Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.545
Filtrar
1.
Nat Commun ; 15(1): 3875, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719800

RESUMEN

The genomes of charophyte green algae, close relatives of land plants, typically do not show signs of developmental regulation by phytohormones. However, scattered reports of endogenous phytohormone production in these organisms exist. We performed a comprehensive analysis of multiple phytohormones in Viridiplantae, focusing mainly on charophytes. We show that auxin, salicylic acid, ethylene and tRNA-derived cytokinins including cis-zeatin are found ubiquitously in Viridiplantae. By contrast, land plants but not green algae contain the trans-zeatin type cytokinins as well as auxin and cytokinin conjugates. Charophytes occasionally produce jasmonates and abscisic acid, whereas the latter is detected consistently in land plants. Several phytohormones are excreted into the culture medium, including auxin by charophytes and cytokinins and salicylic acid by Viridiplantae in general. We note that the conservation of phytohormone biosynthesis and signaling pathways known from angiosperms does not match the capacity for phytohormone biosynthesis in Viridiplantae. Our phylogenetically guided analysis of established algal cultures provides an important insight into phytohormone biosynthesis and metabolism across Streptophyta.


Asunto(s)
Citocininas , Ácidos Indolacéticos , Filogenia , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Viridiplantae/metabolismo , Viridiplantae/genética , Etilenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ciclopentanos/metabolismo , Evolución Biológica , Chlorophyta/metabolismo , Chlorophyta/genética , Transducción de Señal
2.
Sci Rep ; 14(1): 10586, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719951

RESUMEN

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Asunto(s)
Carotenoides , Regulación de la Expresión Génica de las Plantas , Lycium , Nicotiana , Proteínas de Plantas , Tolerancia a la Sal , Carotenoides/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Tolerancia a la Sal/genética , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Especies Reactivas de Oxígeno/metabolismo , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Fotosíntesis/genética , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Ácido Abscísico/metabolismo
3.
BMC Plant Biol ; 24(1): 389, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38730341

RESUMEN

BACKGROUND: Kobreisa littledalei, belonging to the Cyperaceae family is the first Kobresia species with a reference genome and the most dominant species in Qinghai-Tibet Plateau alpine meadows. It has several resistance genes which could be used to breed improved crop varieties. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) is a popular and accurate gene expression analysis method. Its reliability depends on the expression levels of reference genes, which vary by species, tissues and environments. However, K.littledalei lacks a stable and normalized reference gene for RT-qPCR analysis. RESULTS: The stability of 13 potential reference genes was tested and the stable reference genes were selected for RT-qPCR normalization for the expression analysis in the different tissues of K. littledalei under two abiotic stresses (salt and drought) and two hormonal treatments (abscisic acid (ABA) and gibberellin (GA)). Five algorithms were used to assess the stability of putative reference genes. The results showed a variation amongst the methods, and the same reference genes showed tissue expression differences under the same conditions. The stability of combining two reference genes was better than a single one. The expression levels of ACTIN were stable in leaves and stems under normal conditions, in leaves under drought stress and in roots under ABA treatment. The expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was stable in the roots under the control conditions and salt stress and in stems exposed to drought stress. Expression levels of superoxide dismutase (SOD) were stable in stems of ABA-treated plants and in the roots under drought stress. Moreover, RPL6 expression was stable in the leaves and stems under salt stress and in the stems of the GA-treated plants. EF1-alpha expression was stable in leaves under ABA and GA treatments. The expression levels of 28 S were stable in the roots under GA treatment. In general, ACTIN and GAPDH could be employed as housekeeping genes for K. littledalei under different treatments. CONCLUSION: This study identified the best RT-qPCR reference genes for different K. littledalei tissues under five experimental conditions. ACTIN and GAPDH genes can be employed as the ideal housekeeping genes for expression analysis under different conditions. This is the first study to investigate the stable reference genes for normalized gene expression analysis of K. littledalei under different conditions. The results could aid molecular biology and gene function research on Kobresia and other related species.


Asunto(s)
Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones , Plantones/genética , Cyperaceae/genética , Estándares de Referencia , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Sequías , Reproducibilidad de los Resultados , Ácido Abscísico/metabolismo , Giberelinas/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731930

RESUMEN

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Manihot , Proteínas de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Etilenos/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731974

RESUMEN

Tomato (Solanum lycopersicum) breeding for improved fruit quality emphasizes selecting for desirable taste and characteristics, as well as enhancing disease resistance and yield. Seed germination is the initial step in the plant life cycle and directly affects crop productivity and yield. ERECTA (ER) is a receptor-like kinase (RLK) family protein known for its involvement in diverse developmental processes. We characterized a Micro-Tom EMS mutant designated as a knock-out mutant of sler. Our research reveals that SlER plays a central role in controlling critical traits such as inflorescence development, seed number, and seed germination. The elevation in auxin levels and alterations in the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 in sler seeds compared to the WT indicate that SlER modulates seed germination via auxin and abscisic acid (ABA) signaling. Additionally, we detected an increase in auxin content in the sler ovary and changes in the expression of auxin synthesis genes YUCCA flavin monooxygenases 1 (YUC1), YUC4, YUC5, and YUC6 as well as auxin response genes AUXIN RESPONSE FACTOR 5 (ARF5) and ARF7, suggesting that SlER regulates fruit development via auxin signaling.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Ácidos Indolacéticos , Proteínas de Plantas , Semillas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Ácidos Indolacéticos/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731994

RESUMEN

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Asunto(s)
Etilenos , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Plantas Tolerantes a la Sal , Etilenos/biosíntesis , Etilenos/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vías Biosintéticas , Perfilación de la Expresión Génica/métodos , Ácido Abscísico/metabolismo , Salinidad , Transcriptoma
7.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732013

RESUMEN

The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.


Asunto(s)
Ácido Abscísico , Receptor Relacionado con Estrógeno ERRalfa , Metabolismo Energético , Receptores de Estrógenos , Receptores de Estrógenos/metabolismo , Humanos , Animales , Ácido Abscísico/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
8.
Plant Signal Behav ; 19(1): 2349868, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38743594

RESUMEN

The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens­mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.


Asunto(s)
Arabidopsis , Clonación Molecular , Proteínas de Plantas , Plantas Modificadas Genéticamente , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas , Fabaceae/genética , Fabaceae/metabolismo , Fenotipo , Ácido Abscísico/metabolismo , Genes de Plantas
9.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715319

RESUMEN

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Asunto(s)
Pared Celular , Pared Celular/fisiología , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Desarrollo de la Planta/fisiología
10.
Planta ; 259(6): 149, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38724681

RESUMEN

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Edición Génica , Estrés Fisiológico/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
11.
Physiol Plant ; 176(3): e14328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38695265

RESUMEN

While endophytic fungi offer promising avenues for bolstering plant resilience against abiotic stressors, the molecular mechanisms behind this biofortification remain largely unknown. This study employed a multifaceted approach, combining plant physiology, proteomic, metabolomic, and targeted hormonal analyses to illuminate the early response of Brassica napus to Acremonium alternatum during the nascent stages of their interaction. Notably, under optimal growth conditions, the initial reaction to fungus was relatively subtle, with no visible alterations in plant phenotype and only minor impacts on the proteome and metabolome. Interestingly, the identified proteins associated with the Acremonium response included TUDOR 1, Annexin D4, and a plastidic K+ efflux antiporter, hinting at potential processes that could counter abiotic stressors, particularly salt stress. Subsequent experiments validated this hypothesis, showcasing significantly enhanced growth in Acremonium-inoculated plants under salt stress. Molecular analyses revealed a profound impact on the plant's proteome, with over 50% of salt stress response proteins remaining unaffected in inoculated plants. Acremonium modulated ribosomal proteins, increased abundance of photosynthetic proteins, enhanced ROS metabolism, accumulation of V-ATPase, altered abundances of various metabolic enzymes, and possibly promoted abscisic acid signaling. Subsequent analyses validated the accumulation of this hormone and its enhanced signaling. Collectively, these findings indicate that Acremonium promotes salt tolerance by orchestrating abscisic acid signaling, priming the plant's antioxidant system, as evidenced by the accumulation of ROS-scavenging metabolites and alterations in ROS metabolism, leading to lowered ROS levels and enhanced photosynthesis. Additionally, it modulates ion sequestration through V-ATPase accumulation, potentially contributing to the observed decrease in chloride content.


