Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
Biochemistry ; 63(9): 1097-1106, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38669178

RESUMEN

As a key component for NADPH oxidase 2 (NOX2) activation, the peripheral membrane protein p47phox translocates a cytosolic activating complex to the membrane through its PX domain. This study elucidates a potential regulatory mechanism of p47phox recruitment and NOX2 activation by inositol hexaphosphate (IP6). Through NMR, fluorescence polarization, and FRET experimental results, IP6 is shown to be capable of breaking the lipid binding and membrane anchoring events of p47phox-PX with low micromolar potency. Other phosphorylated inositol species such as IP5(1,3,4,5,6), IP4(1,3,4,5), and IP3(1,3,4) show weaker binding and no ability to inhibit lipid interactions in physiological concentration ranges. The low micromolar potency of IP6 inhibition of the p47phox membrane anchoring suggests that physiologically relevant concentrations of IP6 serve as regulators, as seen in other membrane anchoring domains. The PX domain of p47phox is known to be promiscuous to a variety of phosphatidylinositol phosphate (PIP) lipids, and this regulation may help target the domain only to the membranes most highly enriched with the highest affinity PIPs, such as the phagosomal membrane, while preventing aberrant binding to other membranes with high and heterogeneous PIP content, such as the plasma membrane. This study provides insight into a potential novel regulatory mechanism behind NOX2 activation and reveals a role for small-molecule regulation in this important NOX2 activator.


Asunto(s)
NADPH Oxidasas , Ácido Fítico , Ácido Fítico/metabolismo , Ácido Fítico/química , NADPH Oxidasas/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Humanos , Membrana Celular/metabolismo , NADPH Oxidasa 2/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
2.
Animal ; 18(5): 101135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636148

RESUMEN

There is a gap in the understanding of the relationship between dietary phytate levels and the relative efficacy of phytase to improve amino acid (AA) digestibility in pigs and chickens. Two experiments were conducted to investigate the effect of exogenous phytase on standardized ileal digestibility (SID) of AA and the apparent ileal digestibility (AID) of P in both standard- (SP) and high-phytate (HP) diets for broilers and swine. There were either 40 cages of Cobb 500 male broilers or 10 crossbred barrows (35 kg) fitted with ileal T-cannulas. Both studies were allotted to five dietary treatments (8 replicates). Treatments consisted of four corn-soybean meal-based diets arranged in a 2 × 2 factorial of standard or high phytate and exogenous phytase at 0 or 1 000 phytase units (FYT)/kg; and one N-free diet. Birds were fed a common starter diet from d 0 to 20 and fed experimental diets from d 20 to 25. Birds were euthanized on d 25 via CO2 asphyxiation, and digesta were collected from the terminal ileum. Pigs were fed for a total of four 7-d periods, where digesta were collected on d 6 and 7 of each period. Diet and digesta samples were analyzed for DM, N, Ti, AA, and P to determine AA and P digestibility. The SID of AA was determined by correcting the AID of AA for the basal endogenous losses estimated using the N-free diet. Main effects of the diet type (standard or HP) and phytase (0 or 1 000 FYT/kg), and the interaction of diet type and phytase were evaluated. For both experiments, the HP diets produced lower SID of AA compared to the SP (P < 0.001). For broilers, there was a phytase effect (P < 0.001) for the SID of all AAs evaluated regardless of the diet type. For pigs, phytase improved (P < 0.05) the SID of Met, Lys, Cys, Glu and Ser and tended to improve (P < 0.10) Arg, Leu, Thr, and Tyr. There were no significant interactions for either experiment. For both experiments, AID of P was lower for the HP diets (P < 0.01), and phytase produced greater AID of P for both diet types (P < 0.01). These data indicate that phytase greatly improves the digestibility of P for broilers and pigs and has the ability to significantly increase the digestibility of amino acids for these animals, regardless of the dietary phytate P.


