Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
1.
ACS Appl Bio Mater ; 7(5): 3375-3387, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38693867

RESUMEN

Encapsulation of natural polymer pectin (Pec) into a zeolitic imidazolate framework-12 (ZIF-12) matrix via a simple chemical method toward anticancer agent gallic acid (GA) detection is reported in this work. GA, a natural phenol found in many food sources, has gained attention by its biological effects on the human body, such as an antioxidant and anti-inflammatory. Therefore, it is crucial to accurately and rapidly determine the GA level in humans. The encapsulation of Pec inside the ZIF-12 has been successfully confirmed from the physiochemical studies such as XRD, Raman, FTIR, and XPS spectroscopy along with morphological FESEM, BET, and HRTEM characterization. Under optimized conditions, the Pec@ZIF-12 composite exhibits wide linear range of 20 nM-250 µM with a detection limit of 2.2 nM; also, it showed excellent selectivity, stability, and reproducibility. Furthermore, the real sample analysis of food samples including tea, coffee, grape, and pomegranate samples shows exceptional recovery percentage in an unspiked manner. So far, there is little literature for encapsulating proteins, enzymes, metals, etc., that have been reported; here, we successfully encapsulated a natural polymer Pec inside the ZIF-12 cage. This encapsulation significantly enhanced the composite electrochemical performance, which could be seen from the overall results. All of these strongly suggest that the proposed Pec@ZIF-12 composite could be used for miniaturized device fabrication for the evaluation of GA in both home and industrial applications.


Asunto(s)
Antineoplásicos , Técnicas Electroquímicas , Imidazoles , Zeolitas , Zeolitas/química , Antineoplásicos/química , Antineoplásicos/farmacología , Imidazoles/química , Ensayo de Materiales , Ácido Gálico/química , Tamaño de la Partícula , Materiales Biocompatibles/química , Polímeros/química , Pectinas/química , Estructuras Metalorgánicas/química , Humanos
2.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731487

RESUMEN

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Asunto(s)
Antifúngicos , Azoles , Fusarium , Ácido Gálico , Triticum , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Ácido Gálico/química , Ácido Gálico/farmacología , Antifúngicos/farmacología , Antifúngicos/química , Triticum/microbiología , Azoles/farmacología , Azoles/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pruebas de Sensibilidad Microbiana
3.
Food Res Int ; 187: 114423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763674

RESUMEN

The ß-cyclodextrin and short-chain alkyl gallates (A-GAs), which are representative of phenolipids, such as butyl, propyl, ethyl, and methyl gallates, were chosen to form inclusion complexes by the use of the freeze-drying process. In the everted rat gut sac model, HPLC-UV analysis demonstrated that the released A-GAs from inclusion complexes were degraded to yield free gallic acid (GA) (sustained-release function 1). The small intestine membrane may be crossed by both the GA and the A-GAs. A-GAs may also undergo hydrolysis to provide GA (sustained-release function 2) following transmembrane transfer. Clearly, a helpful technique for the dual sustained-release of phenolic compounds is to produce ß-cyclodextrin inclusion complexes with short-chain phenolipids. This will increase the bioactivities of phenolic compounds and prolong their in vivo residence length. Moreover, changing the carbon-chain length of these ß-cyclodextrin inclusion complexes would readily modify the dual sustained-release behavior of the phenolic compounds. Thus, our work effectively established a theoretical foundation for the use of ß-cyclodextrin inclusion complexes containing short-chain phenolipids as new source of functional food components to provide the body with phenolic compounds more efficiently.


Asunto(s)
Preparaciones de Acción Retardada , Ácido Gálico , Fenoles , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Animales , Ratas , Ácido Gálico/química , Masculino , Fenoles/química , Ratas Sprague-Dawley , Liofilización
4.
Pak J Pharm Sci ; 37(2): 275-289, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38767094

