Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tumour Biol ; 39(7): 1010428317712102, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681695

RESUMEN

In cholestasis, increases in bile acid levels result in the generation of reactive oxygen species and the induction of DNA damage and mutation. It is believed that bile acid accumulation is associated with liver tumorigenesis. However, the mechanism that underpins this phenomenon remains to be elucidated. Mcl-1, which is overexpressed in hepatic cells, is a pro-survival member of the Bcl-2 family. In this study, we observed that Mcl-1 potently suppresses the repair of bile acid-induced abasic (apurinic/apyrimidinic) sites in DNA lesions. Upon exposure of hepatic cells to glycochenodeoxycholate, one of the major conjugated human bile acids, we observed an increase in AP site accumulation along with induction of poly(ADP-ribose) polymerase and XRCC1 ( X-Ray Repair Cross Complementing 1). In addition, accumulation of Mcl-1 was observed in the nuclei of QGY-7703 cells in response to glycochenodeoxycholate stimulation. Knockdown of endogenous Mcl-1 by RNA interference significantly accelerated the repair of DNA lesions in glycochenodeoxycholate-treated cells. However, unlike XRCC1, poly(ADP-ribose) polymerase was induced following Mcl-1 knockdown. Conversely, poly(ADP-ribose) polymerase suppression was observed following glycochenodeoxycholate treatment of cells overexpressing Mcl-1. Moreover, AP-site counting analyses revealed that DNA repair activity was enhanced in cells overexpressing poly(ADP-ribose) polymerase under glycochenodeoxycholate stress conditions. It is well known that poly(ADP-ribose) polymerase plays a crucial role in the base excision repair pathway. Thus, our findings suggest that Mcl-1 suppresses base excision repair by inhibiting poly(ADP-ribose) polymerase induction following glycochenodeoxycholate-induced DNA damage. These results potentially explain how bile acid accumulation results in genetic instability and carcinogenesis.


Asunto(s)
Colestasis/genética , Proteínas de Unión al ADN/genética , Neoplasias Hepáticas/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Poli(ADP-Ribosa) Polimerasas/genética , Ácido Apurínico/genética , Ácidos y Sales Biliares/normas , Ácidos y Sales Biliares/toxicidad , Colestasis/metabolismo , Colestasis/patología , Daño del ADN/efectos de los fármacos , Reparación del ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ácido Glicoquenodesoxicólico/toxicidad , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
2.
Mol Biol (Mosk) ; 49(1): 67-74, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-25916111

RESUMEN

Apurinic/apyrimidinic (AP) sites are some of the most frequent lesions in genomic DNA. It is widely accepted that, irrespective of their origin, AP sites are further processed by the base excision repair (BER) machinery, being the central intermediate of this process. Under special conditions, proteins, which recognize AP sites, are able to form covalent adducts with DNA. By combination of the cross-linking technique with mass-spectrometry analysis, Ku antigen (Ku)--the central player in nonhomologous end joining (NHEJ), the pathway of double-strand break (DSB) repair--was identified as a protein reactive to AP sites. Moreover, Ku was shown to be a 5'-dRP/AP lyase that acts near DSBs in NHEJ. The recent studies have demonstrated involvement of Ku in the different stages of BER. Here, Ku roles in NHEJ and BER pathways of DNA repair are overviewed.


Asunto(s)
Antígenos Nucleares/genética , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Animales , Antígenos Nucleares/química , Ácido Apurínico/química , Ácido Apurínico/genética , Dominio Catalítico/genética , Aductos de ADN/genética , Proteína Quinasa Activada por ADN/química , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/química , Autoantígeno Ku , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Polinucleótidos/química , Polinucleótidos/genética , Multimerización de Proteína/genética
3.
Methods Mol Biol ; 1105: 159-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24623227

RESUMEN

Abasic sites in DNA arise under a variety of circumstances, including destabilization of bases through oxidative stress, as an intermediate in base excision repair, and through spontaneous loss. Their persistence can yield a blockade to RNA transcription and DNA synthesis and can be a source of mutations. Organisms have developed an enzymatic means of repairing abasic sites in DNA that generally involves a DNA repair pathway that is initiated by a repair protein creating a phosphodiester break ("nick") adjacent to the site of base loss. Here we describe a method for analyzing the manner in which repair endonucleases differ in the way they create nicks in DNA and how to distinguish between them using cellular crude extracts.