Asunto(s)
6-Fitasa , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Dieta , Digestión , Íleon , Ácido Fítico , Animales , 6-Fitasa/administración & dosificación , 6-Fitasa/farmacología , Pollos/fisiología , Pollos/metabolismo , Alimentación Animal/análisis , Ácido Fítico/metabolismo , Ácido Fítico/administración & dosificación , Ácido Fítico/farmacología , Masculino , Digestión/efectos de los fármacos , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Íleon/metabolismo , Porcinos/fisiología , Aminoácidos/metabolismo , Suplementos Dietéticos/análisis
3.
Biochem Pharmacol ; 222: 116118, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467376

RESUMEN

Diabetes-related hyperglycemia inhibits bone marrow mesenchymal stem cell (BMSC) function, thereby disrupting osteoblast capacity and bone regeneration. Dietary supplementation with phytic acid (PA), a natural inositol phosphate, has shown promise in preventing osteoporosis and diabetes-related complications. Emerging evidence has suggested that circular (circ)RNAs implicate in the regulation of bone diseases, but their specific regulatory roles in BMSC osteogenesis in hyperglycemic environments remain elucidated. In this study, in virto experiments demonstrated that PA treatment effectively improved the osteogenic capability of high glucose-mediated BMSCs. Differentially expressed circRNAs in PA-induced BMSCs were identified using circRNA microarray analysis. Here, our findings highlight an upregulation of circEIF4B expression in BMSCs stimulated with PA under a high-glucose microenvironment. Further investigations demonstrated that circEIF4B overexpression promoted high glucose-mediated BMSC osteogenesis. In contrast, circEIF4B knockdown exerted the opposite effect. Mechanistically, circEIF4B sequestered microRNA miR-186-5p and triggered osteogenesis enhancement in BMSCs by targeting FOXO1 directly. Furthermore, circEIF4B inhibited the ubiquitin-mediated degradation of IGF2BP3, thereby stabilizing ITGA5 mRNA and promoting BMSC osteogenic differentiation. In vivo experiments, circEIF4B inhibition attenuated the effectiveness of PA treatment in diabetic rats with cranial defects. Collectively, our study identifies PA as a novel positive regulator of BMSC osteogenic differentiation through the circEIF4B/miR-186-5p/FOXO1 and circEIF4B/IGF2BP3/ITGA5 axes, which offers a new strategy for treating high glucose-mediatedBMSCosteogenic dysfunction and delayed bone regeneration in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Madre Mesenquimatosas , MicroARNs , Ratas , Animales , Osteogénesis , MicroARNs/metabolismo , Ácido Fítico/farmacología , Ácido Fítico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas
4.
ACS Chem Neurosci ; 15(6): 1157-1168, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38445956

RESUMEN

Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.


Asunto(s)
Antineoplásicos , Enfermedades del Sistema Nervioso Periférico , Humanos , Antineoplásicos/toxicidad , Cisplatino/toxicidad , Ganglios Espinales , Potencial de la Membrana Mitocondrial , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/metabolismo , Ácido Fítico/farmacología , Ácido Fítico/metabolismo , Ácido Fítico/uso terapéutico , Platino (Metal)/farmacología , Platino (Metal)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Receptoras Sensoriales/metabolismo
5.
Physiol Plant ; 176(2): e14256, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38531421

RESUMEN

The breeding of low phytic acid (LPA) crops is widely considered an effective strategy to improve crop nutrition, but the LPA crops usually have inferior seed germination performance. To clarify the reason for the suboptimal seed performance of LPA rice, this study investigated the impact of reduced seed phytic acid (InsP6) content in rice ins(3)P synthase1 (EC 5.5.1.4, RINO1), one of the key targets for engineering LPA rice, knockouton cellular differentiation in seed embryos and its relation to myo-inositol metabolism and auxin signalling during embryogenesis. The results indicated that the homozygotes of RINO1 knockout could initiate differentiation at the early stage of embryogenesis but failed to form normal differentiation of plumule and radicle primordia. The loss of RINO1 function disrupted vesicle trafficking and auxin signalling due to the significantly lowered phosphatidylinositides (PIs) concentration in seed embryos, thereby leading to the defects of seed embryos without the recognizable differentiation of shoot apex meristem (SAM) and radicle apex meristem (RAM) for the homozygotes of RINO1 knockout. The abnormal embryo phenotype of RINO1 homozygotes was partially rescued by exogenous spraying of inositol and indole-3-acetic acid (IAA) in rice panicle. Thus, RINO1 is crucial for both seed InsP6 biosynthesis and embryonic development. The lower phosphatidylinositol (4,5)-bisphosphate (PI (4,5) P2) concentration and the disorder auxin distribution induced by insufficient inositol supply in seed embryos were among the regulatory switch steps leading to aberrant embryogenesis and failure of seed germination in RINO1 knockout.