RESUMEN

The capsule is a major virulence factor for Streptococcus pneumoniae which causes global morbidity and mortality. It is already known that there are few conserved genes in the capsular biosynthesis pathway, which are common among all known serotypes, called CpsA, CpsB, CpsC and CpsD. Inhibiting capsular synthesis can render S. pneumoniae defenseless and vulnerable to phagocytosis. The Inhibitory potential of active Zingiber officinale compounds was investigated against the 3D (3-dimensional) structural products of Cps genes using in silico techniques. A 3D compound repository was created and screened for drug-likeness and the qualified compounds were used for molecular docking and dynamic simulation-based experiments using gallic acid for outcome comparison. Cavity-based docking revealed five different cavities in the CpsA, CpsB and CpsD proteins, with gallic acid and selected compounds of Zingiber in a binding affinity range of -6.8 to -8.8 kcal/mol. Gingerenone A, gingerenone B, isogingerenone B and gingerenone C showed the highest binding affinities for CpsA, CpsB and CpsD, respectively. Through the Molegro Virtual Docker re-docking strategy, the highest binding energies (-126.5 kcal/mol) were computed for CpsB with gingerenone A and CpsD with gingerenone B. These findings suggest that gingerenone A, B and C are potential inhibitors of S. pneumoniae-conserved capsule-synthesizing proteins.


Asunto(s)
Proteínas Bacterianas , Simulación del Acoplamiento Molecular , Streptococcus pneumoniae , Zingiber officinale , Zingiber officinale/química , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Simulación por Computador , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Simulación de Dinámica Molecular , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/biosíntesis , Ácido Gálico/farmacología , Ácido Gálico/química
5.
J Pharm Biomed Anal ; 245: 116184, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692214

RESUMEN

The plant of Paeonia lactiflora Pall. belongs to Ranunculaceae, and its root can be divided into two categories according to different processing methods, which included that one was directly dried without peeling the root of the P. lactiflora (PR), and the other was peeled the root of the P. lactiflora (PPR) after boiled and dried. To evaluate the difference of chemical components, UPLC-ESI-Q-Exactive Focus-MS/MS and UPLC-QQQ-MS were applied. The distribution of chemical components in different tissues was located by laser microdissection (LMD), especially the different ingredients. A total of 86 compounds were identified from PR and PPR. Four kind of tissues were isolated from the fresh root of the P. lactiflora (FPR), and 54 compounds were identified. Especially the content of gallic acid, albiflorin, and paeoniflorin with high biological activities were the highest in the cork, but they were lower in PR than that in PPR, which probably related to the process. To illustrate the difference in pharmacological effects of PR and PPR, the tonifying blood and analgesic effects on mice were investigated, and it was found that the tonifying blood and analgesic effects of PPR was superior to that of PR, even though PR had more constituents. The material basis for tonifying blood and analgesic effect of the root of P. lactiflora is likely to be associated with an increase in constituents such as paeoniflorin and paeoniflorin lactone after boiled and peeled. The study was likely to provide some theoretical support for the standard and clinical application.


Asunto(s)
Glucósidos , Monoterpenos , Paeonia , Raíces de Plantas , Espectrometría de Masas en Tándem , Paeonia/química , Raíces de Plantas/química , Animales , Ratones , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Glucósidos/análisis , Glucósidos/química , Masculino , Monoterpenos/farmacología , Monoterpenos/análisis , Monoterpenos/química , Microdisección/métodos , Ácido Gálico/análisis , Ácido Gálico/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Rayos Láser , Analgésicos/farmacología , Analgésicos/química , Analgésicos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida con Espectrometría de Masas , Hidrocarburos Aromáticos con Puentes
6.
Bioorg Chem ; 147: 107381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38669781

RESUMEN

The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.


Asunto(s)
Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos , Hiperuricemia , Transportadores de Anión Orgánico , Proteínas de Transporte de Catión Orgánico , Hiperuricemia/tratamiento farmacológico , Humanos , Animales , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacocinética , Urato Oxidasa/química , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Ratones , Masculino , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Ratas Sprague-Dawley
7.
Food Chem ; 448: 139073, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574713

RESUMEN

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Asunto(s)
Ácido Ascórbico , Biopelículas , Escherichia coli , Ácido Gálico , Ácido Gálico/análogos & derivados , Luz , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Ácido Ascórbico/farmacología , Ácido Ascórbico/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Ácido Gálico/farmacología , Ácido Gálico/química , Escherichia coli/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Antibacterianos/farmacología , Antibacterianos/química , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Plancton/efectos de los fármacos , Plancton/efectos de la radiación , Luz Azul
8.
Chemosphere ; 357: 142100, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657697