Asunto(s)
División del ADN , Animales , Ácido Apurínico/genética , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Humanos , Hidrólisis , Oligonucleótidos/química , Oligonucleótidos/genética , Estrés Oxidativo
4.
PLoS One ; 9(1): e86358, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466051

RESUMEN

Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/-) cells and ku80(-/-) cells also appeared to have a defect in base excision repair (BER). BER corrects base lesions, apurinic/apyrimidinic (AP) sites and single stand breaks (SSBs) utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1) and DNA Polymerase ß (Pol ß). In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80) and/or free Ku80 (not bound to Ku70) possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/-) mice had a shorter life span than dna-pkcs(-/-) mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol ß. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT), an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.


Asunto(s)
Antígenos Nucleares/genética , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Animales , Ácido Apurínico/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/deficiencia , Epistasis Genética , Femenino , Eliminación de Gen , Indoles/farmacología , Autoantígeno Ku , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fenotipo , Mutación Puntual , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Tolerancia a Radiación , Proteína p53 Supresora de Tumor/metabolismo
5.
Neoplasia ; 15(4): 454-60, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23555190

RESUMEN

Adenomatous polyposis coli (APC) is a multifunctional protein having diverse cellular functions including cell migration, cell-cell adhesion, cell cycle control, chromosomal segregation, and apoptosis. Recently, we found a new role of APC in base excision repair (BER) and showed that it interacts with DNA polymerase ß and 5'-flap endonuclease 1 and interferes in BER. Previously, we have also reported that cigarette smoke condensate (CSC) increases expression of APC and enhances the growth of normal human breast epithelial (MCF10A) cells in vitro. In the present study, using APC overexpression and knockdown systems, we have examined the molecular mechanisms by which CSC and its major component, Benzo[α]pyrene, enhances APC-mediated accumulation of abasic DNA lesions, which is cytotoxic and mutagenic in nature, leading to enhanced neoplastic transformation of MCF10A cells in an orthotopic xenograft model.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias de la Mama/genética , Mama/patología , Transformación Celular Neoplásica/metabolismo , Daño del ADN , Células Epiteliales/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Ácido Apurínico/genética , Benzo(a)pireno/toxicidad , Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Carcinógenos/toxicidad , Línea Celular , Transformación Celular Neoplásica/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , ARN Interferente Pequeño/genética , Humo/efectos adversos , Nicotiana/química
6.
DNA Repair (Amst) ; 12(3): 196-204, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23273506

RESUMEN

Schizosaccharomyces pombe contains two paralogous proteins, Mag1 and Mag2, related to the helix-hairpin-helix (HhH) superfamily of alkylpurine DNA glycosylases from yeast and bacteria. Phylogenetic analysis of related proteins from four Schizosaccharomyces and other fungal species shows that the Mag1/Mag2 duplication is unique to the genus Schizosaccharomyces and most likely occurred in its ancestor. Mag1 excises N3- and N7-alkylguanines and 1,N(6)-ethenoadenine from DNA, whereas Mag2 has been reported to have no detectible alkylpurine base excision activity despite high sequence and active site similarity to Mag1. To understand this discrepancy we determined the crystal structure of Mag2 bound to abasic DNA and compared it to our previously determined Mag1-DNA structure. In contrast to Mag1, Mag2 does not flip the abasic moiety into the active site or stabilize the DNA strand 5' to the lesion, suggesting that it is incapable of forming a catalytically competent protein-DNA complex. Subtle differences in Mag1 and Mag2 interactions with the DNA duplex illustrate how Mag2 can stall at damage sites without fully engaging the lesion. We tested our structural predictions by mutational analysis of base excision and found a single amino acid responsible at least in part for Mag2's lack of activity. Substitution of Mag2 Asp56, which caps the helix at the base of the DNA intercalation loop, with the corresponding serine residue in Mag1 endows Mag2 with ɛA excision activity comparable to Mag1. This work provides novel insight into the chemical and physical determinants by which the HhH glycosylases engage DNA in a catalytically productive manner.