Asunto(s)
Inositol , Oryza , Inositol/metabolismo , Ácido Fítico/metabolismo , Oryza/genética , Semillas , Ácidos Indolacéticos/metabolismo
6.
J Sci Food Agric ; 104(7): 4400-4410, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38318752

RESUMEN

BACKGROUND: Wild relatives of wheat (Triticum spp.) harbor beneficial alleles for potential improvement and de novo domestication of selected genotypes with advantageous traits. We analyzed the nutrient composition in wild diploid and tetraploid wheats and their domesticated diploid, tetraploid and hexaploid relatives under field conditions in Germany and compared them with modern Triticum aestivum and Triticum durum cultivars. Grain iron (Fe) and zinc (Zn) concentrations, phytate:mineral molar ratios, grain protein content (GPC) and antioxidant activity were analyzed across 125 genotypes. RESULTS: Grain Fe and Zn concentrations in wild wheats were 72 mg kg-1 and 59 mg kg-1, respectively, with improved bioavailability indicated by Phytate:Fe and Phytate:Zn molar ratios (11.7 and 16.9, respectively) and GPC (231 g kg-1). By comparison, grain Fe and Zn concentrations in landrace taxa were 54 mg kg-1 and 55 mg kg-1, respectively, with lower Phytate:Fe and Phytate:Zn molar ratios (15.1 and 17.5, respectively) and GPC (178 g kg-1). Average grain Fe accumulation in Triticum araraticum was 73 mg kg-1, reaching 116 mg kg-1, with high Fe bioavailability (Phyt:Fe: 11.7; minimum: 7.2). Wild wheats, landraces and modern cultivars showed no differences in antioxidant activity. Triticum zhukovskyi stood out with high grain micronutrient concentrations and favorable molar ratios. It was also the only taxon with elevated antioxidant activity. CONCLUSION: Our results indicate alteration of grain quality during domestication. T. araraticum has promising genotypes with advantageous grain quality characteristics that could be selected for de novo domestication. Favorable nutritional traits in the GGAA wheat lineage (T. araraticum and T. zhukovskyi) hold promise for improving grain quality traits. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Tetraploidía , Triticum , Triticum/química , Antioxidantes/metabolismo , Ácido Fítico/metabolismo , Domesticación , Grano Comestible/química , Zinc/metabolismo
7.
Environ Sci Technol ; 58(8): 3858-3868, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38356137

RESUMEN

Phytate, the principal P storage in plant seeds, is also an important organic P in soils, but it is unavailable for plant uptake. However, the As-hyperaccumulator Pteris vittata can effectively utilize soluble Na-phytate, while its ability to utilize insoluble Ca/Fe-phytate is unclear. Here, we investigated phytate uptake and the underlying mechanisms based on the phytase activity, nutrient uptake, and expression of genes involved in As metabolisms. P. vittata plants were cultivated hydroponically in 0.2-strength Hoagland nutrient solution containing 50 µM As and 0.2 mM Na/Ca/Fe-phytate, with 0.2 mM soluble-P as the control. As the sole P source, all three phytates supported P. vittata growth, with its biomass being 3.2-4.1 g plant-1 and Ca/Fe-phytate being 19-29% more effective than Na-phytate. Phytate supplied soluble P to P. vittata probably via phytase hydrolysis, which was supported by 0.4-0.7 nmol P min-1 g-1 root fresh weight day-1 phytase activity in its root exudates, with 29-545 µM phytate-P being released into the growth media. Besides, compared to Na-phytate, Ca/Fe-phytate enhanced the As contents by 102-140% to 657-781 mg kg-1 in P. vittata roots and by 43-86% to 1109-1447 mg kg-1 in the fronds, which was accompanied by 21-108% increase in Ca and Fe uptake. The increased plant As is probably attributed to 1.3-2.6 fold upregulation of P transporters PvPht1;3/4 for root As uptake, and 1.8-4.3 fold upregulation of arsenite antiporters PvACR3/3;1/3;3 for As translocation to and As sequestration into the fronds. This is the first report to show that, besides soluble Na-phytate, P. vittata can also effectively utilize insoluble Ca/Fe-phytate as the sole P source, which sheds light onto improving its application in phytoremediation of As-contaminated sites.


Asunto(s)
6-Fitasa , Arsénico , Pteris , Contaminantes del Suelo , 6-Fitasa/metabolismo , Pteris/metabolismo , Ácido Fítico/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Biodegradación Ambiental
8.
Mol Biotechnol ; 66(1): 11-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37061991

RESUMEN

Anti-nutrients are substances either found naturally or are of synthetic origin, which leads to the inactivation of nutrients and limits their utilization in metabolic processes. Phytic acid is classified as an anti-nutrient, as it has a strong binding affinity with most minerals like Fe, Zn, Mg, Ca, Mn, and Cd and impairs their proper metabolism. Removing anti-nutrients from cereal grains may enable the bioavailability of both macro- and micronutrients which is the desired goal of genetic engineering tools for the betterment of agronomic traits. Several strategies have been adopted to minimize phytic acid content in plants. Pursuing the molecular strategies, there are several studies, which result in the decrement of the total phytic acid content in grains of major as well as minor crops. Biosynthesis of phytic acid mainly takes place in the seed comprising lipid-dependent and lipid-independent pathways, involving various enzymes. Furthermore, some studies show that interruption of these enzymes may involve the pleiotropic effect. However, using modern biotechnological approaches, undesirable agronomic traits can be removed. This review presents an overview of different genes encoding the various enzymes involved in the biosynthetic pathway of phytic acid which is being targeted for its reduction. It also, highlights and enumerates the variety of potential applications of genome editing tools such as TALEN, ZFN, and CRISPR/Cas9 to knock out the desired genes, and RNAi for their silencing.


Asunto(s)
Edición Génica , Ácido Fítico , Ácido Fítico/metabolismo , Productos Agrícolas/genética , Nutrientes , Lípidos , Sistemas CRISPR-Cas
9.
Bioprocess Biosyst Eng ; 47(1): 39-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962643

RESUMEN

Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.


Asunto(s)
6-Fitasa , Aspergillus oryzae , 6-Fitasa/química , Aspergillus oryzae/metabolismo , Células Inmovilizadas/metabolismo , Harina , Glycine max , Fosfatos , Ácido Fítico/metabolismo
10.
J Dairy Sci ; 107(4): 2011-2025, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37944804

RESUMEN

The objectives of this study were to determine the range in ruminal degradability of crude protein (CP) and intestinal digestibility of rumen undegradable protein in commercial soybean meal (SBM) and to investigate the range in in situ ruminal AA and phytate (InsP6) degradation and their relationship to CP degradation. An in situ study was conducted using 3 lactating Jersey cows with permanent rumen cannulas. Seventeen SBM variants from Europe, Brazil, Argentina, North America, and India were tested for ruminal CP and AA degradation, and in vitro intestinal digestibility of rumen undegradable protein. Nine variants were used to investigate the ruminal degradation of InsP6. The estimated rapidly degradable fraction (a) of CP showed an average value of 4.5% (range: 0.0%-9.0%), the slowly degradable fraction (b) averaged 95% (91%-100%), and the potential degradation was complete for all 17 SBM variants. The degradation of fraction b started after a mean lag phase of 1.7 h (1.1-2.0 h) at an average rate (c) of 10% per hour, but with a high range from 4.5% to 14% per hour. Differences in the degradation parameters induced a considerable range in CP effective degradation at a rumen passage rate of 6% per hour (CPED6) from 38% to 67%; hence, the concentration of rumen undegradable protein varied widely from 33% to 62%. The range in AA degradation between the SBM variants was high, with Ser showing the widest range, from 28% to 96%, and similar for the other AA. The regression equations showed close relationships between CP and AA degradation after 16 h of in situ incubation. However, the slopes of the linear regressions were significantly different between AA, suggesting that degradation among individual AA differs upon a change in CP degradation. The concentrations of InsP6 and myo-inositol pentakisphosphate in bag residues in the in situ study decreased constantly with longer ruminal incubation times. The ruminal degradation parameters of InsP6 ranged from 11% to 37% for fraction a, 63% to 89% for fraction b, and from 7.7% to 21% per hour for degradation rate c, with average values of 21%, 79%, and 16% per hour, respectively. The calculated InsP6 effective degradation at a rumen passage rate of 6% per hour (InsP6ED6) varied from 61% to 84% among the SBM variants. Significant correlations were detected between InsP6ED6 and CPED6 and between InsP6ED6 and chemical protein fractions A, B1, B2, B3, and C. Linear regression equations were developed to predict ruminal InsP6 degradation using CPED6 and chemical protein fractions B3 and C chosen by a stepwise selection procedure. We concluded that a high range in CP, AA, and InsP6 degradation exists among commercial SBM, suggesting that general degradability values may not be precise enough for diet formulation for dairy cows. Degradation of CP in SBM may be used to predict rumen degradation of AA and InsP6 using linear regression equations. Degradation of CP and InsP6 could also be predicted from the chemical protein fractions.


Asunto(s)
Aminoácidos , Ácido Fítico , Femenino , Bovinos , Animales , Aminoácidos/metabolismo , Ácido Fítico/metabolismo , Lactancia , Harina , Proteínas en la Dieta/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Glycine max , Digestión , Dieta/veterinaria
11.
Appl Biochem Biotechnol ; 196(2): 790-803, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37204550

RESUMEN

The aims of the study were to degrade the anti-nutritional factors (ANFs) such as phytic acid, glycinin, and ß-conglycinin and improve the values of soybean meal (SBM). Firstly, in this study, a strain PY-4B which exhibited the best enzymatic activities of protease (403.3 ± 17.8 U/mL) and phytase (62.9 ± 2.9 U/mL) was isolated and screened among the isolates. Based on the analysis of physiological and biochemical characteristics and 16S rDNA sequence, the strain PY-4B was identified and named as Pseudomonas PY-4B. Next, Pseudomonas PY-4B was applied to fermentation of SBM. The results showed that the contents of glycinin and ß-conglycinin were decreased by 57-63%, and the phytic acid was remarkably degraded by 62.5% due to the fermentation of SBM by Pseudomonas PY-4B. The degradation of glycinin and ß-conglycinin resulted in increase of contents of water-soluble proteins and amino acids in fermented SBM. Moreover, Pseudomonas PY-4B exhibited no hemolytic activity and slight inhibitory effect on the growth of pathogen Staphylococcus aureus and the wide range of pH tolerance (3 to 9). In summary, our study indicates that isolated strain Pseudomonas PY-4B is a safe and applicable strain and has the ability to effectively degrade the ANFs (phytic acid, glycinin, and ß-conglycinin) in SBM by fermentation.


Asunto(s)
6-Fitasa , 6-Fitasa/metabolismo , Péptido Hidrolasas/metabolismo , Fermentación , Ácido Fítico/metabolismo , Harina , Glycine max , Endopeptidasas/metabolismo , Alimentación Animal/análisis
12.
Plant Cell Environ ; 47(2): 600-610, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37885374

RESUMEN

Ectomycorrhizal fungi (ECMFs) that are involved in phosphorus mobilisation and turnover have limited ability to mineralise phytate alone. The endofungal bacteria in the ectomycorrhizal fruiting body may contribute to achieving this ecological function of ECMFs. We investigated the synergistic effect and mechanisms of endofungal bacteria and ECMF Suillus grevillea on phytate mineralisation. The results showed that soluble phosphorus content in the combined system of endofungal bacterium Cedecea lapagei and S. grevillea was 1.8 times higher than the sum of C. lapagei and S. grevillea alone treatment under the phytate mineralisation experiment. The S. grevillea could first chemotactically assist C. lapagei in adhering to the surface of S. grevillea. Then, the mineralisation of phytate was synergistically promoted by increasing the biomass of C. lapagei and the phosphatase and phytase activities of S. grevillea. The expression of genes related to chemotaxis, colonisation, and proliferation of C. lapagei and genes related to phosphatase and phytase activity of S. grevillea was also significantly upregulated. Furthermore, in the pot experiment, we verified that there might exist a ternary symbiotic system in the natural forest in which endofungal bacteria and ECMFs could synergistically promote phytate uptake in the plant Pinus massoniana via the ectomycorrhizal system.


Asunto(s)
6-Fitasa , Micorrizas , Pinus , Micorrizas/metabolismo , Pinus/metabolismo , Fósforo/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Bacterias/metabolismo
13.
Chem Biol Interact ; 387: 110818, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000455

RESUMEN

Hyperglycaemia causes impairment of osteogenic differentiation and accelerates stem cell senescence, resulting in weakened osteogenesis and disordered bone metabolism. Phytic acid (PA) is an antioxidant that is reportedly beneficial to bone homeostasis. The present study aims to clarify how PA affects the osteogenic capacity and cellular senescence of bone marrow mesenchymal stem cells (BMSCs) exposed to high-glucose environments, as well as the potential molecular mechanisms. Our results indicate that osteogenic differentiation in BMSCs cultivated in high-glucose conditions is enhanced by PA, as evidenced by increased alkaline phosphatase activity and staining, Alizarin Red S staining, osteogenic marker in in vitro studies, and increased osteogenesis in animal experiments. PA also prevented high-glucose-induced senescence of BMSCs, as evidenced by the repression of reactive oxygen species production, senescence-associated ß-galactosidase staining, and P21 and P53 expression. Furthermore, it was found that PA rescued the high-glucose-inhibited expression of phosphorylated extracellular regulated protein kinases (p-ERK). The inhibition of ERK pathway by the specific inhibitor PD98059 blocked the PA-enhanced osteogenesis of BMSCs and promoted cell senescence. Our results revealed that PA enhances osteogenic differentiation and inhibits BMSC senescence in a high-glucose environment. In addition, the activation of the ERK pathway seems to mediate the beneficial effects of PA. The findings provide novel insights that could facilitate bone regeneration in patients with diabetes.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Humanos , Ácido Fítico/farmacología , Ácido Fítico/metabolismo , Sistema de Señalización de MAP Quinasas , Diferenciación Celular , Glucosa/metabolismo , Células Cultivadas , Células de la Médula Ósea
14.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37691629

RESUMEN

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Asunto(s)
Glycine max , Ácido Fítico , Glycine max/metabolismo , Glicosilación , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Fósforo/metabolismo , Suelo
15.
J Sci Food Agric ; 104(1): 508-517, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647525

RESUMEN

BACKGROUND: To improve the current low per capita consumption of lentils, the present study first aimed to minimize the anti-nutrient content of two yellow Moroccan and Italian lentil seeds by resorting to the malting process and then testing the resulting decorticated flours as ingredients in the formulation of gluten-free fresh egg pastas. RESULTS: The most proper operating conditions for the three malting process steps were identified in a bench-top plant. The first (water steeping) and second (germination) steps were studied at 18, 25 or 32 °C. After 2 or 3 h of steeping at 25 °C and almost 24 h of germination, 95-98.8% of the lentil seeds sprouted. By prolonging the germination process to 72 h, the raffinose or phytic acid content was reduced by about 80% or 95% or 27% or 37%, respectively. The third step (kilning) was carried out under fluent dry air at 50 °C for 24 h and at 75 °C for 3 h. The cotyledons of the resulting yellow lentil malts were cyclonically recovered, milled and chemico-physically characterized. CONCLUSION: Both flours were used to prepare fresh egg-pastas essentially devoid of oligosaccharides, and low in phytate (4.6-6.0 mg g-1 ) and in vitro glycemic index (38-41%). However, the cooking quality of the fresh egg pasta made of malted Moroccan lentil flour was higher with respect to its crude protein content and lower with respect to its water solubility index. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Lens (Planta) , Lens (Planta)/metabolismo , Semillas/química , Culinaria , Plantones/química , Agua/análisis , Ácido Fítico/metabolismo , Harina/análisis
16.
ACS Sens ; 8(12): 4484-4493, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38079595

