Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Cells ; 10(12)2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34943806

RESUMEN

Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.


Asunto(s)
Meningioma/enzimología , Sialiltransferasas/metabolismo , Línea Celular Tumoral , Gangliósido G(M3)/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicosilación/efectos de los fármacos , Humanos , Meningioma/genética , Ácido N-Acetilneuramínico/biosíntesis , Piruvaldehído/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sialiltransferasas/genética
2.
Angew Chem Int Ed Engl ; 60(49): 25922-25932, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34523784

RESUMEN

Recombinant human erythropoietin (EPO) is the main therapeutic glycoprotein for the treatment of anemia in cancer and kidney patients. The in-vivo activity of EPO is carbohydrate-dependent with the number of sialic acid residues regulating its circulatory half-life. EPO carries three N-glycans and thus obtaining pure glycoforms provides a major challenge. We have developed a robust and reproducible chemoenzymatic approach to glycoforms of EPO with and without sialic acids. EPO was assembled by sequential native chemical ligation of two peptide and three glycopeptide segments. The glycopeptides were obtained by pseudoproline-assisted Lansbury aspartylation. Enzymatic introduction of the sialic acids was readily accomplished at the level of the glycopeptide segments but even more efficiently on the refolded glycoprotein. Biological recognition of the synthetic EPOs was shown by formation of 1:1 complexes with recombinant EPO receptor.


Asunto(s)
Eritropoyetina/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/síntesis química , Sialiltransferasas/metabolismo , Eritropoyetina/química , Glicosilación , Humanos , Estructura Molecular , Ácido N-Acetilneuramínico/química , Photobacterium/enzimología , beta-D-Galactósido alfa 2-6-Sialiltransferasa
3.
ACS Synth Biol ; 10(9): 2197-2209, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404207

RESUMEN

Biosynthesis by microorganisms using renewable feedstocks is an important approach for realizing sustainable chemical manufacturing. However, cell-to-cell variation in biosynthesis capability during fermentation restricts the robustness and efficiency of bioproduction, hampering the industrialization of biosynthesis. Herein, we developed an inducible population quality control system (iPopQC) for dynamically modulating the producing and nonproducing subpopulations of engineered Bacillus subtilis, which was constructed via inducible promoter- and metabolite-responsive biosensor-based genetic circuit for regulating essential genes. Moreover, iPopQC achieved a 1.97-fold increase in N-acetylneuraminic acid (NeuAc) titer by enriching producing cell subpopulation during cultivation, representing 52% higher than that of previous PopQC. Strains with double-output iPopQC cocoupling the expression of double essential genes with NeuAc production improved production robustness further, retaining NeuAc production throughout 96 h of fermentation, upon which the strains cocoupling one essential gene expression with NeuAc production abolished the production ability.


Asunto(s)
Bacillus subtilis/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Ingeniería Metabólica/métodos , Ingeniería Metabólica/normas , Ácido N-Acetilneuramínico/química , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Control de Calidad
4.
Glycobiology ; 31(11): 1478-1489, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34224569

RESUMEN

Among the enzymes of the biosynthesis of sialoglycoconjugates, uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), catalyzing the first essential step of the sialic acid (Sia) de novo biosynthesis, and cytidine monophosphate (CMP)-Sia synthase (CMAS), activating Sia to CMP-Sia, are particularly important. The knockout of either of these enzymes in mice is embryonically lethal. While the lethality of Cmas-/- mice has been attributed to a maternal complement attack against asialo fetal placental cells, the cause of lethality in Gne-deficient embryos has remained elusive. Here, we advanced the significance of sialylation for embryonic development through detailed histological analyses of Gne-/- embryos and placentae. We found that Gne-/- embryonic and extraembryonic tissues are hyposialylated rather than being completely deficient of sialoglycans, which holds true for Cmas-/- embryos. Residual sialylation of Gne-/- cells can be explained by scavenging free Sia from sialylated maternal serum glycoconjugates via the lysosomal salvage pathway. The placental architecture of Gne-/- mice was unaffected, but severe hemorrhages in the neuroepithelium with extensive bleeding into the cephalic ventricles were present at E12.5 in the mutants. At E13.5, the vast majority of Gne-/- embryos were asystolic. This phenotype persisted when Gne-/- mice were backcrossed to a complement component 3-deficient background, confirming distinct pathomechanisms of Cmas-/- and Gne-/- mice. We conclude that the low level of sialylation observed in Gne-/- mice is sufficient both for immune homeostasis at the fetal-maternal interface and for embryonic development until E12.5. However, formation of the neural microvasculature is the first critical process, depending on a higher degree of sialylation during development of the embryo proper.