Asunto(s)
Acremonium , Homeostasis , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas , Tolerancia a la Sal , Transducción de Señal , Acremonium/metabolismo , Acremonium/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Tolerancia a la Sal/fisiología , Brassica napus/microbiología , Brassica napus/metabolismo , Brassica napus/fisiología , Brassica napus/efectos de los fármacos , Estrés Salino/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Fotosíntesis
12.
Proc Natl Acad Sci U S A ; 121(21): e2314570121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739804

RESUMEN

Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Lípidos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Lípidos/química , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/genética , Lípidos de la Membrana/metabolismo , Ácido Abscísico/metabolismo , Pared Celular/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferasa
13.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732130

RESUMEN

Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.


Asunto(s)
Ácido Abscísico , Microglía , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Humanos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Animales , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
14.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732175

RESUMEN

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Resistencia a la Sequía
15.
Plant Physiol Biochem ; 210: 108611, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615439

RESUMEN

A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.


Asunto(s)
Ácido Abscísico , Antocianinas , Arándanos Azules (Planta) , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Antocianinas/biosíntesis , Antocianinas/metabolismo , Ácido Abscísico/metabolismo , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Frutas/metabolismo , Frutas/genética
16.
Plant Physiol Biochem ; 210: 108593, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615446

RESUMEN

Cyclic nucleotide-gated ion channels (CNGCs), as non-selective cation channels, play essential roles in plant growth and stress responses. However, they have not been identified in Qingke (Hordeum vulgare L.). Here, we performed a comprehensive genome-wide identification and function analysis of the HvCNGC gene family to determine its role in drought tolerance. Phylogenetic analysis showed that 27 HvCNGC genes were divided into four groups and unevenly located on seven chromosomes. Transcription analysis revealed that two closely related members of HvCNGC3 and HvCNGC16 were highly induced and the expression of both genes were distinctly different in two extremely drought-tolerant materials. Transient expression revealed that the HvCNGC3 and HvCNGC16 proteins both localized to the plasma membrane and karyotheca. Overexpression of HvCNGC3 and HvCNGC16 in Arabidopsis thaliana led to impaired seed germination and seedling drought tolerance, which was accompanied by higher hydrogen peroxide (H2O2), malondialdehyde (MDA), proline accumulation and increased cell damage. In addition, HvCNGC3 and HvCNGC16-overexpression lines reduced ABA sensitivity, as well as lower expression levels of some ABA biosynthesis and stress-related gene in transgenic lines. Furthermore, Yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HvCNGC3 and HvCNGC16 interacted with calmodulin/calmodulin-like proteins (CaM/CML), which, as calcium sensors, participate in the perception and decoding of intracellular calcium signaling. Thus, this study provides information on the CNGC gene family and provides insight into the function and potential regulatory mechanism of HvCNGC3 and HvCNGC16 in drought tolerance in Qingke.


Asunto(s)
Arabidopsis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Sequías , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Ácido Abscísico/metabolismo , Filogenia , Resistencia a la Sequía
17.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673998

RESUMEN

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Pinus/parasitología , Pinus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Clorofila/biosíntesis , Carotenoides/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Terpenos/metabolismo , Clorofila A/metabolismo , Plantas Modificadas Genéticamente , Acetatos/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regiones Promotoras Genéticas , Ácido Abscísico/metabolismo , Vías Biosintéticas
18.
Sci Rep ; 14(1): 9338, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654120