Asunto(s)
ADN Glicosilasas/química , ADN de Hongos/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Ácido Apurínico/química , Ácido Apurínico/genética , Dominio Catalítico , Cristalografía por Rayos X , Daño del ADN , ADN de Hongos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Propiedades de Superficie
7.
Structure ; 21(1): 20-31, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23245850

RESUMEN

Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis opposite damaged DNA bases, yet they also have a high intrinsic error rate. We constructed chimeras of two closely related Y-family polymerases that display distinctly different activity profiles and found that the polypeptide linker that tethers the catalytic polymerase domain to the C-terminal DNA-binding domain is a major determinant of overall polymerase activity, nucleotide incorporation fidelity, and abasic site-bypass ability. Exchanging just 3 out of the 15 linker residues is sufficient to interconvert the polymerase activities tested. Crystal structures of four chimeras show that the conformation of the protein correlates with the identity of the interdomain linker sequence. Thus, residues that are more than 15 Å away from the active site are able to influence many aspects of polymerase activity by altering the relative orientations of the catalytic and DNA-binding domains.


Asunto(s)
Proteínas Arqueales/química , ADN Polimerasa beta/química , Secuencia de Aminoácidos , Ácido Apurínico/genética , Proteínas Arqueales/genética , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , ADN Polimerasa beta/genética , Reparación del ADN , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , Sulfolobus acidocaldarius/enzimología , Sulfolobus solfataricus/enzimología
8.
Mol Biol Rep ; 40(2): 1505-10, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23076532

RESUMEN

Detection and identification of DNA structure from aged and damaged biological materials such as bloodstain are important for human genetic study and individual identification. However, after a long period of storage, the DNA structure of biological samples is degraded to various degrees depending on several factors including environmental condition. In this study, human bloodstains that have been stored at room temperature for one to 39 years were used to represent damaged biological samples. The numbers of apurinic/apyrimidinic sites (AP sites) were investigated by the DNA Damage Quantification Kit to evaluate the lesions in DNA structure. The damaged DNA from the stored human bloodstains was repaired using seven DNA repair enzymes. As DNA genetic marker, short tandem repeat (STR) genotypes were amplified using the non-repaired and repaired DNA preparations from the stored bloodstains. The results indicated that the number of AP sites increased as the storage time increased. While only 2 to 6 STR loci were detected in the damaged DNA of bloodstains stored for over 30 years, after DNA repair all the genotypes in the STR system could be analyzed even from bloodstains that had been stored for the longest period.


Asunto(s)
Manchas de Sangre , Reparación del ADN , Repeticiones de Microsatélite , Reacción en Cadena de la Polimerasa , Adulto , Ácido Apurínico/genética , ADN/química , ADN/genética , ADN/aislamiento & purificación , Daño del ADN , Enzimas Reparadoras del ADN/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Adulto Joven
9.
Comp Biochem Physiol C Toxicol Pharmacol ; 155(2): 275-80, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21963688

RESUMEN

Biochemical and molecular biomarkers tools are utilized as early warning signatures of contaminant exposure to target and non-target organisms. The objective of this study was to investigate the sublethal effects of iron chloride to the larvae of the lace coral Pocillopora damicornis by measuring a suit of oxidative-stress biomarkers. The larvae were exposed to a range of sublethal concentrations of iron chloride (0.01, 0.1, 1, 10, and 100 ppm) for seven days. With reference to oxidative stress biomarkers, the no-observed effect concentration (NOEC) and the lowest observed effect concentration (LOEC) of iron chloride were observed to be 0.01 and 100 ppm respectively. At the end of the seventh day the antioxidant status of the larvae was evaluated by the levels of glutathione (GSH), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione-S-transferase (GST), in both experimental and control groups. For the quantification of cellular oxidative damage, lipid peroxidation (LPO) activity was determined in the same and the extent of DNA damage was assessed by the expression of DNA apurinic/apyrimidinic (AP) sites. Iron chloride exhibited a concentration-dependent inhibition of GSH and GPX and induction of GR, GST, LPO, and DNA-AP sites in the P. damicornis larvae when compared to the control group. The oxidative stress biomarkers of the larvae exposed to 0.1, 1, and 10 ppm of iron chloride did not show any significant overall differences when compared to the control group. However the activities of LPO, GSH, GPX, GR, GST and DNA-AP in the larval group exposed to 100 ppm of iron chloride exhibited statistically significant (P=0.002, 0.003, 0.002, 0.002, 0.005 and 0.007) differences when compared to the control group. The research results indicated that iron chloride in concentrations at the 100 ppm level caused oxidative stress in the P. damicornis larvae.