Asunto(s)
Hemorragia Cerebral/metabolismo , Complejos Multienzimáticos/metabolismo , Animales , Biocatálisis , Hemorragia Cerebral/patología , Desarrollo Embrionario , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Ácido N-Acetilneuramínico/biosíntesis
5.
Trends Microbiol ; 29(2): 142-157, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32950378

RESUMEN

Nonulosonic acids (NulOs) are a diverse family of 9-carbon α-keto acid sugars that are involved in a wide range of functions across all branches of life. The family of NulOs includes the sialic acids as well as the prokaryote-specific NulOs. Select bacteria biosynthesize the sialic acid N-acetylneuraminic acid (Neu5Ac), and the ability to produce this sugar and its subsequent incorporation into cell-surface structures is implicated in a variety of bacteria-host interactions. Furthermore, scavenging of sialic acid from the environment for energy has been characterized across a diverse group of bacteria, mainly human commensals and pathogens. In addition to sialic acid, bacteria have the ability to biosynthesize prokaryote-specific NulOs, of which there are several known isomers characterized. These prokaryotic NulOs are similar in structure to Neu5Ac but little is known regarding their role in bacterial physiology. Here, we discuss the diversity in structure, the biosynthesis pathways, and the functions of bacteria-specific NulOs. These carbohydrates are phylogenetically widespread among bacteria, with numerous structurally unique modifications recognized. Despite the diversity in structure, the NulOs are involved in similar functions such as motility, biofilm formation, host colonization, and immune evasion.


Asunto(s)
Bacterias/metabolismo , Azúcares Ácidos/química , Azúcares Ácidos/metabolismo , Bacterias/clasificación , Bacterias/genética , Vías Biosintéticas , Humanos , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/química , Filogenia
6.
J Clin Invest ; 131(5)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33373330

RESUMEN

Human metabolic incorporation of nonhuman sialic acid (Sia) N-glycolylneuraminic acid into endogenous glycans generates inflammation via preexisting antibodies, which likely contributes to red meat-induced atherosclerosis acceleration. Exploring whether this mechanism affects atherosclerosis in end-stage renal disease (ESRD), we instead found serum accumulation of 2-keto-3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), a Sia prominently expressed in cold-blooded vertebrates. In patients with ESRD, levels of the Kdn precursor mannose also increased, but within a normal range. Mannose ingestion by healthy volunteers raised the levels of urinary mannose and Kdn. Kdn production pathways remained conserved in mammals but were diminished by an M42T substitution in a key biosynthetic enzyme, N-acetylneuraminate synthase. Remarkably, reversion to the ancestral methionine then occurred independently in 2 lineages, including humans. However, mammalian glycan databases contain no Kdn-glycans. We hypothesize that the potential toxicity of excess mannose in mammals is partly buffered by conversion to free Kdn. Thus, mammals probably conserve Kdn biosynthesis and modulate it in a lineage-specific manner, not for glycosylation, but to control physiological mannose intermediates and metabolites. However, human cells can be forced to express Kdn-glycans via genetic mutations enhancing Kdn utilization, or by transfection with fish enzymes producing cytidine monophosphate-Kdn (CMP-Kdn). Antibodies against Kdn-glycans occur in pooled human immunoglobulins. Pathological conditions that elevate Kdn levels could therefore result in antibody-mediated inflammatory pathologies.


Asunto(s)
Aterosclerosis/metabolismo , Fallo Renal Crónico/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Polisacáridos/biosíntesis , Aterosclerosis/genética , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Fallo Renal Crónico/genética , Ácido N-Acetilneuramínico/genética , Polisacáridos/genética
7.
J Agric Food Chem ; 68(42): 11758-11764, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32960055

RESUMEN

N-acetyl-d-neuraminic acid (NeuAc) has attracted considerable attention because of its wide-ranging applications. The use of cheap carbon sources such as glucose without the addition of any precursor in microbial NeuAc production has many advantages. In this study, improved NeuAc production was attained through the optimization of amino sugar metabolism pathway kinetics and reservation of a phosphoenolpyruvate (PEP) pool in Escherichia coli. N-acylglucosamine 2-epimerase and N-acetylneuraminate synthase from different sources and their best combinations were used to obtain optimized enzyme kinetics and expression intensity, which resulted in a significant increase in NeuAc production. Next, after a design was engineered for enabling the PEP metabolic pathway to retain the PEP pool, the production of NeuAc reached 16.7 g/L, which is the highest NeuAc production rate that has been reported from using glucose as the sole carbon source.