RESUMEN

Induced resistance is considered an eco-friendly disease control strategy, which can enhance plant disease resistance by inducing the plant's immune system to activate the defense response. In recent years, studies have shown that lactic acid can play a role in plant defense against biological stress; however, whether lactic acid can improve tobacco resistance to Phytophthora nicotianae, and its molecular mechanism remains unclear. In our study, the mycelial growth and sporangium production of P. nicotianae were inhibited by lactic acid in vitro in a dose-dependent manner. Application of lactic acid could reduce the disease index, and the contents of total phenol, salicylic acid (SA), jasmonic acid (JA), lignin and H2O2, catalase (CAT) and phenylalanine ammonia-lyase (PAL) activities were significantly increased. To explore this lactic acid-induced protective mechanism for tobacco disease resistance, RNA-Seq analysis was used. Lactic acid enhances tobacco disease resistance by activating Ca2+, reactive oxygen species (ROS) signal transduction, regulating antioxidant enzymes, SA, JA, abscisic acid (ABA) and indole-3-acetic acid (IAA) signaling pathways, and up-regulating flavonoid biosynthesis-related genes. This study demonstrated that lactic acid might play a role in inducing resistance to tobacco black shank disease; the mechanism by which lactic acid induces disease resistance includes direct antifungal activity and inducing the host to produce direct and primed defenses. In conclusion, this study provided a theoretical basis for lactic acid-induced resistance and a new perspective for preventing and treating tobacco black shank disease.


Asunto(s)
Resistencia a la Enfermedad , Ácido Láctico , Nicotiana , Oxilipinas , Phytophthora , Enfermedades de las Plantas , Phytophthora/patogenicidad , Phytophthora/fisiología , Nicotiana/microbiología , Nicotiana/inmunología , Nicotiana/genética , Nicotiana/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/prevención & control , Oxilipinas/metabolismo , Ácido Láctico/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácido Abscísico/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Transducción de Señal , Peróxido de Hidrógeno/metabolismo
19.
BMC Plant Biol ; 24(1): 320, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654155

RESUMEN

BACKGROUND: As a newly class of endogenous phytohormones, strigolactones (SLs) regulate crop growth and yield formation by interacting with other hormones. However, the physiological mechanism of SLs affect the yield by regulating the balance of endogenous hormones of Tartary buckwheat is still unclear. RESULTS: In this study, a 2-year field experiment was conducted on Tartary buckwheat (Jinqiao 2) to study the effects of different concentrations (0, 10, and 20 µmol/L) of artificial synthetic analogs of SLs (rac-GR24) and inhibitor of SL synthesis (Tis-108) on the growth, endogenous-hormone content, and yield of Tartary buckwheat. The main-stem branch number, grain number per plant, grain weight per plant, and yield of Tartary buckwheat continuously decreased with increased rac-GR24 concentration, whereas the main-stem diameter and plant height initially increased and then decreased. Rac-GR24 treatment significantly increased the content of SLs and abscisic acid (ABA) in grains, and it decreased the content of Zeatin (Z) + Zeatin nucleoside (ZR). Conversely, Tis-108 treatment decreased the content of SLs and ABA but increased the content of Z + ZR. Results of correlation analysis showed that the content of ABA and SLs, the ratio of SLs/(Z + ZR), SLs/ABA, and ABA/(Z + ZR) were significantly negatively correlated with the yield of Tartary buckwheat, and that Z + ZR content was significantly positively correlated with the yield. Regression analysis further showed that ABA/ (Z + ZR) can explain 58.4% of the variation in yield. CONCLUSIONS: In summary, by adjusting the level of endogenous SLs in Tartary buckwheat, the balance of endogenous hormones in grains can be changed, thereby exerting the effect on yield. The results can provide a new agronomic method for the high-yield cultivation of Tartary buckwheat.


Asunto(s)
Fagopyrum , Lactonas , Reguladores del Crecimiento de las Plantas , Fagopyrum/efectos de los fármacos , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Lactonas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Ácido Abscísico/metabolismo
20.
J Hazard Mater ; 470: 134228, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626683

RESUMEN

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Asunto(s)
Arsénico , Cadmio , Regulación de la Expresión Génica de las Plantas , Lolium , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Cadmio/toxicidad , Lolium/efectos de los fármacos , Lolium/metabolismo , Lolium/genética , Arsénico/toxicidad , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...