Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Respir Res ; 24(1): 81, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922854

RESUMEN

BACKGROUND: Obesity has been identified as a risk factor for acute lung injury/acute respiratory distress syndrome (ALI/ARDS). However, the underlying mechanisms remain elusive. This study aimed to investigate the role of fatty acid synthase (FASN) in lipopolysaccharide (LPS)-induced ALI under obesity. METHODS: A high-fat diet-induced obese (DIO) mouse model was established and lean mice fed with regular chow diet were served as controls. LPS was intratracheally instilled to reproduce ALI in mice. In vitro, primary mouse lung endothelial cells (MLECs), treated by palmitic acid (PA) or co-cultured with 3T3-L1 adipocytes, were exposed to LPS. Chemical inhibitor C75 or shRNA targeting FASN was used for in vivo and in vitro loss-of-function studies for FASN. RESULTS: After LPS instillation, the protein levels of FASN in freshly isolated lung endothelial cells from DIO mice were significantly higher than those from lean mice. MLECs undergoing metabolic stress exhibited increased levels of FASN, decreased levels of VE-cadherin with increased p38 MAPK phosphorylation and NLRP3 expression, mitochondrial dysfunction, and impaired endothelial barrier compared with the control MLECs when exposed to LPS. However, these effects were attenuated by FASN inhibition with C75 or corresponding shRNA. In vivo, LPS-induced ALI, C75 pretreatment remarkably alleviated LPS-induced overproduction of lung inflammatory cytokines TNF-α, IL-6, and IL-1ß, and lung vascular hyperpermeability in DIO mice as evidenced by increased VE-cadherin expression in lung endothelial cells and decreased lung vascular leakage. CONCLUSIONS: Taken together, FASN inhibition alleviated the exacerbation of LPS-induced lung injury under obesity via rescuing lung endothelial dysfunction. Therefore, targeting FASN may be a potential therapeutic target for ameliorating LPS-induced ALI in obese individuals.


Asunto(s)
Lesión Pulmonar Aguda , Ácido Graso Sintasas , Síndrome de Dificultad Respiratoria , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/prevención & control , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Endoteliales/metabolismo , Ácido Graso Sintasas/antagonistas & inhibidores , Lipopolisacáridos , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo
2.
Hepatology ; 76(4): 951-966, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35076948

RESUMEN

BACKGROUND AND AIMS: Aberrant activation of fatty acid synthase (FASN) is a major metabolic event during the development of HCC. We evaluated the therapeutic efficacy of TVB3664, a FASN inhibitor, either alone or in combination, for HCC treatment. APPROACH AND RESULTS: The therapeutic efficacy and the molecular pathways targeted by TVB3664, either alone or with tyrosine kinase inhibitors or the checkpoint inhibitor anti-programmed death ligand 1 antibody, were assessed in human HCC cell lines and multiple oncogene-driven HCC mouse models. RNA sequencing was performed to elucidate the effects of TVB3664 on global gene expression and tumor metabolism. TVB3664 significantly ameliorated the fatty liver phenotype in the aged mice and AKT-induced hepatic steatosis. TVB3664 monotherapy showed moderate efficacy in NASH-related murine HCCs, induced by loss of phosphatase and tensin homolog and MET proto-oncogene, receptor tyrosine kinase (c-MET) overexpression. TVB3664, in combination with cabozantinib, triggered tumor regression in this murine model but did not improve the responsiveness to immunotherapy. Global gene expression revealed that TVB3664 predominantly modulated metabolic processes, whereas TVB3664 synergized with cabozantinib to down-regulate multiple cancer-related pathways, especially the AKT/mammalian target of rapamycin pathway and cell proliferation genes. TVB3664 also improved the therapeutic efficacy of sorafenib and cabozantinib in the FASN-dependent c-MYC-driven HCC model. However, TVB3664 had no efficacy nor synergistic effects in FASN-independent murine HCC models. CONCLUSIONS: This preclinical study suggests the limited efficacy of targeting FASN as monotherapy for HCC treatment. However, FASN inhibitors could be combined with other drugs for improved effectiveness. These combination therapies could be developed based on the driver oncogenes, supporting precision medicine approaches for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Acido Graso Sintasa Tipo I , Neoplasias Hepáticas , Anilidas , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Mamíferos/metabolismo , Ratones , Monoéster Fosfórico Hidrolasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Piridinas , Sorafenib/farmacología , Serina-Treonina Quinasas TOR , Tensinas
3.
Oxid Med Cell Longev ; 2021: 9990794, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34457121