RESUMEN

Inositol hexakisphosphate (IP6), a naturally occurring metabolite of inositol with specific functions in different organelles or tissues, participates in numerous physiological processes and plays a key role in mammalian metabolic regulation. However, current IP6 detection methods, i.e., high-performance liquid chromatography and gel electrophoresis, require sample destruction and lack spatiotemporal resolution. Here, we construct and characterize a genetically encoded fluorescence biosensor named HIPSer that enables ratiometric quantitative IP6 detection in HEK293T cells and subcellular compartments. We demonstrate that HIPSer has a high sensitivity and relative selectivity for IP6 in vitro. We also provide proof-of-concept evidence that HIPSer can monitor IP6 levels in real time in HEK293T cells and can be targeted for IP6 detection in the nucleus of HEK293T cells. Moreover, HIPSer could also detect changes in IP6 content induced by chemical inhibition of IP6-metabolizing enzymes in HEK293T cells. Thus, HIPSer achieves spatiotemporally precise detection of fluctuations in endogenous IP6 in live cells and provides a versatile tool for mechanistic investigations of inositol phosphate functions in metabolism and signaling.


Asunto(s)
Fosfatos de Inositol , Ácido Fítico , Humanos , Fluorescencia , Células HEK293 , Fosfatos de Inositol/química , Fosfatos de Inositol/metabolismo , Ácido Fítico/química , Ácido Fítico/metabolismo
17.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139020

RESUMEN

Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.


Asunto(s)
6-Fitasa , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
18.
World J Microbiol Biotechnol ; 40(1): 22, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38008864

RESUMEN

Phytases are important enzymes used for eliminating the anti-nutritional properties of phytic acid in food and feed ingredients. Phytic acid is major form of organic phosphorus stored during seed setting. Monogastric animals cannot utilize this phytate-phosphorus due to lack of necessary enzymes. Therefore, phytic acid excretion is responsible for mineral deficiency and phosphorus pollution. Phytases have been reported from diverse microorganisms, however, fungal phytases are preferred due to their unique properties. Aspergillus species are the predominant producers of phytases and have been explored widely as compared to other fungi. Solid-state fermentation has been studied as an economical process for the production of phytases to utilize various agro-industrial residues. Mixed substrate fermentation has also been reported for the production of phytases. Physical and chemical parameters including pH, temperature, and concentrations of media components have significantly affected the production of phytases in solid state fermentation. Fungi produced high levels of phytases in solid state fermentation utilizing economical substrates. Optimization of culture conditions using different approaches has significantly improved the production of phytases. Fungal phytases are histidine acid phosphatases exhibiting broad substrate specificity, are relatively thermostable and protease-resistant. These phytases have been found effective in dephytinization of food and feed samples with concomitant liberation of minerals, sugars and soluble proteins. Additionally, they have improved the growth of plants by increasing the availability of phosphorus and other minerals. Furthermore, phytases from fungi have played an important roles in bread making, semi-synthesis of peroxidase, biofuel production, production of myo-inositol phosphates and management of environmental pollution. This review article describes the production of fungal phytases in solid state fermentation and their biotechnological applications.


Asunto(s)
6-Fitasa , Animales , 6-Fitasa/química , 6-Fitasa/metabolismo , Fermentación , Ácido Fítico/metabolismo , Fósforo , Minerales
19.
Int. microbiol ; 26(4): 961-972, Nov. 2023. graf
Artículo en Inglés | IBECS | ID: ibc-227484

RESUMEN

Phytases are specialized enzymes meant for phytic acid degradation. They possess ability to prevent phytic acid indigestion, including its attendant environmental pollution. This study was aimed at investigating biochemical properties of purified phytase of B. cereus isolated from Achatina fulica. Phytase produced from Bacillus cereus that exhibited optimal phytate degrading-ability of all the bacteria isolated was purified in a three-step purification. The biochemical properties of the purified enzyme were also determined. The phytase homogeny of approximately 45 kDa exhibited 12.8-purification fold and 1.6% yield with optima phytate degrading efficiency and maximum stability at pH 7 and 50 °C. Remaining activity of 52 and 47% obtained between 60 and 70 °C after 2 h further established thermostability of the purified phytase. Mg2+ and Zn2+ enhanced phytate hydrolysis by the enzyme, while Na+ showed mild inhibition but Hg2+ severely inhibited the enzymatic activity. Km and Vmax were estimated to be 0.11 mM and 55.6 μmol/min/mL, displaying enzyme-high substrate affinity and catalytic efficiency, respectively. Phytase purified from Bacillus cereus, isolated from African giant snails, has shown excellent characteristics suitable for phytic acid hydrolysis and could be employed in industrial and biotechnological applications.(AU)


Asunto(s)
Humanos , Ácido Fítico/química , 6-Fitasa/química , Tracto Gastrointestinal , Bacillus cereus/metabolismo , Caracoles/metabolismo , Protones , 6-Fitasa/metabolismo , Microbiología , Técnicas Microbiológicas , Ácido Fítico/metabolismo
20.
Poult Sci ; 102(12): 103160, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37856908

RESUMEN

This study aimed to determine the effect of Zn source and dietary level on intestinal myo-inositol hexakisphosphate (InsP6) disappearance, intestinal accumulation of lower InsP and myo-inositol (MI), prececal mineral digestibility, bone mineralization, and Zn status of broilers without and with exogenous phytase in the feed. Male Ross 308 broilers were allocated in groups of 10 to 8 treatments with 8 pens each. Experimental diets were fed from d 7 to d 28 and contained 33 mg/kg dry matter plant-intrinsic Zn. Experimental factors were phytase supplementation (0 or 750 FTU/kg) and Zn source (none [0 mg/kg Zn], Zn-sulfate [30 mg/kg Zn], Zn-oxide [30 mg/kg Zn]). Additional treatments with 90 mg/kg Zn as Zn-sulfate or Zn-oxide and phytase were included to test the effect of Zn level. No Zn source or Zn level effects were observed for ADG, feed conversion ratio, prececal P digestibility, intestinal InsP6 disappearance, and bone ash concentration. However, those measurements were increased by exogenous phytase (P < 0.001), except the feed conversion ratio, which was decreased (P < 0.001). Ileal MI concentrations were affected by phytase × Zn source interaction (P < 0.030). Birds receiving exogenous phytase and Zn supplementation had the highest MI concentrations regardless of exogenous Zn source, whereas MI concentrations were intermediate for birds receiving exogenous phytase only. Exogenous phytase and exogenous Zn source increased the Zn concentration in bone and blood of broilers (P < 0.001). In conclusion, measures of exogenous phytase efficacy were not affected by phytase × Zn source interaction. Further studies are needed to rule out an effect from Zn sources other than those tested in this study and to investigate the effect of Zn supplementation on endogenous phosphatases. The missing effect of increasing Zn supplementation from 30 to 90 mg/kg in phytase-supplemented diets gives reason to reconsider the Zn supplementation level used by the industry.


Asunto(s)
6-Fitasa , Ácido Fítico , Animales , Ácido Fítico/metabolismo , Pollos/metabolismo , 6-Fitasa/metabolismo , Zinc/metabolismo , Calcificación Fisiológica , Suplementos Dietéticos , Dieta/veterinaria , Inositol/metabolismo , Óxidos/farmacología , Sulfatos/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...