Asunto(s)
Amino Azúcares/metabolismo , Escherichia coli/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Fosfoenolpiruvato/metabolismo , Escherichia coli/genética , Glucosa/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas
8.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957644

RESUMEN

Oncolytic adenovirus therapy is believed to be a promising way to treat cancer patients. To be able to target tumor cells with an oncolytic adenovirus, expression of the adenovirus receptor on the tumor cell is essential. Different adenovirus types bind to different receptors on the cell, of which the expression can vary between tumor types. Pre-existing neutralizing immunity to human adenovirus species C type 5 (HAdV-C5) has hampered its therapeutic efficacy in clinical trials, hence several adenoviral vectors from different species are currently being developed as a means to evade pre-existing immunity. Therefore, knowledge on the expression of appropriate adenovirus receptors on tumor cells is important. This could aid in determining which tumor types would benefit most from treatment with a certain oncolytic adenovirus type. This review provides an overview of the known receptors for human adenoviruses and how their expression on tumor cells might be differentially regulated compared to healthy tissue, before and after standardized anticancer treatments. Mechanisms behind the up- or downregulation of adenovirus receptor expression are discussed, which could be used to find new targets for combination therapy to enhance the efficacy of oncolytic adenovirus therapy. Additionally, the utility of the adenovirus receptors in oncolytic virotherapy is examined, including their role in viral spread, which might even surpass their function as primary entry receptors. Finally, future directions are offered regarding the selection of adenovirus types to be used in oncolytic adenovirus therapy in the fight against cancer.


Asunto(s)
Adenovirus Humanos/metabolismo , Neoplasias/virología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Receptores Virales/metabolismo , Adenovirus Humanos/genética , Animales , Línea Celular Tumoral , Terapia Combinada , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/genética , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Humanos , Integrinas/genética , Integrinas/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/terapia , Virus Oncolíticos/genética , Receptores Virales/genética
9.
Neuromuscul Disord ; 30(8): 621-630, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32736841

RESUMEN

GNE Myopathy is a recessive neuromuscular disorder characterized by adult-onset, slowly progressive distal and proximal muscle weakness, and a typical muscle pathology. Although GNE, which is the mutated gene in the disease, is well known as the key enzyme in the biosynthesis pathway of sialic acid, the pathophysiological pathway leading from GNE mutations to the muscle phenotype in GNE Myopathy is still unclear. The obvious hypothesis of impaired sialylation in patients' skeletal muscle as the cause of the disease is still controversial. In the present study we have investigated whether a distinctive altered pattern of sialylation in GNE Myopathy cultured muscle cells could be attributed to a specific glycoconjugate. Mass spectrometry based glycomic methodologies have been utilized to assess the sialylation level of protein N- and O-linked glycans and glycolipid derived glycans from patient and matched control samples. No consistent change in sialylation was detected in glycoconjugates. These results suggest potential additional roles for GNE that could account for the disease pathology.


Asunto(s)
Miopatías Distales/genética , Glicoconjugados/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Adulto , Femenino , Glicómica , Humanos , Masculino , Persona de Mediana Edad , Complejos Multienzimáticos/genética , Células Musculares/metabolismo , Músculo Esquelético/patología , Mutación , Fenotipo
10.
Metab Eng ; 59: 36-43, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31954846

RESUMEN

Riboswitches with desired properties, such as sensitivity, threshold, dynamic range, is important for its application. However, the property change of a natural riboswitch is difficult due to the lack of the understanding of aptamer ligand binding properties and a proper screening method for both rational and irrational design. In this study, an effective method to change the threshold of riboswitch was established in vivo based on growth coupled screening by combining both positive and negative selections. The feasibility of the method was verified by the model library. Using this method, an N-acetylneuraminic acid (NeuAc) riboswitch was evolved and modified riboswitches with high threshold and large dynamic range were obtained. Then, using a new NeuAc riboswitch, both ribosome binding sites and key gene in NeuAc biosynthesis pathway were optimized. The highest NeuAc production of 14.32 g/l that has been reported using glucose as sole carbon source was obtained.


Asunto(s)
Aptámeros de Nucleótidos/genética , Evolución Molecular Dirigida , Escherichia coli , Ácido N-Acetilneuramínico/biosíntesis , Riboswitch , Escherichia coli/genética , Escherichia coli/metabolismo , Ácido N-Acetilneuramínico/genética
11.
Cancer Res ; 80(5): 1143-1155, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31932456

RESUMEN

Considerable metabolic reprogramming has been observed in a conserved manner across multiple cancer types, but their true causes remain elusive. We present an analysis of around 50 such reprogrammed metabolisms (RM) including the Warburg effect, nucleotide de novo synthesis, and sialic acid biosynthesis in cancer. Analyses of the biochemical reactions conducted by these RMs, coupled with gene expression data of their catalyzing enzymes, in 7,011 tissues of 14 cancer types, revealed that all RMs produce more H+ than their original metabolisms. These data strongly support a model that these RMs are induced or selected to neutralize a persistent intracellular alkaline stress due to chronic inflammation and local iron overload. To sustain these RMs for survival, cells must find metabolic exits for the nonproton products of these RMs in a continuous manner, some of which pose major challenges, such as nucleotides and sialic acids, because they are electrically charged. This analysis strongly suggests that continuous cell division and other cancerous behaviors are ways for the affected cells to remove such products in a timely and sustained manner. As supporting evidence, this model can offer simple and natural explanations to a range of long-standing open questions in cancer research including the cause of the Warburg effect. SIGNIFICANCE: Inhibiting acidifying metabolic reprogramming could be a novel strategy for treating cancer.


Asunto(s)
Metabolismo Energético , Glucólisis , Mitocondrias/patología , Neoplasias/patología , Protones , Proliferación Celular , Supervivencia Celular , Citosol/patología , Femenino , Humanos , Masculino , Redes y Vías Metabólicas , Ácido N-Acetilneuramínico/biosíntesis , Nucleótidos/biosíntesis , RNA-Seq
12.
Eur J Med Chem ; 180: 627-636, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351394

RESUMEN

Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galß(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of ß1,4-galactosyltransferase (ß4GalT) and ß1,3-N-acetylglucosyl transferase (ß3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).


Asunto(s)
Amino Azúcares/farmacología , Ácido N-Acetilneuramínico/farmacología , Polisacáridos/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/antagonistas & inhibidores , Amino Azúcares/biosíntesis , Amino Azúcares/química , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Galactosiltransferasas/metabolismo , Humanos , Ligandos , Estructura Molecular , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/química , Polisacáridos/química , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Relación Estructura-Actividad
13.
J Agric Food Chem ; 67(22): 6285-6291, 2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31117501

RESUMEN

N-Acetyl-d-neuraminic acid (Neu5Ac) is a potential baby nutrient and the key precursor of antiflu medicine Zanamivir. The Neu5Ac chemoenzymatic synthesis consists of N-acetyl-d-glucosamine epimerase (AGE)-catalyzed epimerization of N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc) and aldolase-catalyzed condensation between ManNAc and pyruvate. Herein, we cloned and characterized BT0453, a novel AGE, from a human gut symbiont Bacteroides thetaiotaomicron. BT0453 shows the highest soluble fraction among the AGEs tested. With GlcNAc and sodium pyruvate as substrates, Neu5Ac production by coupling whole cells expressing BT0453 and Escherichia coli N-acetyl-d-neuraminic acid aldolase was explored. After 36 h, a 53.6% molar yield, 3.6 g L-1 h-1 productivity and 42.9 mM titer of Neu5Ac were obtained. Furthermore, for the first time, the T7- BT0453-T7- nanA polycistronic unit was integrated into the E. coli genome, generating a chromosome-based biotransformation system. BT0453 protein engineering and metabolic engineering studies hold potential for the industrial production of Neu5Ac.


Asunto(s)
Aldehído-Liasas/genética , Proteínas Bacterianas/genética , Bacteroides thetaiotaomicron/enzimología , Carbohidrato Epimerasas/genética , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Ácido N-Acetilneuramínico/biosíntesis , Aldehído-Liasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Cinética , Ingeniería Metabólica
14.
Biochim Biophys Acta Gen Subj ; 1863(10): 1471-1479, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31121216

RESUMEN

BACKGROUND: Sialylation of glycoproteins and glycolipids is important for biological processes such as cellular communication, cell migration and protein function. Biosynthesis of CMP-sialic acid, the essential substrate, comprises five enzymatic steps, involving ManNAc and sialic acid and their phosphorylated forms as intermediates. Genetic diseases in this pathway result in different and tissue-restricted phenotypes, which is poorly understood. METHODS AND RESULTS: We aimed to study the mechanisms of sialic acid metabolism in knockouts (KO) of the sialic acid pathway in two independent cell lines. Sialylation of cell surface glycans was reduced by KO of GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), NANS (sialic acid synthase) and CMAS (N-acylneuraminate cytidylyltransferase) genes, but was largely unaffected in NANP (N-acylneuraminate-9-phosphatase) KO, as studied by MAA and PNA lectin binding. NANP is the third enzyme in sialic acid biosynthesis and dephosphorylates sialic acid 9-phosphate to free sialic acid. LC-MS analysis of sialic acid metabolites showed that CMP-sialic acid was dramatically reduced in GNE and NANS KO cells and undetectable in CMAS KO. In agreement with normal cell surface sialylation, CMP-sialic acid levels in NANP KO were comparable to WT cells, even though sialic acid 9-phosphate, the substrate of NANP accumulated. Metabolic flux analysis with 13C6-labelled ManNAc showed a lower, but significant conversion of ManNAc into sialic acid. CONCLUSIONS: Our data provide evidence that NANP activity is not essential for de novo sialic acid production and point towards an alternative phosphatase activity, bypassing NANP. GENERAL SIGNIFICANCE: This report contributes to a better understanding of sialic acid biosynthesis in humans.


Asunto(s)
Ácido N-Acetilneuramínico/biosíntesis , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Células CHO , