Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.059
Filtrar
1.
J Toxicol Sci ; 49(5): 231-240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692910

RESUMEN

Drug-induced convulsions are a major challenge to drug development because of the lack of reliable biomarkers. Using machine learning, our previous research indicated the potential use of an index derived from heart rate variability (HRV) analysis in non-human primates as a biomarker for convulsions induced by GABAA receptor antagonists. The present study aimed to explore the application of this methodology to other convulsants and evaluate its specificity by testing non-convulsants that affect the autonomic nervous system. Telemetry-implanted males were administered various convulsants (4-aminopyridine, bupropion, kainic acid, and ranolazine) at different doses. Electrocardiogram data gathered during the pre-dose period were employed as training data, and the convulsive potential was evaluated using HRV and multivariate statistical process control. Our findings show that the Q-statistic-derived convulsive index for 4-aminopyridine increased at doses lower than that of the convulsive dose. Increases were also observed for kainic acid and ranolazine at convulsive doses, whereas bupropion did not change the index up to the highest dose (1/3 of the convulsive dose). When the same analysis was applied to non-convulsants (atropine, atenolol, and clonidine), an increase in the index was noted. Thus, the index elevation appeared to correlate with or even predict alterations in autonomic nerve activity indices, implying that this method might be regarded as a sensitive index to fluctuations within the autonomic nervous system. Despite potential false positives, this methodology offers valuable insights into predicting drug-induced convulsions when the pharmacological profile is used to carefully choose a compound.


Asunto(s)
4-Aminopiridina , Frecuencia Cardíaca , Aprendizaje Automático , Convulsiones , Animales , Masculino , Convulsiones/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , 4-Aminopiridina/efectos adversos , Ácido Kaínico/toxicidad , Convulsivantes/toxicidad , Ranolazina , Bupropión/toxicidad , Bupropión/efectos adversos , Electrocardiografía/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sistema Nervioso Autónomo/efectos de los fármacos , Sistema Nervioso Autónomo/fisiopatología , Telemetría , Biomarcadores
2.
Free Radic Res ; 58(4): 276-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613520

RESUMEN

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.


Asunto(s)
Ginsenósidos , Ácido Kaínico , Mitocondrias , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Ácido Kaínico/toxicidad , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Ginsenósidos/farmacología , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Noqueados , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos
3.
Neuropharmacology ; 250: 109906, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494123

RESUMEN

Excitotoxicity, characterized by over-activation of glutamate receptors, is a major contributor to spinal cord injury (SCI) pathophysiology, resulting in neuronal death and loss of locomotor function. In our previous in vitro studies, we showed that excitotoxicity induced by the glutamate analogue kainate (KA) leads to a significant reduction in the number of neurons, providing a model for SCI. Our current objective was to assess the neuroprotective role of resveratrol (RESV), a natural polyphenol, following KA-induced SCI. In vivo excitotoxicity was induced by intraspinal injection of KA immediately followed by RESV administration to Balb/C adult male mice. In neonatal mouse spinal cord preparations, excitotoxicity was transiently induced by bath-applied KA, either with or without RESV. KA administration resulted in a significant deterioration in hindlimb motor coordination and balance during locomotion, which was partially reverted by RESV. Additionally, RESV preserved neurons in both dorsal and ventral regions. Sirtuin 2 (SIRT2) immunoreactive signal was increased by RESV, while the selective SIRT1 inhibitor 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (EX-527) attenuated RESV neuroprotective effects. These findings suggest that RESV attenuation of excitotoxic-induced neuronal loss and locomotor deficits is mediated, at least in part, through the activation of SIRT1, potentially involving SIRT2 as well. Indeed, our results highlight the potential use of RESV to enhance neuroprotective strategies for SCI.


Asunto(s)
Fármacos Neuroprotectores , Traumatismos de la Médula Espinal , Animales , Ratones , Masculino , Ácido Kaínico/toxicidad , Médula Espinal , Neuronas Motoras , Resveratrol/farmacología , Sirtuina 1 , Sirtuina 2/farmacología
4.
Neurobiol Dis ; 194: 106482, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522590

RESUMEN

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Animales , Epilepsia del Lóbulo Temporal/patología , Núcleo Accumbens/metabolismo , Parvalbúminas/metabolismo , Convulsiones/patología , Hipocampo/patología , Neuronas GABAérgicas/metabolismo , Ácido Kaínico/toxicidad , Modelos Animales de Enfermedad
5.
Exp Neurol ; 376: 114749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467356

RESUMEN

Despite special challenges in the medical treatment of women with epilepsy, in particular preclinical animal studies were focused on males for decades and females have only recently moved into the focus of scientific interest. The intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy (TLE) is one of the most studied models in males reproducing electroencephalographic (EEG) and histopathological features of human TLE. Hippocampal paroxysmal discharges (HPDs) were described as drug resistant focal seizures in males. Here, we investigated the IHKA model in female mice, in particular drug-resistance of HPDs and the influence of antiseizure medications (ASMs) on the power spectrum. After injecting kainic acid (KA) unilaterally into the hippocampus of female mice, we monitored the development of epileptiform activity by local field potential (LFP) recordings. Subsequently, we evaluated the effect of the commonly prescribed ASMs lamotrigine (LTG), oxcarbazepine (OXC) and levetiracetam (LEV), as well as the benzodiazepine diazepam (DZP) with a focus on HPDs and power spectral analysis and assessed neuropathological alterations of the hippocampus. In the IHKA model, female mice replicated key features of human TLE as previously described in males. Importantly, HPDs in female mice did not respond to commonly prescribed ASMs in line with the drug-resistance in males, thus representing a suitable model of drug-resistant seizures. Intriguingly, we observed an increased occurrence of generalized seizures after LTG. Power spectral analysis revealed a pronounced increase in the delta frequency range after the higher dose of 30 mg/kg LTG. DZP abolished HPDs and caused a marked reduction over a wide frequency range (delta, theta, and alpha) of the power spectrum. By characterizing the IHKA model of TLE in female mice we address an important gap in basic research. Considering the special challenges complicating the therapeutic management of epilepsy in women, inclusion of females in preclinical studies is imperative. A well-characterized female model is a prerequisite for the development of novel therapeutic strategies tailored to sex-specific needs and for studies on the effect of epilepsy and ASMs during pregnancy.


Asunto(s)
Anticonvulsivantes , Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Hipocampo , Ácido Kaínico , Convulsiones , Animales , Ácido Kaínico/toxicidad , Femenino , Anticonvulsivantes/farmacología , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/patología , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/fisiopatología , Ratones Endogámicos C57BL , Electroencefalografía , Diazepam/farmacología
6.
CNS Neurosci Ther ; 30(3): e14663, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38439636

RESUMEN

BACKGROUND: Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS: Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS: At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS: In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.


Asunto(s)
Epilepsia , Ferroptosis , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Ácido Kaínico/toxicidad , Factor 2 Relacionado con NF-E2/genética , Epilepsia/inducido químicamente , Convulsiones , Ácido Glutámico , Dependovirus , Modelos Animales de Enfermedad , Ferritinas , Homeostasis
7.
J Cell Physiol ; 239(5): e31249, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501376

RESUMEN

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Asunto(s)
Hipocampo , Células-Madre Neurales , Neurogénesis , Animales , Células-Madre Neurales/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Proliferación Celular , Masculino , Nicho de Células Madre , Giro Dentado/patología , Giro Dentado/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Ácido Kaínico/toxicidad , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/metabolismo , Regeneración Nerviosa , Modelos Animales de Enfermedad , Ratones , Movimiento Celular
8.
Neurochem Int ; 176: 105727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555055

RESUMEN

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratones Endogámicos C57BL , Receptores AMPA , Convulsiones , Transmisión Sináptica , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Animales , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Transmisión Sináptica/efectos de los fármacos , Masculino , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Ratones , Humanos , Femenino , Ácido Kaínico/farmacología , Ácido Kaínico/toxicidad , Adulto , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Adulto Joven
9.
Exp Neurol ; 376: 114767, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522659

RESUMEN

The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal , Hipocampo , Ácido Kaínico , Ratones Transgénicos , Piridinas , Pirimidinas , Animales , Piridinas/farmacología , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/prevención & control , Ratones , Ácido Kaínico/toxicidad , Pirimidinas/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL
10.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284124

RESUMEN

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Asunto(s)
Barrera Hematoencefálica , Carbamatos , Epilepsia , Fenilendiaminas , Animales , Ratas , Células Endoteliales , Ácido Kaínico/toxicidad , Encéfalo
11.
Neurobiol Dis ; 192: 106424, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290566

RESUMEN

BACKGROUND: Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES: This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS: We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS: Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION: Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.


Asunto(s)
Estimulación Encefálica Profunda , Epilepsia Refractaria , Epilepsia , Zona Incerta , Humanos , Pilocarpina/toxicidad , Calcio , Estimulación Encefálica Profunda/métodos , Neuronas GABAérgicas , Epilepsia/terapia , Ácido Kaínico/toxicidad , Convulsiones/terapia
12.
Aquat Toxicol ; 266: 106793, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38071899

RESUMEN

Despite the deleterious effects of the phycotoxin domoic acid (DA) on human health, and the permanent threat of blooms of the toxic Pseudo-nitzschia sp. over commercially important fishery-resources, knowledge regarding the physiological mechanisms behind the profound differences in accumulation and depuration of this toxin in contaminated invertebrates remain very scarce. In this work, a comparative analysis of accumulation, isomer content, and subcellular localization of DA in different invertebrate species was performed. Samples of scallops Pecten maximus and Aequipecten opercularis, clams Donax trunculus, slippersnails Crepidula fornicata, and seasquirts Asterocarpa sp. were collected after blooms of the same concentration of toxic Pseudo-nitzschia australis. Differences (P < 0.05) in DA accumulation were found, wherein P. maximus showed up to 20-fold more DA in the digestive gland than the other species. Similar profiles of DA isomers were found between P. maximus and A. opercularis, whereas C. fornicata was the species with the highest biotransformation rate (∼10 %) and D. trunculus the lowest (∼4 %). DA localization by immunohistochemical analysis revealed differences (P < 0.05) between species: in P. maximus, DA was detected mainly within autophagosome-like vesicles in the cytoplasm of digestive cells, while in A. opercularis and C. fornicata significant DA immunoreactivity was found in post-autophagy residual bodies. A slight DA staining was found free within the cytoplasm of the digestive cells of D. trunculus and Asterocarpa sp. The Principal Component Analysis revealed similarities between pectinids, and a clear distinction of the rest of the species based on their capabilities to accumulate, biotransform, and distribute the toxin within their tissues. These findings contribute to improve the understanding of the inter-specific differences concerning the contamination-decontamination kinetics and the fate of DA in invertebrate species.


Asunto(s)
Diatomeas , Pectinidae , Contaminantes Químicos del Agua , Animales , Humanos , Toxinas Marinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Diatomeas/metabolismo , Ácido Kaínico/toxicidad , Ácido Kaínico/análisis , Ácido Kaínico/metabolismo , Pectinidae/metabolismo
13.
J Pineal Res ; 76(1): e12921, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37846173

RESUMEN

Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 µg/µL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.


Asunto(s)
Indenos , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/metabolismo , Receptores de Melatonina/metabolismo , Ácido Kaínico/toxicidad , Ácido Kaínico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hipocampo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Glutatión/metabolismo , ADN
14.
CNS Neurosci Ther ; 30(2): e14352, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37438982

RESUMEN

PURPOSE: This study aimed to investigate whether minocycline could influence alterations of microglial subtypes, the morphology of dendrites and dendritic spines, the microstructures of synapses and synaptic proteins, or even cognition outcomes in immature male mice following status epilepticus (SE) induced by kainic acid. METHODS: Golgi staining was performed to visualize the dendrites and dendritic spines of neurons of the hippocampus. The microstructures of synapses and synaptic proteins were observed using transmission electron microscopy and western blotting analysis, respectively. Microglial reactivation and their markers were evaluated using flow cytometry. The Morris water maze (MWM) test was used to analyze spatial learning and memory ability. RESULTS: Significant partial spines increase (predominate in thin spines) was observed in the dendrites of neurons after acute SE and partial loss (mainly in thin spines) was presented by days 14 and 28 post-SE. The postsynaptic ultrastructure was impaired on the 7th and 14th days after SE. The proportion of M1 microglia increased significantly only after acute SE Similarly, the proportion of M2 microglia increased in the acute stage with high expression levels of all surface markers. In contrast, a decrease in M2 microglia and their markers was noted by day 14 post-SE. Minocycline could reverse the changes in dendrites and synaptic proteins caused by SE, and increase the levels of synaptic proteins. Meanwhile, minocycline could inhibit the reactivation of M1 microglia and the expression of their markers, except for promoting CD200R. In addition, treatment with minocycline could regulate the expression of M2 microglia and their surface markers, as well as ameliorating the impaired spatial learning and memory on the 28th day after SE. CONCLUSIONS: Dendritic spines and microglia are dynamically changed after SE. Minocycline could ameliorate the impaired cognition in the kainic acid-induced mouse model by decreasing the damage to dendrites and altering microglial reactivation.


Asunto(s)
Ácido Kaínico , Estado Epiléptico , Ratones , Masculino , Animales , Ácido Kaínico/toxicidad , Microglía , Minociclina/farmacología , Minociclina/uso terapéutico , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/tratamiento farmacológico
15.
Hear Res ; 441: 108927, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096707

RESUMEN

Cochlear synaptopathy is a common pathology in humans associated with aging and potentially sound overexposure. Synaptopathy is widely expected to cause "hidden hearing loss," including difficulty perceiving speech in noise, but support for this hypothesis is controversial. Here in budgerigars (Melopsittacus undulatus), we evaluated the impact of long-term cochlear synaptopathy on behavioral discrimination of Gaussian noise (GN) and low-noise noise (LNN) signals processed to have a flatter envelope. Stimuli had center frequencies of 1-3kHz, 100-Hz bandwidth, and were presented at sensation levels (SLs) from 10 to 30dB. We reasoned that narrowband, low-SL stimuli of this type should minimize spread of excitation across auditory-nerve fibers, and hence might reveal synaptopathy-related defects if they exist. Cochlear synaptopathy was induced without hair-cell injury using kainic acid (KA). Behavioral threshold tracking experiments characterized the minimum stimulus duration above which animals could reliably discriminate between LNN and GN. Budgerigar thresholds for LNN-GN discrimination ranged from 40 to 60ms at 30dB SL, were similar across frequencies, and increased for lower SLs. Notably, animals with long-term 39-77% estimated synaptopathy performed similarly to controls, requiring on average a ∼7.5% shorter stimulus duration (-0.7±1.0dB; mean difference ±SE) for LNN-GN discrimination. Decision-variable correlation analyses of detailed behavioral response patterns showed that individual animals relied on envelope cues to discriminate LNN and GN, with lesser roles of FM and energy cues; no difference was found between KA-exposed and control groups. These results suggest that long-term cochlear synaptopathy does not impair discrimination of low-level signals with different envelope statistics.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Melopsittacus , Humanos , Animales , Cóclea/patología , Ácido Kaínico/toxicidad , Estimulación Acústica/efectos adversos , Umbral Auditivo/fisiología , Pérdida de Audición Oculta , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/patología
16.
Eur J Pharmacol ; 963: 176280, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113967

RESUMEN

The present study evaluated the effect of ursolic acid, a natural pentacyclic triterpenoid, on glutamate release in rat cortical nerve terminals (synaptosomes) and its neuroprotection in a kainic acid-induced excitotoxicity rat model. In cortical synaptosomes, ursolic acid produced a concentration-dependent inhibition of evoked glutamate release with a half-maximum inhibition of release value of 9.5 µM, and calcium-free medium and the P/Q -type Ca2+ channel blocker, ω-agatoxin IVA, but not ω-conotoxin GVIA, an N-type Ca2+ channel blocker, prevented the ursoloic acid effect. The molecular docking study indicated that ursolic acid interacted with P/Q-type Ca2+ channels. Ursolic acid also significantly decreased the depolarization-induced activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the subsequent phosphorylation of synapsin I, and the ursolic acid effect on evoked glutamate release was inhibited by the CaMKII inhibitor KN 62 in synaptosomes. In addition, in rats that were intraperitoneally injected with ursolic acid 30 min before kainic acid intraperitoneal injection, cortical neuronal degeneration was attenuated. This effect of ursolic acid in the improvement of kainic acid-induced neuronal damage was associated with the reduction of kainic acid-induced glutamate increase in the cortex of rats; this was characterized by the reduction of glutamate and glutaminase levels and elevation of glutamate dehydrogenase, glutamate transporter 1, glutamate-aspartate transporter, and glutamine synthetase protein levels. These results suggest that ursolic acid inhibits glutamate release from cortical synaptosomes by decreasing P/Q-type Ca2+ channel activity and subsequently suppressing CaMKII and exerts a preventive effect against glutamate neurotoxicity by controlling glutamate levels.


Asunto(s)
Ácido Glutámico , Ácido Kaínico , Ratas , Animales , Ácido Glutámico/metabolismo , Ácido Kaínico/toxicidad , Ácido Ursólico , Ratas Sprague-Dawley , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Simulación del Acoplamiento Molecular , 4-Aminopiridina/farmacología , Potenciales de la Membrana
17.
Eur J Pharmacol ; 961: 176197, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38000721

RESUMEN

The current study investigated the effect of chlorogenic acid, a polyphenolic compound found in numerous plant products, on a kainic acid-induced seizure rat model and its potential mechanism. Rats were administered chlorogenic acid (10 and 50 mg/kg) intraperitoneally for 30 min before kainic acid (15 mg/kg) intraperitoneal administration. Pretreatment with chlorogenic acid decreased the seizure score, increased the latency to onset of the first seizure, and decreased the mortality rate. Chlorogenic acid pretreatment also resulted in a significant reduction in glutamate elevation and neuronal death in the hippocampus of kainic acid-treated rats. In addition, electron microscopy revealed that kainic acid-induced changes in hippocampal mitochondrial structure were prevented by chlorogenic acid pretreatment. Additionally, the levels of mitochondrial function-related proteins, including sirtuin 3, Complex I, glutamate dehydrogenase 1 and ATP synthase, were increased, and the level of the mitochondrial damage marker cytochrome C was decreased in the hippocampus of chlorogenic acid/kainic acid rats. Furthermore, the expression of mitochondrial biogenesis-related proteins [AMP-activated protein kinase (AMPK), sirtuin1, and peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α)] and mitophagy-related proteins [phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Parkin, and microtubule-associated protein 1 light chain 3 (LC3)] was decreased in the hippocampus of kainic acid-treated rats, which was reversed by chlorogenic acid pretreatment. These observations reveal the marked neuroprotective potential of chlorogenic acid against kainic acid-induced neurotoxicity and seizures through prevention of glutamate increase and preservation of AMPK/sirtuin 1/PGC-1α-mediated mitochondrial biogenesis and PINK1/Parkin-induced mitophagy to maintain adequate mitochondrial homeostasis and function.


Asunto(s)
Ácido Clorogénico , Ácido Kaínico , Ratas , Animales , Ácido Kaínico/toxicidad , Ácido Clorogénico/farmacología , Ácido Clorogénico/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Convulsiones/inducido químicamente , Convulsiones/prevención & control , Convulsiones/metabolismo , Mitocondrias , Muerte Celular , Ubiquitina-Proteína Ligasas/metabolismo , Glutamatos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
18.
Protein Pept Lett ; 30(10): 854-867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37921157

RESUMEN

BACKGROUND: It has been reported that activation of glutamate kainate receptor subunit 2 (GluK2) subunit-containing glutamate receptors and the following Fas ligand(FasL) up-regulation, caspase-3 activation, result in delayed apoptosis-like neuronal death in hippocampus CA1 subfield after cerebral ischemia and reperfusion. Nitric oxide-mediated S-nitrosylation might inhibit the procaspase activation, whereas denitrosylation might contribute to cleavage and activation of procaspases. OBJECTIVES: The study aimed to elucidate the molecular mechanisms underlying procaspase-3 denitrosylation and activation following kainic acid (KA)-induced excitotoxicity in rat hippocampus. METHODS: S-nitrosylation of procaspase-3 was detected by biotin-switch method. Activation of procaspase-3 was shown as cleavage of procaspase-3 detected by immunoblotting. FasL expression was detected by immunoblotting. Cresyl violets and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining were used to detect apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. RESULTS: KA led to the activation of procaspase-3 in a dose- and time-dependent manner, and the activation was inhibited by KA receptor antagonist NS102. Procaspase-3 was denitrosylated at 3 h after kainic acid administration, and the denitrosylation was reversed by SNP and GSNO. FasL ASODNs inhibited the procaspase-3 denitrosylation and activation. Moreover, thioredoxin reductase (TrxR) inhibitor auranofin prevented the denitrosylation and activation of procaspase-3 in rat hippocampal CA1 and CA3 subfields. NS102, FasL AS-ODNs, and auranofin reversed the KAinduced apoptosis and cell death in hippocampal CA1 and CA3 subfields. CONCLUSIONS: KA led to denitrosylation and activation of procaspase-3 via FasL and TrxR. Inhibition of procaspase-3 denitrosylation by auranofin, SNP, and GSNO played protective effects against KA-induced apoptosis-like neuronal death in rat hippocampal CA1 and CA3 subfields. These investigations revealed that the procaspase-3 undergoes an initial denitrosylation process before becoming activated, providing valuable insights into the underlying mechanisms and possible treatment of excitotoxicity.


Asunto(s)
Auranofina , Ácido Kaínico , Ratas , Animales , Ácido Kaínico/toxicidad , Ácido Kaínico/metabolismo , Caspasa 3/metabolismo , Auranofina/metabolismo , Auranofina/farmacología , Ratas Sprague-Dawley , Hipocampo/metabolismo
19.
Neuroimmunomodulation ; 30(1): 325-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37926077

RESUMEN

INTRODUCTION: This study aimed to investigate the possible role of galectin-3 in epilepsy and further explore its underlying mechanisms. METHODS: Sprague-Dawley rats were intraperitoneally injected with 30 mg/kg pilocarpine to induce an animal model of epilepsy. To inhibit galectin-3, the epilepsy model of rats was intraperitoneally injected with TD139. The severity of the seizure was graded according to the Racine score. The pathological changes in hippocampal CA1 regions were observed by hematoxylin and eosin and Nissl staining. Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blot were used to detect the levels of cytokines and pyroptosis-related factors. The in vitro effects of galectin-3 were confirmed on BV2 cells and rat primary microglia by transfection with lentivirus vectors carrying Lgals3 shRNA or by treatment with TD139. RESULTS: A higher expression of galectin-3 was observed in the hippocampal CA1 regions of epilepsy rats than in sham rats. Inhibition of galectin-3 by administration of TD139 improved the severity of the seizure, hippocampal damage, and neuron loss. TD139 administration suppressed the expression of NLRP3, ASC, c-caspase-1, and GSDMD-N, and reduced the levels of cytokines. In kainic acid-treated microglia, Lgals3 shRNA or TD139 significantly inhibited Iba1 expression and limited NLRP3/pyroptosis-triggered inflammation. CONCLUSION: Galectin-3 activates the NLRP3/pyroptosis signaling pathway to promote microglial activation and neuroinflammation during epilepsy disease progression.


Asunto(s)
Epilepsia , Galectina 3 , Animales , Ratas , Citocinas , Epilepsia/inducido químicamente , Ácido Kaínico/toxicidad , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Ratas Sprague-Dawley , ARN Interferente Pequeño , Convulsiones
20.
Epilepsy Res ; 197: 107235, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797423

RESUMEN

In the quest for novel treatments for patients with drug-resistant seizures, poor water solubility of potential drug candidates is a frequent obstacle. Literature indicated that the highly efficient solvent dimethyl sulfoxide (DMSO) may have a confounding influence in epilepsy research, reporting both pro- and antiepileptic effects. In this study, we aim to clarify the effects of DMSO on epileptiform activity in one of the most frequently studied models of chronic epilepsy, the intrahippocampal kainic acid (IHKA) mouse model, and in a model of acute seizures. We show that 100 % DMSO (in a volume of 1.5 µl/g corresponding to 1651 mg/kg) causes a significant short-term anti-seizure effect in epileptic IHKA mice of both sexes, but does not affect the threshold of acute seizures induced by pentylenetetrazol (PTZ). These findings highlight that the choice of solvent and appropriate vehicle control is crucial to minimize undesirable misleading effects and that drug candidates exclusively soluble in 100 % DMSO need to be modified for better solubility already at initial testing.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Masculino , Femenino , Animales , Ratones , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Dimetilsulfóxido/efectos adversos , Hipocampo , Solventes/efectos adversos , Modelos Animales de Enfermedad , Ácido Kaínico/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...