Asunto(s)
Antozoos/efectos de los fármacos , Cloruros/toxicidad , Daño del ADN , Compuestos de Hierro/toxicidad , Estrés Oxidativo/efectos de los fármacos , Animales , Antozoos/genética , Antozoos/metabolismo , Antioxidantes/metabolismo , Ácido Apurínico/genética , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Larva/genética , Larva/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Nivel sin Efectos Adversos Observados , Polinucleótidos/genética , Factores de Tiempo
10.
Proc Natl Acad Sci U S A ; 107(52): 22475-80, 2010 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-21149689

RESUMEN

Apurinic/apyrimidinic (AP) sites are ubiquitous DNA lesions that are highly mutagenic and cytotoxic if not repaired. In addition, clusters of two or more abasic lesions within one to two turns of DNA, a hallmark of ionizing radiation, are repaired much less efficiently and thus present greater mutagenic potential. Abasic sites are chemically labile, but naked DNA containing them undergoes strand scission slowly with a half-life on the order of weeks. We find that independently generated AP sites within nucleosome core particles are highly destabilized, with strand scission occurring ∼60-fold more rapidly than in naked DNA. The majority of core particles containing single AP lesions accumulate DNA-protein cross-links, which persist following strand scission. The N-terminal region of histone protein H4 contributes significantly to DNA-protein cross-links and strand scission when AP sites are produced approximately 1.5 helical turns from the nucleosome dyad, which is a known hot spot for nucleosomal DNA damage. Reaction rates for AP sites at two positions within this region differ by ∼4-fold. However, the strand scission of the slowest reacting AP site is accelerated when it is part of a repair resistant bistranded lesion composed of two AP sites, resulting in rapid formation of double strand breaks in high yields. Multiple lysine residues within a single H4 protein catalyze double strand cleavage through a mechanism believed to involve a templating effect. These results show that AP sites within the nucleosome produce significant amounts of DNA-protein cross-links and generate double strand breaks, the most deleterious form of DNA damage.


Asunto(s)
Daño del ADN , ADN/metabolismo , Nucleosomas/metabolismo , Proteínas/metabolismo , Ácido Apurínico/química , Ácido Apurínico/genética , Ácido Apurínico/metabolismo , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/metabolismo , ADN/química , ADN/genética , Reparación del ADN , Electroforesis en Gel de Poliacrilamida , Histonas/química , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Nucleosomas/genética , Polinucleótidos/química , Polinucleótidos/genética , Polinucleótidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Proteínas/genética
11.
Gene ; 414(1-2): 49-59, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18378409

RESUMEN

Gain or loss of Migration inducting gene-7 (Mig-7) protein expression functional studies suggest it causes aggressive tumor cell invasion and tumor cell vessel-like structure formation. In addition, Mig-7 expression is apparently carcinoma and trophoblast cell-specific. Mig-7 is an example of an atypical gene that is unique in its induction, translation and apparent carcinoma-specific expression. However, studies of this predominantly integral membrane protein are hampered because of the cloning and expression techniques required for detection of Mig-7 protein. Because the encoding region possesses stop codons, repeat sequences and secondary structure, we hypothesized that genetically engineered E. coli are required to maintain the number of purine-pyrimidine repeats and reading frame when producing expression plasmids containing the Mig-7 sequence. Cloning Mig-7 sequence using E. coli genetically engineered to lack recombination and rearrangement capabilities prevented extension of the repeat region. Because of multiple stop codons in the sequence, three different constructs starting from three different reading frame ATG sites were tested for protein production in a human carcinoma cell line. Mig-7 protein of ~23 kD is produced from Mig-7 cDNA that contains multiple stop codons downstream from the ATG in a Kozak consensus sequence. In silico analyses imply that multiple Mig-7 mRNA secondary structures may cause frameshifting, read-through, and/or recoding of the multiple stop codons. Experimental results support that one or more of these translational events take place. In this report, we detail requirements for cloning and expression of this novel, atypical, human gene. These techniques can be used to express this unique protein for further studies.


Asunto(s)
Ácido Apurínico/genética , ADN Complementario/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Iniciación de la Cadena Peptídica Traduccional , Pirimidinas/química , Secuencias Repetitivas de Ácidos Nucleicos/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Forma Z/genética , ADN de Forma Z/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico , Espermina/farmacología , Transcripción Genética , Células Tumorales Cultivadas
12.
Biochemistry ; 43(48): 15217-22, 2004 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-15568814

RESUMEN

Abasic lesions are unable to form Watson-Crick hydrogen bonds with nucleotides. Nonetheless, polymerase and repair enzymes distinguish between various oxidized abasic lesions, as well as from nonoxidized abasic sites (AP). The C2-AP lesion is produced when DNA is exposed to gamma-radiolysis. Its effects on polymerases and repair enzymes are unknown. A recently reported method for the chemical synthesis of oligonucleotides containing C2-AP at a defined site was utilized for studying the activity of Klenow exo(-) and repair enzymes on templates containing the lesion. The C2-AP lesion has a similar effect on Klenow exo(-) as do AP and C4-AP sites. Deoxyadenosine is preferentially incorporated opposite C2-AP, but extension of the primer past the lesion is strongly blocked. C2-AP is incised less efficiently by exonuclease III and endonuclease IV than are other abasic lesions. Furthermore, although a Schiff base between C2-AP and endonuclease III can be chemically trapped, the location of the 3'-phosphate alpha with respect to the aldehyde prevents beta-elimination associated with the lyase activity of type I base excision repair enzymes. The interactions of the C2'-oxidized abasic site with Klenow exo(-) and repair enzymes suggest that the lesion will be mutagenic and that it will be removed by strand displacement synthesis and flap endonuclease processing via a long patch repair mechanism.


Asunto(s)
Ácido Apurínico/metabolismo , Reparación del ADN , Replicación del ADN , ADN Bacteriano/metabolismo , Polinucleótidos/metabolismo , Ácido Apurínico/síntesis química , Ácido Apurínico/genética , ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Cartilla de ADN/síntesis química , Cartilla de ADN/metabolismo , ADN Bacteriano/síntesis química , ADN Bacteriano/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/síntesis química , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Hibridación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Oxidación-Reducción , Polinucleótidos/síntesis química , Polinucleótidos/genética , Bases de Schiff/química , Bases de Schiff/metabolismo , Moldes Genéticos
13.
Anticancer Res ; 24(1): 117-21, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15015585

RESUMEN

BACKGROUND: DNA with two sites of damage in close proximity might not be repaired as efficiently as DNA with a single damage site. MATERIALS AND METHODS: To study this hypothesis, we utilized short oligodeoxyribonucleotides with a stable adduct 7 or 16 nucleotides (nt) downstream from an apurinic (AP) site. Repair by extracts of human breast epithelial MCF-10A1 cells was assayed by quantifying the incorporation of [alpha-32P]dTTP. RESULTS: The level of repair of an oligodeoxyribonucleotide with an AP site 7 nt from a stable adduct was comparable to that of the oligodeoxyribonucleotide with only an AP site. A decrease in overall repair of oligodeoxyribonucleotides containing an AP site and a stable adduct was observed if these lesions were 16 nt apart compared to the presence of only an AP site. CONCLUSION: The ability of human breast MCF-10A1 cells to repair DNA adducts and AP sites is affected by other near-by lesions.


Asunto(s)
Ácido Apurínico/genética , Extractos Celulares/farmacología , Aductos de ADN/genética , Daño del ADN , Reparación del ADN/fisiología , Oligodesoxirribonucleótidos/genética , Ácido Apurínico/metabolismo , Secuencia de Bases , Mama/química , Mama/citología , Línea Celular , Aductos de ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Desoxirribonucleótidos/genética , Desoxirribonucleótidos/metabolismo , Células Epiteliales/química , Humanos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/metabolismo , Factor de Transcripción AP-1/deficiencia , Factor de Transcripción AP-1/genética , Proteína de la Xerodermia Pigmentosa del Grupo A
14.
Nucleic Acids Res ; 28(13): 2613-26, 2000 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-10871413

RESUMEN

Abasic (AP) sites constitute a common form of DNA damage, arising from the spontaneous or enzymatic breakage of the N-glycosyl bond and the loss of a nucleotide base. To examine the effects of such damage on DNA structure, especially in the vicinity of the abasic sugar, four 1.5 ns molecular dynamics simulations of double-helical DNA dodecamers with and without a single abasic (tetrahydrofuran, X) lesion in a 5'-d(CXT) context have been performed and analyzed. The results indicate that the abasic site does not maintain a hole or gap in the DNA, but instead perturbs the canonical structure and induces additional flexibility close to the abasic site. In the apurinic simulations (i.e., when a pyrimidine is opposite the AP site), the abasic sugar flipped in and out of the minor groove, and the gap was water filled, except during the occurrence of a novel non-Watson-Crick C-T base pair across the abasic site. The apyrimidinic gap was not penetrated by water until the abasic sugar flipped out and remained extrahelical. Both AP helices showed kinks of 20-30 degrees at the abasic site. The Watson-Crick hydrogen bonds are more transient throughout the DNA double helices containing an abasic site. The abasic sugar displayed an unusually broad range of sugar puckers centered around the northern pucker. The increased motion of the bases and backbone near the abasic site appear to correlate with sequence-dependent helical stability. The data indicate that abasic DNA contorts more easily and in specific ways relative to unmodified DNA, an aspect likely to be important in abasic site recognition and hydrolysis.


Asunto(s)
Ácido Apurínico/química , Simulación por Computador , ADN/química , ADN/metabolismo , Conformación de Ácido Nucleico , Polinucleótidos/química , Ácido Apurínico/genética , Ácido Apurínico/metabolismo , Emparejamiento Base , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , ADN/genética , Endodesoxirribonucleasas/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Polinucleótidos/genética , Polinucleótidos/metabolismo , Rotación , Solventes , Electricidad Estática , Especificidad por Sustrato , Agua/metabolismo
15.
Nucleic Acids Res ; 27(15): 3096-103, 1999 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10454605

RESUMEN

UV damage endonuclease (UVDE) initiates a novel form of excision repair by introducing a nick imme-diately 5" to UV-induced cyclobutane pyrimidine dimers or 6-4 photoproducts. Here, we report that apurinic/apyrimidinic (AP) sites are also nicked by Neurospora crassa and Schizosaccharomyces pombe UVDE. UVDE introduces a nick immediately 5" to the AP site leaving a 3"-OH and a 5"-phosphate AP. Apyrimidinic sites are more effectively nicked by UVDE than apurinic sites. UVDE also possesses 3"-repair activities for AP sites nicked by AP lyase and for 3"-phosphoglycolate produced by bleomycin. The Uvde gene introduced into Escherichia coli cells lacking two types of AP endonuclease, Exo III and Endo IV, gave the host cells resistance to methylmethane sulfonate and t-butyl hydroperoxide. We identified two AP endonuclease activities in S.pombe cell extracts. Besides cyclobutane pyrimidine dimers and 6-4 photoproducts, N. crassa UVDE also nicks Dewar photoproducts. Thus, UVDE is able to repair both of the major forms of DNA damage in living organisms: UV-induced DNA lesions and AP sites.


Asunto(s)
Ácido Apurínico/metabolismo , Liasas de Carbono-Oxígeno/metabolismo , Daño del ADN/genética , ADN Glicosilasas , Reparación del ADN/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli , Polinucleótidos/metabolismo , Proteínas de Schizosaccharomyces pombe , Ácido Apurínico/genética , Bleomicina/farmacología , Liasas de Carbono-Oxígeno/genética , Daño del ADN/efectos de los fármacos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Desoxirribonucleasa IV (Fago T4-Inducido) , Endodesoxirribonucleasas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Exodesoxirribonucleasas/genética , Eliminación de Gen , Genes Bacterianos/genética , Prueba de Complementación Genética , Glicolatos/metabolismo , Metilmetanosulfonato/farmacología , N-Glicosil Hidrolasas/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/genética , Oligodesoxirribonucleótidos/genética , Oxidación-Reducción , Polinucleótidos/genética , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Rayos Ultravioleta , Uracil-ADN Glicosidasa , terc-Butilhidroperóxido/farmacología
16.
Nucleic Acids Res ; 27(15): 3197-204, 1999 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-10454618

RESUMEN

The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2"-deoxyguanosine (OG):A and G:A mispairs in DNA. Our approach toward understanding recognition and processing of DNA damage by MutY has been to use substrate analogs that retain the recognition properties of the substrate mispair but are resistant to the glycosylase activity of MutY. This approach provides stable MutY-DNA complexes that are amenable to structural and biochemical characterization. In this work, the interaction of MutY with the 2"-deoxyadenosine analogs 2"-deoxy-2"-fluoroadenosine (FA), 2"-deoxyaristeromycin (R) and 2"-deoxyformycin A (F) was investigated. MutY binds to duplexes containing the FA, R or F analogs opposite G and OG within DNA with high affinity; however, no enzymatic processing of these duplexes is observed. The specific nature of the interaction of MutY with an OG:FA duplex was demonstrated by MPE-Fe(II) hydroxyl radical footprinting experiments which showed a nine base pair region of protection by MutY surrounding the mispair. DMS footprinting experiments with an OG:A duplex revealed that a specific G residue located on the OG-containing strand was protected from DMS in the presence of MutY. In contrast, a G residue flanking the substrate analogs R, F or FA was observed to be hypersensitive to DMS in the presence of MutY. These results suggest a major conformational change in the DNA helix upon binding of MutY that exposes the substrate analog-containing strand. This finding is consistent with a nucleotide flipping mechanism for damage recognition by MutY. This work demonstrates that duplex substrates for MutY containing FA, R or F instead of A are excellent substrate mimics that may be used to provide insight into the recognition by MutY of damaged and mismatched base pairs within DNA.


Asunto(s)
ADN Glicosilasas , ADN/metabolismo , Escherichia coli/enzimología , N-Glicosil Hidrolasas/metabolismo , Ácido Apurínico/genética , Ácido Apurínico/metabolismo , Disparidad de Par Base/genética , Secuencia de Bases , Sitios de Unión , ADN/genética , Huella de ADN , Proteínas de Unión al ADN/metabolismo , Desoxiadenosinas/metabolismo , Ácido Edético/análogos & derivados , Ácido Edético/metabolismo , Escherichia coli/genética , Formicinas/metabolismo , Especificidad por Sustrato , Ésteres del Ácido Sulfúrico/metabolismo , Termodinámica
17.
Mutat Res ; 407(2): 109-16, 1998 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9637239

RESUMEN

Escherichia coli alkB mutants are sensitive to methyl methanesulfonate and dimethylsulphate, and are defective in the processing of methylated DNA. The function of the AlkB protein has not been determined. Here, we show that alkB mutants are not defective in repairing several different types of potentially toxic DNA lesions that are known to be generated by MMS, including apyrimidinic and apurinic sites, and secondary lesions that could arise at these sites (DNA-protein cross-links and DNA interstrand cross-links). Also, alkB mutants were not sensitive to MeOSO2-(CH2)2-Lex, a compound that alkylates the minor groove of DNA generating primarily 3-methyladenine.


Asunto(s)
Adenina/análogos & derivados , Sistema Enzimático del Citocromo P-450/genética , Reparación del ADN/genética , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Oxigenasas de Función Mixta/genética , Adenina/metabolismo , Ácido Apurínico/genética , Ácido Apurínico/metabolismo , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/efectos de los fármacos , Bacteriófago lambda/genética , Sitios de Unión/genética , Citocromo P-450 CYP4A , Sistema Enzimático del Citocromo P-450/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Daño del ADN/efectos de los fármacos , ADN Bacteriano/efectos de los fármacos , ADN Bacteriano/genética , ADN Viral/efectos de los fármacos , ADN Viral/genética , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Indicadores y Reactivos/farmacología , Metilmetanosulfonato/farmacología , Metilnitronitrosoguanidina/farmacología , Oxigenasas de Función Mixta/efectos de los fármacos , Oxigenasas de Función Mixta/metabolismo , Mutágenos/farmacología , Mutación/genética , Netropsina/análogos & derivados , Netropsina/farmacología , Polinucleótidos/genética , Polinucleótidos/metabolismo , Ésteres del Ácido Sulfúrico/farmacología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
18.
Mol Microbiol ; 24(4): 711-21, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9194699

RESUMEN

Escherichia coli exonuclease III and endonuclease III are two distinct DNA-repair enzymes that can cleave apurinic/apyrimidinic (AP) sites by different mechanisms. While the AP endonuclease activity of exonuclease III generates a 3'-hydroxyl group at AP sites, the AP lyase activity of endonuclease III produces a 3'-alpha,beta unsaturated aldehyde that prevents DNA-repair synthesis. Saccharomyces cerevisiae Apn1 is the major AP endonuclease/3'-diesterase that also produces a 3'-hydroxyl group at the AP site, but it is unrelated to either exonuclease III or endonuclease III. apn1 deletion mutants are unable to repair AP sites generated by the alkylating agent methyl methane sulphonate and display a spontaneous mutator phenotype. This work shows that either exonuclease III or endonuclease III can functionally replace yeast Apn1 in the repair of AP sites. Two conclusions can be derived from these findings. The first of these conclusions is that yeast cells can complete the repair of AP sites even though they are cleaved by AP lyase. This implies that AP lyase can contribute significantly to the repair of AP sites and that yeast cells have the ability to process the alpha,beta unsaturated aldehyde produced by endonuclease III. The second of these conclusions is that unrepaired AP sites are strictly the cause of the high spontaneous mutation rate in the apn1 deletion mutant.


Asunto(s)
Ácido Apurínico/genética , Reparación del ADN , Desoxirribonucleasa (Dímero de Pirimidina) , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli , Escherichia coli/genética , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Enzimas Reparadoras del ADN , Endodesoxirribonucleasas/genética , Escherichia coli/enzimología , Prueba de Complementación Genética , Metilmetanosulfonato , Mutagénesis , Saccharomyces cerevisiae/enzimología
19.
Environ Mol Mutagen ; 23(1): 32-6, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-7510226

RESUMEN

The effects of abasic (AP) sites on RNA synthesis were studied in vitro, using T7 RNA polymerase and a plasmid template containing a T7 promoter. The presence of increasing numbers of AP sites caused a progressive decline in RNA synthesis. The average RNA chain length, calculated from the ratio of initiation to chain elongation, decreased with increasing numbers of AP sites, revealing that complete blocks must occur during synthesis. The probability that RNA polymerase would be blocked at an AP site in the DNA template strand was estimated to be 0.3 in our experimental conditions. These results demonstrate that RNA synthesis by T7 RNA polymerase is inhibited by AP sites and that readthrough of the lesion occurs more frequently than premature chain termination. Chemical reduction of AP sites in the template did not change the block/bypass pattern.


Asunto(s)
Ácido Apurínico/metabolismo , Daño del ADN , ADN Bacteriano/genética , ARN Bacteriano/biosíntesis , Transcripción Genética/genética , Ácido Apurínico/genética , Bacteriófago T7/enzimología , Reparación del ADN , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Oxidación-Reducción , Plásmidos , Regiones Promotoras Genéticas , Moldes Genéticos , Proteínas Virales
20.
J Mol Biol ; 227(4): 981-4, 1992 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-1433302

RESUMEN

Abasic sites are common DNA lesions produced either spontaneously or as a consequence of the action of some genotoxic agent. The mutagenic properties of a unique abasic site replicated in mammalian cells have been studied using a shuttle vector. A plasmid, able to replicate both in mammalian cells and in bacteria, carrying a unique abasic site chemically synthesized has been constructed. After replication in mammalian cells, plasmid DNA was recovered and used to transform bacteria. Mutants were screened without selection pressure by differential hybridization with a labelled oligonucleotide and their DNA was sequenced. A mutation frequency ranging from 1% to 3% was found, depending on the base originally inserted during the vector construction, opposite the abasic site. All the sequenced mutants correspond to single base-pair substitutions targeted at the abasic site. We observed a deficit in guanine incorporation opposite the abasic site, while the three other bases were incorporated with a similar efficiency. The mutational potency of abasic sites was observed without any voluntary preconditioning treatment of mammalian cells in order to induce "SOS" like conditions.


Asunto(s)
Ácido Apurínico/genética , Mutagénesis , Polinucleótidos/genética , Animales , Secuencia de Bases , Línea Celular Transformada , Chlorocebus aethiops , ADN , Datos de Secuencia Molecular , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...