes in improving tolerance to concurrent low-P and Al stress in ryegrass (Lolium perenne L.). Ryegrass plants were hydroponically grown under optimal (0.1 mM) or low-P (0.01 mM) conditions for 21 days, and further supplied with Al (0 and 0.2 mM) for 3 h, 24 h and 7 days. Accordingly, higher Al accumulation in the roots and lower Al translocation to the shoots were found in ryegrass exposed to both stresses. Aluminum toxicity and P limitation did not change the OA exudation pattern exhibited by roots. However, an improvement in the root growth traits and P accumulation was found, suggesting an enhancement in Al tolerance and P efficiency under combined Al and low-P stress. Al-responsive genes were highly upregulated by Al stress and P limitation, and also closely related to P utilization efficiency. Overall, our results provide evidence of the specific strategies used by ryegrass to co-adapt to multiple stresses in acid soils.

14.
Plants (Basel) ; 13(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611498

RESUMEN

In the context of climate change and the reduction of mineral nitrogen (N) inputs applied to the field, winter oilseed rape (WOSR) will have to cope with low-N conditions combined with water limitation periods. Since these stresses can significantly reduce seed yield and seed quality, maintaining WOSR productivity under a wide range of growth conditions represents a major goal for crop improvement. N metabolism plays a pivotal role during the metabolic acclimation to drought in Brassica species by supporting the accumulation of osmoprotective compounds and the source-to-sink remobilization of nutrients. Thus, N deficiency could have detrimental effects on the acclimation of WOSR to drought. Here, we took advantage of a previously established experiment to evaluate the metabolic acclimation of WOSR during 14 days of drought, followed by 8 days of rehydration under high- or low-N fertilization regimes. For this purpose, we selected three leaf ranks exhibiting contrasted sink/source status to perform absolute quantification of plant central metabolites. Besides the well-described accumulation of proline, we observed contrasted accumulations of some "respiratory" amino acids (branched-chain amino acids, lysineand tyrosine) in response to drought under high- and low-N conditions. Drought also induced an increase in sucrose content in sink leaves combined with a decrease in source leaves. N deficiency strongly decreased the levels of major amino acids and subsequently the metabolic response to drought. The drought-rehydration sequence identified proline, phenylalanine, and tryptophan as valuable metabolic indicators of WOSR water status for sink leaves. The results were discussed with respect to the metabolic origin of sucrose and some amino acids in sink leaves and the impact of drought on source-to-sink remobilization processes depending on N nutrition status. Overall, this study identified major metabolic signatures reflecting a similar response of oilseed rape to drought under low- and high-N conditions.

15.
Cureus ; 16(3): e56031, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38606228

RESUMEN

Adrenocortical insufficiency, also known as adrenal insufficiency (AI), is an endocrine disorder characterized by inadequate production of adrenal hormones, including glucocorticoids and mineralocorticoids (MCs). The condition can be categorized as primary, secondary, or tertiary AI, depending on the location of the defect. Classical symptoms of AI include weakness, fatigue, abdominal pain, tachycardia, hypotension, electrolyte imbalances, and hyperpigmentation. In children, the most common cause of AI is classical congenital adrenal hyperplasia, which results from a deficiency in the 21-hydroxylase enzyme. The 21-hydroxylase enzyme produces all steroids, such as cortisol and aldosterone. AI management primarily involves hormone replacement therapy, typically with oral hydrocortisone and MC supplementation. However, the administration of hydrocortisone to pediatric patients presents challenges related to the lack of available dose-appropriate formulations. Historically, crushed or split adult tablets were used for the pediatric treatment of AI, although this poses an increased risk of under- or overtreatment. Inadequate dosing in the pediatric population can adversely affect growth, development, and metabolic health. Alkindi Sprinkle is a pediatric-specific hydrocortisone oral granule preparation that manages cortisol levels to help facilitate accurate therapeutic dosing. Alkindi offers several advantages, including accurate dosing, taste masking, and ease of administration. The present investigation describes AI, the management of AI, and the treatment of pediatric AI using Alkindi Sprinkle, including clinical efficacy.

16.
Eur J Obstet Gynecol Reprod Biol ; 297: 111-119, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38608353

RESUMEN

INTRODUCTION: The objective of this study was to understand the experience of iron deficiency anaemia requiring oral iron in pregnancy and the factors affecting compliance with oral iron supplementation. Participants' understanding regarding the possible consequences of anaemia in pregnancy was also explored. Feedback on a proposed randomised controlled trial of daily versus alternate day oral iron in pregnancy was sought. MATERIALS & METHODS: Following ethical approval, fourteen semi-structured one-to-one interviews were carried out using an interview tool with open-ended questions. Recruitment was carried out through social media and from an antenatal out-patient setting. Interviews were audio-recorded, transcribed and analysed thematically. RESULTS: Fatigue emerged as a predominant and troubling symptom. Awareness was often highlighted through friends/family and from healthcare professionals, particularly in first pregnancies. Knowledge surrounding the potential short-term and long-term adverse consequences of untreated anaemia however was limited. Gastro-intestinal side-effects, a previous experience of poor tolerance and forgetfulness all negatively impacted compliance with oral iron supplementation in pregnancy. Routine, a perceived improvement in fatigue with supplementation and reduced dose frequency recurred as themes which positively affected compliance. Pregnancy as a motivating factor recurred as a theme in analysis. The role of diet was felt to be important. Knowledge of iron-rich foods and absorption aids and inhibitors was good, but practice on optimal ingestion of oral iron supplementation varied. Feedback on trial acceptability was positive with the benefit of extra supportive care noted. Incorporating study visits with routine care was advised in view of time constraints. This area of research was perceived as important. CONCLUSION: In order to successfully reduce the rates of iron deficiency anaemia in pregnancy, it is crucial that all factors affecting compliance with oral iron are considered. Providing women with the important information on the possible consequences of sub optimally treated anaemia may help to improve this public health issue.

17.
J Aquat Anim Health ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38613162

RESUMEN

OBJECTIVE: We sought to identify and characterize an immune deficiency (IMD) homolog from the giant freshwater prawn (also known as the giant river prawn) Macrobrachium rosenbergii. The IMD is a death-domain-containing protein that plays a crucial role as an adaptor protein in the IMD pathway-one of the most important response mechanisms to viral and bacterial invasion of invertebrates. METHODS: An IMD homolog gene from M. rosenbergii (MrIMD) was isolated using rapid amplification of complementary DNA ends. The tissue distribution and response to immune challenge of MrIMD were analyzed by real-time reverse transcription polymerase chain reaction to understand the regulatory mechanism of MrIMD messenger RNA (mRNA) expression in M. rosenbergii. RESULT: The open reading frame of MrIMD comprised 555 nucleotides encoding a protein consisting of 184 amino acids, with a conserved death domain at the C-terminus. The MrIMD protein demonstrated 53-74% similarity with IMDs from other crustaceans; the highest similarity was with the IMD from the oriental river prawn M. nipponense. Gene expression analysis revealed that MrIMD mRNA levels were highest in gill tissues. After Aeromonas hydrophila stimulation, MrIMD was significantly upregulated in the muscle, gills, and intestine, whereas there was no significant difference in the hemocytes and hepatopancreas. In the case of Macrobrachium rosenbergii nodavirus stimulation, MrIMD was dramatically upregulated in the muscle and hepatopancreas, whereas downregulation was observed in the gills. CONCLUSION: These results suggest that the MrIMD gene may play different roles in response to gram-negative bacteria and viral infection and plays a crucial role in innate immunity as an important key molecule in the defense against bacterial and viral infections.

18.
Phytomedicine ; 129: 155604, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38614042

RESUMEN

BACKGROUND: Bone deficiency-related diseases caused by various factors have disrupted the normal function of the skeleton and imposed a heavy burden globally, urgently requiring potential new treatments. The multi-faceted role of compounds like ginsenosides and their interaction with the bone microenvironment, particularly osteoblasts can promote bone formation and exhibit anti-inflammatory, vascular remodeling, and antibacterial properties, holding potential value in the treatment of bone deficiency-related diseases and bone tissue engineering. PURPOSE: This review summarizes the interaction between ginsenosides and osteoblasts and the bone microenvironment in bone formation, including vascular remodeling and immune regulation, as well as their therapeutic potential and toxicity in the broad treatment applications of bone deficiency-related diseases and bone tissue engineering, to provide novel insights and treatment strategies. METHODS: The literature focusing on the mechanisms and applications of ginsenosides in promoting bone formation before March 2024 was searched in PubMed, Web of Science, Google Scholar, Scopus, and Science Direct databases. Keywords such as "phytochemicals", "ginsenosides", "biomaterials", "bone", "diseases", "bone formation", "microenvironment", "bone tissue engineering", "rheumatoid arthritis", "periodontitis", "osteoarthritis", "osteoporosis", "fracture", "toxicology", "pharmacology", and combinations of these keywords were used. RESULTS: Ginsenoside monomers regulate signaling pathways such as WNT/ß-catenin, FGF, and BMP/TGF-ß, stimulating osteoblast generation and differentiation. It exerts angiogenic and anti-inflammatory effects by regulating the bone surrounding microenvironment through signaling such as WNT/ß-catenin, NF-κB, MAPK, PI3K/Akt, and Notch. It shows therapeutic effects and biological safety in the treatment of bone deficiency-related diseases, including rheumatoid arthritis, osteoarthritis, periodontitis, osteoporosis, and fractures, and bone tissue engineering by promoting osteogenesis and improving the microenvironment of bone formation. CONCLUSION: The functions of ginsenosides are diverse and promising in treating bone deficiency-related diseases and bone tissue engineering. Moreover, potential exists in regulating the bone microenvironment, modifying biomaterials, and treating inflammatory-related bone diseases and dental material applications. However, the mechanisms and effects of some ginsenoside monomers are still unclear, and the lack of clinical research limits their clinical application. Further exploration and evaluation of the potential of ginsenosides in these areas are expected to provide more effective methods for treating bone defects.

19.
Proc (Bayl Univ Med Cent) ; 37(3): 466-476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628339

RESUMEN

Introduction: Heart failure (HF) presents a significant health challenge, with intravenous (IV) iron therapy considered a potential treatment avenue. Method: We assessed IV iron therapy's efficacy in HF patients with concurrent iron deficiency versus standard of care. Primary outcomes included the composite of HF hospitalizations or cardiovascular-related mortality, HF hospitalizations, and all-cause, HF, and cardiovascular mortality rates. Secondary measures encompassed improvements in New York Heart Association functional classification, quality of life, 6-minute walk test, left ventricular ejection fraction, and adverse events. We used a random-effects model to compute relative risk (RR) or mean difference (MD) with 95% confidence intervals (CIs). Results: Based on an analysis of 14 randomized controlled trials involving 6614 patients, IV iron therapy significantly reduced composite outcome (RR: 0.84, 95% CI: 0.73, 0.96; P = 0.01) and HF hospitalizations (RR: 0.74, 95% CI: 0.61, 0.89; P = 0.002) compared to standard of care. Mortality rates showed no significant difference. IV iron therapy improved New York Heart Association functional classification, quality of life, and 6-minute walk test, with no major impact on left ventricular ejection fraction. Adverse events remained stable. Conclusions: IV iron therapy holds promise for diminishing HF hospitalizations and enhancing quality of life and 6-minute walk test in HF patients. Yet, its effect on all-cause or cardiovascular mortalities appears limited.

20.
Ther Adv Ophthalmol ; 16: 25158414241240687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628356

RESUMEN

This case series describes the aggregate rate of recovery in five consecutive subjects (six eyes) with retinal vein occlusion (RVO) who received l-methylfolate and other vitamins via Ocufolin®, a medical food. Subjects were followed for 10-33 months by a single ophthalmologist. Ocufolin® was prescribed at the time of diagnosis and subjects remained on the regimen throughout the time of observation. Examinations were performed in an un-masked fashion at 3-month intervals with recording of best corrected visual acuity (BCVA), average retinal nerve fiber layer (ARNFL) and central macular thickness (CMT), and fundus (examination of the retina, macula, optic nerve, and vessels) photography. Testing was done for vitamin deficiencies, vascular and coagulable risk factors, and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Vitamin deficiencies and vascular risk factors were found in all subjects, and all four tested subjects carried at least one MTHFR polymorphism. By the end of the study period BCVA in all subjects was 20/25 or better. Cystoid macular edema was identified and measured by optical coherence tomography (OCT). The percent change was calculated and plotted at 3-month intervals using the percent change in thickness from the time of diagnosis and percent change toward normative values for ARNFL and CMT. The total reduction in thickness of ARNFL and CMT from time of diagnosis was 44.19% and 30.27%, respectively. The comparison to normative data shows a reduction of ARNFL from 164.2% to 94% and CMT from 154.4% to 112.7% of normal thickness (100%). Plots showed the aggregate recovery was most rapid over the first 3 months and slowed over the next 3 months with most of the recovery taking place within 6 months of treatment. The rate of improvement in BCVA and resolution of retinal thickening was found to be better than predicted on historical grounds. No subjects progressed from nonischemic to ischemic RVO. Vitamin deficiencies, vascular risk factors, and genetic predisposition to oxidative stress were common in this RVO series. It appears that addressing these factors with Ocufolin® had a salutary effect on recovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...