RESUMEN

AIMS: This study is aimed at examining whether fatty acid synthase (FAS) can regulate mitochondrial function in hypoxia-induced pulmonary arterial hypertension (PAH) and its related mechanism. RESULTS: The expression of FAS significantly increased in the lung tissue of mice with hypoxia-induced PAH, and its pharmacological inhibition by C75 ameliorated right ventricle cardiac function as revealed by echocardiographic analysis. Based on transmission electron microscopy and Seahorse assays, the mitochondrial function of mice with hypoxia was abnormal but was partially reversed after C75 injection. In vitro studies also showed an increase in the expression of FAS in hypoxia-induced human pulmonary artery smooth muscle cells (HPASMCs), which could be attenuated by FAS shRNA as well as C75 treatment. Meanwhile, C75 treatment reversed hypoxia-induced oxidative stress and activated PI3K/AKT signaling. shRNA-mediated inhibition of FAS reduced its expression and oxidative stress levels and improved mitochondrial respiratory capacity and ATP levels of hypoxia-induced HPASMCs. CONCLUSIONS: Inhibition of FAS plays a crucial role in shielding mice from hypoxia-induced PAH, which was partially achieved through the activation of PI3K/AKT signaling, indicating that the inhibition of FAS may provide a potential future direction for reversing PAH in humans.


Asunto(s)
4-Butirolactona/análogos & derivados , Metabolismo Energético , Ácido Graso Sintasas/antagonistas & inhibidores , Hipoxia/complicaciones , Mitocondrias/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Hipertensión Arterial Pulmonar/tratamiento farmacológico , 4-Butirolactona/farmacología , Animales , Apoptosis , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipertensión Arterial Pulmonar/enzimología , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/patología , Transducción de Señal
4.
Chem Biol Drug Des ; 98(5): 869-884, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34459114

RESUMEN

Cancer cells require a higher amount of energy in the form of fatty acids for their uncontrolled proliferation and growth. Fatty acid synthase (FASN) plays a crucial role in the synthesis of palmitate, which is involved in most of the critical malignant pathways. Hence, by targeting FASN, tumour growth can be controlled. By designing and developing FASN inhibitors with catalytic domain specificity, safe and potential anticancer drugs can be achieved. The article draws light towards the catalytic domains of FASN, their active site residues and interaction of some of the reported natural FASN inhibitors (resveratrol, lavandulyl flavonoids, catechins, stilbene derivatives, etc). The rationality (structure-activity relationship) behind the variation in the activity of the reported natural FASN inhibitors (butyrolactones, polyphenolics, galloyl esters and thiolactomycins) has also been covered. Selective, safe and potentially active FASN inhibitors could be developed by: (i) having proper understanding of the function of all catalytic domains of FASN (ii) studying the upstream and downstream FASN regulators (iii) identifying cancer-specific FASN biomarkers (that are non-essential/absent in the normal healthy cells) (iv) exploring the complete protein structure of FASN, e-screening of the compounds prior to synthesis and study their ADME properties (v) predicting the selectivity based on their strong affinity at the catalytic site of FASN.