RESUMEN

Emulsified oils and dye contaminants already pose a huge threat to global ecosystems and human health. It is a significant research topic to develop efficient, rapid, versatile methods for emulsion separation and dye adsorption. The membrane material modified with common methods only modified the outer surface of the membrane, while the interior is hardly fully decorated. In this investigation, a solvent exchange method was used to in situ grow nanoparticles in the interior of a porous sponge. These nanoparticles were obtained with polyethyleneimine, gallic acid, and tannic acid via Michael addition and Schiff base reaction. The prepared nanoparticle-coated sponges provided efficient separation of dyes, emulsions, and complex contaminants. The separation efficiency of the dye reached 99.49%, and the separation efficiency of the emulsion was as high as 99.87% with a flux of 11140.3 L m-2 h-1. Furthermore, the maximum adsorption capacity reached 486.8 mg g-1 for cationic dyes and 182.1 mg g-1 for anionic dyes. More importantly, the nanoparticles were highly robust on the surface of the porous sponge, and the modified sponge could have long-term applications in hazardous environments. Overall, it is envisioned that the nanoparticles-modified porous sponge exhibited considerable potential for emulsion and dye wastewater treatment.


Asunto(s)
Colorantes , Emulsiones , Nanopartículas , Contaminantes Químicos del Agua , Colorantes/química , Adsorción , Emulsiones/química , Nanopartículas/química , Porosidad , Contaminantes Químicos del Agua/química , Taninos/química , Aguas Residuales/química , Purificación del Agua/métodos , Ácido Gálico/química , Polietileneimina/química
9.
Nat Commun ; 15(1): 3539, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670975

RESUMEN

Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-ß-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.


Asunto(s)
Benzopiranos , Vías Biosintéticas , Escherichia coli , Ingeniería Metabólica , Benzopiranos/metabolismo , Benzopiranos/química , Ingeniería Metabólica/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Glicosiltransferasas/metabolismo , Metiltransferasas/metabolismo , Ácido Gálico/metabolismo , Ácido Gálico/química , Reactores Biológicos , Glicósidos/biosíntesis , Glicósidos/metabolismo , Glicósidos/química
10.
Mol Pharm ; 21(5): 2577-2589, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38647021

RESUMEN

This study aimed to repurpose the antifungal drug flucytosine (FCN) for anticancer activity together with cocrystals of nutraceutical coformers sinapic acid (SNP) and syringic acid (SYA). The cocrystal screening experiments with SNP resulted in three cocrystal hydrate forms in which two are polymorphs, namely, FCN-SNP F-I and FCN-SNP F-II, and the third one with different stoichiometry in the asymmetric unit (1:2:1 ratio of FCN:SNP:H2O, FCN-SNP F-III). Cocrystallization with SYA resulted in two hydrated cocrystal polymorphs, namely, FCN-SYA F-I and FCN-SYA F-II. All the cocrystal polymorphs were obtained concomitantly during the slow evaporation method, and one of the polymorphs of each system was produced in bulk by the slurry method. The interaction energy and lattice energies of all cocrystal polymorphs were established using solid-state DFT calculations, and the outcomes correlated with the experimental results. Further, the in vitro cytotoxic activity of the cocrystals was determined against DU145 prostate cancer and the results showed that the FCN-based cocrystals (FCN-SNP F-III and FCN-SYA F-I) have excellent growth inhibitory activity at lower concentrations compared with parent FCN molecules. The prepared cocrystals induce apoptosis by generating oxidative stress and causing nuclear damage in prostate cancer cells. The Western blot analysis also depicted that the cocrystals downregulate the inflammatory markers such as NLRP3 and caspase-1 and upregulate the intrinsic apoptosis signaling pathway marker proteins, such as Bax, p53, and caspase-3. These findings suggest that the antifungal drug FCN can be repurposed for anticancer activity.