Asunto(s)
Antineoplásicos/química , Productos Biológicos/química , Ácido Graso Sintasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Productos Biológicos/farmacología , Dominio Catalítico , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Flavonoides/química , Humanos , Polifenoles/química , Unión Proteica , Resveratrol/química , Estilbenos/química , Relación Estructura-Actividad
5.
Clin Cancer Res ; 27(21): 5810-5817, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34400413

RESUMEN

PURPOSE: Fatty acid synthase (FASN) is overexpressed in 70% of operable triple-negative breast cancer (TNBC) and is associated with poor prognosis. Proton pump inhibitors selectively inhibit FASN activity and induce apoptosis in TNBC cell lines. PATIENTS AND METHODS: Patients with operable TNBC were enrolled in this single-arm phase II study. Patients began omeprazole 80 mg orally twice daily for 4-7 days prior to neoadjuvant anthracycline-taxane-based chemotherapy (AC-T) and continued until surgery. The primary endpoint was pathologic complete response (pCR) in patients with baseline FASN overexpression (FASN+). Secondary endpoints included pCR in all surgery patients, change in FASN expression, enzyme activity, and downstream protein expression after omeprazole monotherapy, safety, and limited omeprazole pharmacokinetics. RESULTS: Forty-two patients were recruited with a median age of 51 years (28-72). Most patients had ≥cT2 (33, 79%) and ≥N1 (22, 52%) disease. FASN overexpression prior to AC-T was identified in 29 of 34 (85%) evaluable samples. The pCR rate was 72.4% [95% confidence interval (CI), 52.8-87.3] in FASN+ patients and 74.4% (95% CI, 57.9-87.0) in all surgery patients. Peak omeprazole concentration was significantly higher than the IC50 for FASN inhibition observed in preclinical testing; FASN expression significantly decreased with omeprazole monotherapy [mean change 0.12 (SD, 0.25); P = 0.02]. Omeprazole was well tolerated with no grade ≥ 3 toxicities. CONCLUSIONS: FASN is commonly expressed in early TNBC. Omeprazole can be safely administered in doses that inhibit FASN. The addition of omeprazole to neoadjuvant AC-T yields a promising pCR rate that needs further confirmation in randomized studies.


Asunto(s)
Ácido Graso Sintasas/antagonistas & inhibidores , Terapia Neoadyuvante , Omeprazol/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Omeprazol/farmacología , Resultado del Tratamiento
6.
J Virol ; 95(17): e0078121, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132567

RESUMEN

Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B interacted with FASN and promoted overexpression of FASN, which is regulated by functional Rab18. Moreover, we found that FASN regulated the formation of lipid droplets (LDs) upon CSFV infection, promoting virus proliferation. Taken together, our work provides mechanistic insight into the role of FASN in the viral life of CSFV, and it highlights the potential antiviral target for the development of therapeutics against pestiviruses. IMPORTANCE Classical swine fever, caused by classical swine fever virus (CSFV), is one of the notifiable diseases by the World Organization for Animal Health (OIE) and causes significant financial losses to the pig industry globally. CSFV, like other (+)-strand RNA viruses, requires lipid and sterol biosynthesis for efficient replication. However, the role of lipid metabolism in CSFV replication remains unknown. Here, we found that fatty acid synthase (FASN) was involved in viral propagation. Moreover, FASN is recruited to CSFV replication sites in the endoplasmic reticulum (ER) and interacts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.


Asunto(s)
4-Butirolactona/análogos & derivados , Virus de la Fiebre Porcina Clásica/fisiología , Peste Porcina Clásica/virología , Ácido Graso Sintasas/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Proteínas de Unión al GTP rab/metabolismo , 4-Butirolactona/farmacología , Animales , Peste Porcina Clásica/enzimología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Ácido Graso Sintasas/metabolismo , Interacciones Huésped-Patógeno , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas de Unión al GTP rab/genética
7.
Eur J Med Chem ; 219: 113407, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-33901805

RESUMEN

Fatty acid synthase (FASN), the key enzyme in de novo lipogenesis, is an attractive therapeutic target for diseases characterized by excessive lipid accumulation. Many FASN inhibitors have failed in the clinical trial phase, largely because of poor solubility and safety. In this study, we generated a novel small-molecule FASN inhibitor by structure-based virtual screening. PFI09, the lead compound, is easy to synthesize, and inhibits the lipid synthesis in OP9 mammalian cell line and Caenorhabditis elegans as well as the proliferation of several cancer cell lines via the blockade of FASN. Mechanistic investigations show that PFI09 induces S-phase arrest, cell division reduction and apoptosis. We also develop a chemically stable analog of PFI09, MFI03, which reduces the proliferation of PC3 tumor cells both in vitro and in vivo, without toxicity to mice. In summary, our data suggest that MFI03 is an effective FASN inhibitor and a promising antineoplastic drug candidate.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/antagonistas & inhibidores , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Ácido Graso Sintasas/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirrolidinas/química , Pirrolidinas/metabolismo , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico
8.
J Mol Graph Model ; 105: 107903, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33780787

RESUMEN

Cancer cells activate de novo lipogenesis by overexpressing the lipogenic enzymes ACLY, ACC and FASN to support rapid cell division. FASN, previously known as oncogenic antigen-519 (OA-519) catalyzes seven sequential reactions to synthesize palmitic acid (C16) from substrates acetyl CoA, and malonyl CoA. The dependence of cancer cells on FASN-derived lipids and the differential expression of FASN in cancer cells compared to their normal counterparts make it an attractive metabolic drug target in cancer therapy. In the present study, an attempt has been made to identify potent FASN inhibitors from Asinex-Synergy compound database using structure-based virtual screening. The serial docking protocols of increasing precisions identified LEG-17649942, with glide score -10.34 kcal/mol as a promising compound which can directly interact with active site residues H293 and H331. LEG-17649942 possesses drug-like pharmacokinetic properties as predicted by Qikprop. LEG-17649942 exhibited cytotoxicity in breast cancer cell lines SK-BR-3, MCF-7 and MDA-MB-231 with maximum activity against MDA-MB-231 cells with IC50 of 50 µM. The study put forward LEG-17649942 as a novel drug-lead compound against triple negative breast cancer with an exquisite binding pattern to FASN-KS domain.


Asunto(s)
Neoplasias de la Mama , Ácido Graso Sintasas , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Ácido Graso Sintasas/antagonistas & inhibidores , Femenino , Humanos
9.
Mol Nutr Food Res ; 65(10): e2001224, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33754444

RESUMEN

Occurrence of obesity and its associated metabolic disorders continues to escalate. The present study evaluates the anti-obesity effects of ethanolic fruit extract of Terminalia chebula (EETC) on high fat diet induced obese mice. The bioactive compounds present in the EETC is evaluated by Fourier-transform infrared (FT-IR), Gas chromatography-mass spectrometry (GC-MS), and Liquid chromatography-mass spectrometry (LC-MS) analysis. The effects of EETC on energy intake, glucose tolerance, and various biochemical parameters were analyzed using laboratory mice. Relative gene expression of Fatty acid synthase (FAS), Peroxisome proliferator-activated receptors α (PPARα), Carnitine palmitoyltransferase-1 (CPT-1), Tumor necrosis factor alpha (TNF-α) as well as Interleukin 6 (IL-6) were analyzed in liver and adipose tissues. The findings reveal the hypolipidemic and anti-obesity potential of EETC on high fat fed obese mice. EETC exerts its anti-obesity effects by suppressing lipogenesis through reduction in lipogenic enzyme (FAS) expression, increased fatty acid oxidation via PPARα and CPT-1 and by triggering the anti-inflammatory responses. To our knowledge, this is the first report of the effect of EETC on PPARα and CPT-1 in in vivo.


Asunto(s)
Fármacos Antiobesidad , Frutas/química , Obesidad/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Terminalia , Tejido Adiposo/metabolismo , Animales , Antiinflamatorios , Carnitina O-Palmitoiltransferasa/genética , Dieta Alta en Grasa , Ingestión de Energía/efectos de los fármacos , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Expresión Génica/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , PPAR alfa/genética
10.
JCI Insight ; 6(5)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33507880

RESUMEN

Preterm birth increases the risk for pulmonary hypertension and heart failure in adulthood. Oxygen therapy can damage the immature cardiopulmonary system and may be partially responsible for the cardiovascular disease in adults born preterm. We previously showed that exposing newborn mice to hyperoxia causes pulmonary hypertension by 1 year of age that is preceded by a poorly understood loss of pulmonary vein cardiomyocyte proliferation. We now show that hyperoxia also reduces cardiomyocyte proliferation and survival in the left atrium and causes diastolic heart failure by disrupting its filling of the left ventricle. Transcriptomic profiling showed that neonatal hyperoxia permanently suppressed fatty acid synthase (Fasn), stearoyl-CoA desaturase 1 (Scd1), and other fatty acid synthesis genes in the atria of mice, the HL-1 line of mouse atrial cardiomyocytes, and left atrial tissue explanted from human infants. Suppressing Fasn or Scd1 reduced HL-1 cell proliferation and increased cell death, while overexpressing these genes maintained their expansion in hyperoxia, suggesting that oxygen directly inhibits atrial cardiomyocyte proliferation and survival by repressing Fasn and Scd1. Pharmacologic interventions that restore Fasn, Scd1, and other fatty acid synthesis genes in atrial cardiomyocytes may, thus, provide a way of ameliorating the adverse effects of supplemental oxygen on preterm infants.


Asunto(s)
Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Atrios Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxígeno/efectos adversos , Nacimiento Prematuro , Estearoil-CoA Desaturasa/metabolismo , Animales , Animales Recién Nacidos , Muerte Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ácido Graso Sintasas/antagonistas & inhibidores , Femenino , Atrios Cardíacos/patología , Humanos , Hiperoxia , Recién Nacido , Recien Nacido Prematuro , Lipogénesis , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Oxígeno/administración & dosificación , Terapia Respiratoria , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Transcriptoma
11.
Viruses ; 13(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440724

RESUMEN

Enteric symptomology seen in early-stage severe acute respiratory syndrome (SARS)-2003 and COVID-19 is evidence of virus replication occurring in the intestine, liver and pancreas. Aberrant lipid metabolism in morbidly obese individuals adversely affects the COVID-19 immune response and increases disease severity. Such observations are in line with the importance of lipid metabolism in COVID-19, and point to the gut as a site for intervention as well as a therapeutic target in treating the disease. Formation of complex lipid membranes and palmitoylation of coronavirus proteins are essential during viral replication and assembly. Inhibition of fatty acid synthase (FASN) and restoration of lipid catabolism by activation of AMP-activated protein kinase (AMPK) impede replication of coronaviruses closely related to SARS-coronavirus-2 (CoV-2). In vitro findings and clinical data reveal that the FASN inhibitor, orlistat, and the AMPK activator, metformin, may inhibit coronavirus replication and reduce systemic inflammation to restore immune homeostasis. Such observations, along with the known mechanisms of action for these types of drugs, suggest that targeting fatty acid lipid metabolism could directly inhibit virus replication while positively impacting the patient's response to COVID-19.


Asunto(s)
COVID-19/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , SARS-CoV-2/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/virología , Sistema Digestivo/efectos de los fármacos , Sistema Digestivo/virología , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/metabolismo , Humanos , Metformina/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/virología , Orlistat/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Proteínas Virales/metabolismo , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
12.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348563

RESUMEN

Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. The initiation and progression of CRC is a multi-step process that proceeds via precursor lesions to carcinoma, with each stage characterized by its distinct molecular and tissue microenvironment changes. Precursor lesions of CRC, aberrant crypt foci, and adenoma exhibit drastic changes in genetic, transcriptomic, and proteomic profiles compared to normal tissue. The identification of these changes is essential and provides further validation as an initiator or promoter of CRC and, more so, as lesion-specific druggable molecular targets for the precision chemoprevention of CRC. Mutated/dysregulated signaling (adenomatous polyposis coli, ß-catenin, epidermal growth factor receptor, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein53, Akt, etc.), inflammatory (cyclooxygenase-2, microsomal prostaglandin E synthase-1, inducible nitric oxide synthase, and other pro-inflammatory mediators), and metabolic/growth factor (fatty acid synthase, ß-Hydroxy ß-methylglutaryl-CoA reductase, and ornithine decarboxylase) related targets are some of the well-characterized molecular targets in the precision chemoprevention of CRC. In this review, we discuss precursor-lesion specific targets of CRC and the current status of pre-clinical studies regarding clinical interventions and combinations for better efficacy and safety toward future precision clinical chemoprevention. In addition, we provide a brief discussion on the usefulness of secondary precision chemopreventive targets for tertiary precision chemoprevention to improve the disease-free and overall survival of advanced stage CRC patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/prevención & control , Terapia Molecular Dirigida/métodos , Medicina de Precisión/métodos , Proteína de la Poliposis Adenomatosa del Colon/antagonistas & inhibidores , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Modelos Animales de Enfermedad , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/metabolismo , Humanos , Ratones
13.
Cells ; 9(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182594

RESUMEN

Fatty acid synthase (FAS) is a key enzyme involved in de novo lipogenesis that produces lipids that are necessary for cell growth and signal transduction, and it is known to be overexpressed, especially in cancer cells. Although lipid metabolism alteration is an important metabolic phenotype in cancer cells, the development of drugs targeting FAS to block lipid synthesis is hampered by the characteristics of cancer cells with metabolic flexibility leading to rapid adaptation and resistance. Therefore, to confirm the metabolic alterations at the cellular level during FAS inhibition, we treated LNCaP-LN3 prostate cancer cells with FAS inhibitors (Fasnall, GSK2194069, and TVB-3166). With untargeted metabolomics, we observed significant changes in a total of 56 metabolites in the drug-treated groups. Among the altered metabolites, 28 metabolites were significantly changed in all of the drug-treated groups. To our surprise, despite the inhibition of FAS, which is involved in palmitate production, the cells increase their fatty acids and glycerophospholipids contents endogenously. Also, some of the notable changes in the metabolic pathways include polyamine metabolism and energy metabolism. This is the first study to compare and elucidate the effect of FAS inhibition on cellular metabolic flexibility using three different FAS inhibitors through metabolomics. We believe that our results may provide key data for the development of future FAS-targeting drugs.


Asunto(s)
Ácido Graso Sintasas/antagonistas & inhibidores , Metabolómica/métodos , Neoplasias de la Próstata/metabolismo , Humanos , Masculino
14.
Molecules ; 25(17)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872164

RESUMEN

In recent years, lipid metabolism has garnered significant attention as it provides the necessary building blocks required to sustain tumor growth and serves as an alternative fuel source for ATP generation. Fatty acid synthase (FASN) functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors with lipogenic phenotypes. Accumulating evidence has shown that it is capable of rewiring tumor cells for greater energy flexibility to attain their high energy requirements. This multi-enzyme protein is capable of modulating the function of subcellular organelles for optimal function under different conditions. Apart from lipid metabolism, FASN has functional roles in other cellular processes such as glycolysis and amino acid metabolism. These pivotal roles of FASN in lipid metabolism make it an attractive target in the clinic with several new inhibitors currently being tested in early clinical trials. This article aims to present the current evidence on the emergence of FASN as a target in human malignancies.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Ácido Graso Sintasas/antagonistas & inhibidores , Ácido Graso Sintasas/genética , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/etiología
15.
FASEB J ; 34(9): 11355-11381, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32761847

RESUMEN

Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Azetidinas/farmacología , Ácidos Dicarboxílicos/farmacología , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/antagonistas & inhibidores , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Humanos , Neoplasias/metabolismo , Nitrilos/farmacología , Pirazoles/farmacología
16.
Nutrients ; 12(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825556

RESUMEN

A high-fat fast-food meal negatively impacts postprandial metabolism even in healthy young people. In experimental studies, epigallocatechin-3-gallate (EGCG), a bioactive compound present in green tea, has been described as a potent natural inhibitor of fatty acid synthase. Thus, we sought to evaluate the effects of acute EGCG supplementation on postprandial lipid profile, glucose, and insulin levels following a high-fat fast-food meal. Fourteen healthy young women 21 ± 1 years and body mass index 21.4 ± 0.41 kg/m2 were enrolled in a randomized, double-blind, placebo-controlled crossover study. Participants ingested capsules containing 800 mg EGCG or placebo immediately before a typical fast-food meal rich in saturated fatty acids. Blood samples were collected at baseline and then at 90 and 120 min after the meal. The EGCG treatment attenuated postprandial triglycerides (p = 0.029) and decreased high-density lipoprotein cholesterol (HDL-c) (p = 0.016) at 120 min. No treatment × time interaction was found for total cholesterol, low-density lipoprotein (LDL-c), and glucose or insulin levels. The incremental area under the curve (iAUC) for glucose was decreased by EGCG treatment (p < 0.05). No difference was observed in the iAUC for triglycerides and HDL-c. In healthy young women, acute EGCG supplementation attenuated postprandial triglycerides and glucose but negatively impacted HDL-c following a fast-food meal.


Asunto(s)
Catequina/análogos & derivados , Suplementos Dietéticos , Comida Rápida/efectos adversos , Voluntarios Sanos , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas HDL/metabolismo , Comidas/fisiología , Periodo Posprandial/fisiología , Triglicéridos/metabolismo , Adulto , Glucemia/metabolismo , Catequina/administración & dosificación , Catequina/farmacología , Estudios Cruzados , Método Doble Ciego , Comida Rápida/análisis , Ácido Graso Sintasas/antagonistas & inhibidores , Ácidos Grasos/análisis , Femenino , Humanos , Insulina/metabolismo , Adulto Joven
17.
Mini Rev Med Chem ; 20(18): 1820-1837, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32781957

RESUMEN

Fatty acid synthase (FASN) is a multifunctional enzyme involved in the production of fatty acids for lipid biosynthesis. FASN is overexpressed in multiple diseases like cancer, viral, nonalcoholic fatty liver disease, and metabolic disorders, making it an attractive target for new drug discovery for these diseases. In cancer, FASN affects the structure and function of the cellular membrane by channelizing with signaling pathways along with the post-translational palmitoylation of proteins. There are several natural and synthetic FASN inhibitors reported in the literature, a few examples are GSK 2194069 (7.7 nM), imidazopyridine (16 nM), epigallocatechin-3-gallate (42.0 µg/ml) and platensimycin (300 nM) but except for TVB-2640, none of the aforementioned inhibitors have made into clinical trials. The present review summarizes the recent advancements made in anticancer drug discovery targeting FASN. Furthermore, the review also provides insights into the medicinal chemistry of small molecule inhibitors targeting different FASN enzyme domains, and also critically analyzes the structural requirements for FASN inhibition with an objective to support rational design and development of new generation FASN inhibitors with clinical potential in diseases like cancer.


Asunto(s)
Antineoplásicos/farmacología , Desarrollo de Medicamentos , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo
18.
Growth Horm IGF Res ; 53-54: 101332, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32698101

RESUMEN

OBJECTIVE: Growth hormone (GH) deficiency has been associated with increased steatosis but the molecular mechanism has not been fully elucidated. We investigated the effect of GH on lipid accumulation of HepG2 cells cultured on an in vitro steatosis model and examined the potential involvement of insulin-like growth factor 1 (IGF-1) as well as lipogenic and lipolytic molecules. METHODS: Control and steatosis conditions were induced by culturing HepG2 cells with 5.5 or 25 mmol/l glucose for 24 h, respectively. Afterward, cells were exposed to 0, 5, 10 or 20 ng/ml GH for another 24 h. Lipid content was quantified as well as mRNA and protein levels of IGF-1, carbohydrate responsive element-binding protein (ChREBP), sterol regulatory element-binding protein 1c (SREBP1c), fatty acid synthase (FAS), carnitine palmitoyltransferase 1A (CPT1A), and peroxisome proliferator-activated receptor alpha (PPAR-alpha) by qPCR and western blot, respectively. Data were analyzed by one-way ANOVA and the Games-Howell post-hoc test. RESULTS: In the steatosis model, HepG2 hepatocytes showed a significant 2-fold increase in lipid amount as compared to control cells. IGF-1 mRNA and protein levels were significantly increased in control cells exposed to 10 ng/ml GH, whereas high glucose abolished this effect. High glucose also significantly increased both mRNA and protein of ChREBP and FAS without having effect on SREBP1c, CPT1A and PPAR-alpha. However, GH inhibited ChREBP and FAS production, even in HepG2 hepatocytes cultured under steatosis conditions. CONCLUSIONS: Growth hormone ameliorates high glucose-induced steatosis in HepG2 cells by suppressing de novo lipogenesis via ChREBP and FAS down-regulation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Ácido Graso Sintasas/antagonistas & inhibidores , Glucosa/efectos adversos , Hepatocitos/efectos de los fármacos , Hormona de Crecimiento Humana/farmacología , Lipogénesis , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Edulcorantes/efectos adversos
19.
Eur J Med Chem ; 200: 112440, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32505086

RESUMEN

Mycobacterium tuberculosis (M.tb), the etiologic agent of tuberculosis, remains the leading cause of death from a single infectious agent worldwide. The emergence of drug-resistant M.tb strains stresses the need for drugs acting on new targets. Mycolic acids are very long chain fatty acids playing an essential role in the architecture and permeability of the mycobacterial cell wall. Their biosynthesis involves two fatty acid synthase (FAS) systems. Among the four enzymes (MabA, HadAB/BC, InhA and KasA/B) of the FAS-II cycle, MabA (FabG1) remains the only one for which specific inhibitors have not been reported yet. The development of a new LC-MS/MS based enzymatic assay allowed the screening of a 1280 fragment-library and led to the discovery of the first small molecules that inhibit MabA activity. A fragment from the anthranilic acid series was optimized into more potent inhibitors and their binding to MabA was confirmed by 19F ligand-observed NMR experiments.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , ortoaminobenzoatos/farmacología , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Ácido Graso Sintasas/metabolismo , Estructura Molecular , Relación Estructura-Actividad , ortoaminobenzoatos/química
20.
Naunyn Schmiedebergs Arch Pharmacol ; 393(11): 2093-2106, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588069

RESUMEN

In metabolic disorders like obesity, NAFLD and T2DM, adipocytes are dysfunctional. Hence, pharmacological interventions have importance in preventing differentiation of adipocytes and stimulating lipid uptake. We, therefore, investigated the effects of arbutin (ARB), purpurin (PUR), quercetin (QR), and pterostilbene (PTS) on adipocyte differentiation and lipid uptake using 3T3-L1 adipocytes. Further, in silico docking studies were achieved to investigate interactions of ARB, PUR, QR, and PTS with beta-ketoacyl reductase (KR) and thioesterase (TE) domains of fatty acid synthase (FAS) enzyme. Mature 3T3-L1 adipocytes were used to investigate the anti-adipogenic effect of selected pharmacological agents by Oil Red O staining and in vitro fatty acid uptake analysis. Molecular docking studies were performed to predict the binding interactions of selected compounds with KR and TE domains of FAS enzyme. All these agents significantly decrease the adipocyte differentiation and showed the stimulatory effect on fatty acid uptake in 3T3-L1 adipocytes. However, PTS and PUR proved to be anti-adipogenic, whereas ARB and QR showed significant effect on fatty acid uptake, compared to others. Similarly, all the compounds displayed significant binding interactions with KR and TE domains of FAS enzyme, supporting the results of in vitro studies. Graphical abstract.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Antraquinonas/farmacología , Arbutina/farmacología , Inhibidores Enzimáticos/farmacología , Ácido Graso Sintasas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Estilbenos/farmacología , Células 3T3-L1 , Adipocitos/enzimología , Oxidorreductasas de Alcohol/metabolismo , Animales , Antraquinonas/química , Antraquinonas/farmacocinética , Arbutina/química , Arbutina/farmacocinética , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Ratones , Estructura Molecular , Quercetina/química , Quercetina/farmacocinética , Estilbenos/química , Estilbenos/farmacocinética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...