Asunto(s)
Antifúngicos , Antineoplásicos , Apoptosis , Reposicionamiento de Medicamentos , Flucitosina , Neoplasias de la Próstata , Transducción de Señal , Apoptosis/efectos de los fármacos , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Antifúngicos/farmacología , Antifúngicos/química , Masculino , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Reposicionamiento de Medicamentos/métodos , Flucitosina/farmacología , Flucitosina/química , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología , Ácido Gálico/química , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Cristalización , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
11.
Environ Pollut ; 349: 123917, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583794

RESUMEN

Phthalate esters (PAEs) are plasticizers widely used in the industry and easily released into the environment, posing a serious threat to human health. Molecularly imprinted polymers (MIPs) are important as selective adsorbents for the removal of PAEs. In this study, three kinds of mussel-inspired MIPs for the removal of PAEs were first prepared with gallic acid (GA), hexanediamine (HD), tannic acid (TA), and dopamine (DA) under mild conditions. The adsorption results showed that the MIP with low cost derived from GA and HD (GAHD-MIP) obtained the highest adsorption capacity among these materials. Furthermore, 97.43% of equilibrium capacity could be reached within the first 5 min of adsorption. Especially, the dummy template of diallyl phthalate (DAP) with low toxicity was observed to be more suitable to prepare MIPs than dibutyl phthalate (DBP), although DBP was the target of adsorption. The adsorption process was in accordance with the pseudo-second-order kinetics model. In the isotherm analysis, the adsorption behavior agreed with the Freundlich model. Additionally, the material maintained high adsorption performance after 7 cycles of regeneration tests. The GAHD-MIP adsorbents in this study, with low cost, rapid adsorption equilibrium, green raw materials, and low toxicity dummy template, provide a valuable reference for the design and development of new MIPs.


Asunto(s)
Dibutil Ftalato , Ácido Gálico , Polímeros Impresos Molecularmente , Contaminantes Químicos del Agua , Adsorción , Dibutil Ftalato/química , Contaminantes Químicos del Agua/química , Ácido Gálico/química , Polímeros Impresos Molecularmente/química , Ácidos Ftálicos/química , Cinética , Purificación del Agua/métodos
12.
Int J Biol Macromol ; 267(Pt 2): 131626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631590

RESUMEN

Self-healing hydrogel is a promising soft material for applications in wound dressings, drug delivery, tissue engineering, biomimetic electronic skin, and wearable electronic devices. However, it is a challenge to fabricate the self-healing hydrogels without external stimuli. Inspired by mussel, the metal-catechol complexes were introduced into the hydrogel systems to prepare the mussel-inspired hydrogels by regulating the gelation kinetics of Fe3+ crosslinkers with gallic acid (GA) in this research. The amine-functionalized carboxymethyl cellulose (CMC) was grafted with GA and then chelated with Fe3+ to form a multi-response system. The crosslinking of carboxymethyl cellulose-ethylenediamine-gallic acid (CEG) hydrogel was controlled by adjusting the pH to affect the iron coordination chemistry, which could enhance the self-healing properties and mechanical strength of hydrogels. In addition, the CEG hydrogel exhibited great antibacterial and antioxidant properties. And the CEG hydrogel could strongly adhere to the skin tissue. The adhesion strength of CEG hydrogel on pigskin was 11.44 kPa, which is higher than that of commercial wound dressings (∼5 kPa). Moreover, the thixotropy of the CEG hydrogel was confirmed with rheological test. In summary, it has great potential in the application field of wound dressing.


Asunto(s)
Carboximetilcelulosa de Sodio , Ácido Gálico , Hidrogeles , Ácido Gálico/química , Hidrogeles/química , Hidrogeles/farmacología , Carboximetilcelulosa de Sodio/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Hierro/química , Porcinos , Reactivos de Enlaces Cruzados/química , Reología , Cicatrización de Heridas/efectos de los fármacos
13.
Nanoscale ; 16(19): 9496-9508, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38651386

RESUMEN

"Transition" metal-coordinated plant polyphenols are a type of promising antitumor nanodrugs owing to their high biosafety and catalytic therapy potency; however, the major obstacle restricting their clinical application is their poor tumor accumulation. Herein, Fe-doped ZIF-8 was tailored using tannic acid (TA) into a hollow mesoporous nanocarrier for gallic acid (GA) loading. After hyaluronic acid (HA) modification, the developed nanosystem of HFZIF-8/GA@HA was used for the targeted delivery of Fe ions and GA, thereby intratumorally achieving the synthesis of an Fe-GA coordinated complex. The TA-etching strategy facilitated the development of a cavitary structure and abundant coordination sites of ZIF-8, thus ensuring an ideal loading efficacy of GA (23.4 wt%). When HFZIF-8/GA@HA accumulates in the tumor microenvironment (TME), the framework is broken due to the competitive protonation ability of overexpressed protons in the TME. Interestingly, the intratumoral degradation of HFZIF-8/GA@HA provides the opportunity for the in situ "meeting" of GA and Fe ions, and through the coordination of polyhydroxyls assisted by conjugated electrons on the benzene ring, highly stable Fe-GA nanochelates are formed. Significantly, owing to the electron delocalization effect of GA, intratumorally coordinated Fe-GA could efficiently absorb second near-infrared (NIR-II, 1064 nm) laser irradiation and transfer it into thermal energy with a conversion efficiency of 36.7%. The photothermal performance could speed up the Fenton reaction rate of Fe-GA with endogenous H2O2 for generating more hydroxyl radicals, thus realizing thermally enhanced chemodynamic therapy. Overall, our research findings demonstrate that HFZIF-8/GA@HA has potential as a safe and efficient anticancer nanodrug.


Asunto(s)
Ácido Gálico , Ácido Gálico/química , Ácido Gálico/farmacología , Ratones , Animales , Humanos , Línea Celular Tumoral , Taninos/química , Ácido Hialurónico/química , Hierro/química , Antineoplásicos/química , Antineoplásicos/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Microambiente Tumoral/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Catálisis , Portadores de Fármacos/química , Nanopartículas/química , Imidazoles
14.
Int J Biol Macromol ; 266(Pt 2): 131360, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580017

RESUMEN

A humic acid-gelatin (HA-Gel) hydrogel, a gallic acid-xanthan gum (GA-XG) hydrogel, a HA-Gel/GA-XG hydrogel, and superabsorbent polymer (SAP) of HA-Gel/GA-XG/polyacrylamide (PAM) hydrogel were synthesized using electron beam irradiation method. The capability of synthesized hydrogels in loading and controlled release of fulvic acid (FA) was studied. The chemical and physical structure of sorbents was confirmed by various analyses. The effect of irradiation dose on mechanical properties, gel percentage, swelling, and absorbency under load (AUL) of the sorbents was investigated. By changing the hydrogel structures into the SAP form, its swelling capacity was increased from 37 to 320 g/g. Both hybrid hydrogel and SAP were reusable for up to 7 cycles. The maximum fertilizer loading capacities for SAP and hybrid hydrogel were 402.1 and, 175.5 mg g-1, respectively. In comparison to hydrogels, the SAP showed a slower FA-release performance. Thus, in soil media, 86 % of FA was released in 15-20 days from the hybrid hydrogel while with the SAP, 81 % of FA was released in 30-35 days. The significant improvement in the growth of fodder corn treated with FA-loaded SAP in the greenhouse media in comparison to the control groups showed the effective performance of the designed SAP, favoring its practical applications.


Asunto(s)
Benzopiranos , Gelatina , Hidrogeles , Polisacáridos Bacterianos , Zea mays , Hidrogeles/química , Benzopiranos/química , Polisacáridos Bacterianos/química , Gelatina/química , Zea mays/química , Preparaciones de Acción Retardada/química , Electrones , Polímeros/química , Fertilizantes , Ácido Gálico/química , Sustancias Húmicas
15.
Food Chem ; 449: 139273, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599110

RESUMEN

The objectives of this study were to modify hordein with gallic acid (GA) in alcohol-free media and to compare the impact of covalent and non-covalent binding on the properties of hordein. Covalent hordein-GA complexes (H-GA) and non-covalent hordein/GA complexes (H/GA) were distinguished by molecular weight, free sulfhydryl groups and free amino groups. Isothermal titration calorimetry (ITC) demonstrated that physical mixing induced non-covalent binding of GA to hordein via hydrogen bonding and hydrophobic interactions, with a lower binding efficiency than covalent ones. Both complexation types led to a structural shift of hordein toward disorder, while grafting of oligomeric GA and alkaline treatment resulted in lower surface hydrophobicity and higher antioxidant activity of H-GA compared to H/GA. The nanoparticles assembled from H-GA had smaller particle sizes and higher physical stability than those formed from H/GA. The results of this study may provide new insights into the modification of hordein by polyphenols.


Asunto(s)
Ácido Gálico , Ácido Gálico/química , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Tamaño de la Partícula , Antioxidantes/química , Nanopartículas/química , Estructura Molecular , Etanol/química
16.
Food Chem ; 447: 139029, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38513480

RESUMEN

Hydrocolloids synthesized by gallic acid (GA) and ferulic acid (FA) grafting onto chitosan (CS) were characterized, and their effects on PhIP formation in pan-fried golden pompano were investigated. Spectrograms including nuclear magnetic resonance, Fourier transform infrared spectroscopy and ultraviolet-visible confirmed that GA and FA were successfully grafted onto CS via covalent bonds, with grafting degree of 97.06 ± 2.56 mg GA/g and 93.56 ± 2.76 mg FA/g, respectively. The CS-g-GA and CS-g-FA exerted better solubility and antioxidant activities than CS. For the 8-min pan-fried golden pompano fillets, CS-g-GA and CS-g-FA (0.5 %, m/v) significantly reduced the PhIP formation by 61.71 % and 81.64 %, respectively. Chemical models revealed that CS-g-GA and CS-g-FA inhibited PhIP formation mainly by decreasing the phenylacetaldehyde contents from Maillard reaction and competing with creatinine to react with phenylacetaldehyde. Therefore, it was suggested that CS-g-phenolic acids emerge as novel coating for aquatic products during processing and inhibit heterocyclic amines generation.


Asunto(s)
Acetaldehído/análogos & derivados , Quitosano , Imidazoles , Quitosano/química , Polifenoles , Antioxidantes/química , Ácido Gálico/química
17.
Biochemistry (Mosc) ; 89(1): 173-183, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467553

RESUMEN

Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.


Asunto(s)
Antioxidantes , Polifenoles , Antioxidantes/farmacología , Antioxidantes/química , Polifenoles/farmacología , Polifenoles/química , Péptidos/farmacología , Péptidos/química , Ácido Gálico/farmacología , Ácido Gálico/química , Antibacterianos/química
18.
Biomater Sci ; 12(6): 1405-1424, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38372381

RESUMEN

Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.


Asunto(s)
Ácido Gálico , Pirogalol , Ácido Gálico/farmacología , Ácido Gálico/química , Pirogalol/farmacología , Hidrogeles/química , Polifenoles , Catecoles
19.
Int J Biol Macromol ; 262(Pt 2): 130086, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360224

RESUMEN

This study was designed to investigate the effect of polyphenolic structure on the interaction strength and process between polyphenols (gallic acid (GA), epigallocatechin gallate (EGCG) and tannic acid (TA)) and amylose (AM). The results of Fourier transform infrared spectroscopy, isothermal titration calorimetry, X-ray photoelectron spectroscopy and molecular dynamic simulation (MD) suggested that the interactions between the three polyphenols and AM were noncovalent, spontaneous, low-energy and driven by enthalpy, which would be enhanced with increasing amounts of pyrogallol groups in the polyphenols. The results of turbidity, particle size and appearance of the complex solution showed that the interaction process between polyphenols and AM could be divided into three steps and would be advanced by increasing the number of pyrogallol groups in the polyphenols. At the same time, MD was intuitively employed to exhibit the interaction process between amylose and polyphenols, and it revealed that the interaction induced the aggregation of amylose and that the agglomeration degree of amylose increased with increasing number of pyrogallol groups at polyphenols. Last, the SEM and TGA results showed that TA/AM complexes had the tightest structure and the highest thermal stability (TA/AM˃EGCG/AM˃GA/AM), which could be attributed to TA having five pyrogallol groups.


Asunto(s)
Amilosa , Pirogalol , Pirogalol/química , Polifenoles/química , Ácido Gálico/química
20.
Int J Biol Macromol ; 263(Pt 1): 130159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368972

RESUMEN

In this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films. Increased concentration of chitin nanofibers in films reduced the overall water vapor permeability of films by 51 %. In addition, gallic acid and chitin nanofibers had synergic effect on high chitosan film's antioxidant and antifungal activity toward Botrytis cinerea (both above 95 %). Finally, chitosan/gallic acid/chitin nanofibers films reduced decay incidence of strawberries, increased total soluble solid content, and promoted high production of some polyphenols during cold storage, in comparison to the control chitosan films and uncoated strawberry samples. Hence, these results suggest that chitosan/gallic acid/chitin nanofibers can present eco-sustainable approach for preservation of strawberries, giving them additional nutritional value.


Asunto(s)
Quitosano , Nanofibras , Quitosano/farmacología , Quitosano/química , Quitina/química , Ácido Gálico/química , Nanofibras/química , Vapor , Embalaje de Alimentos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...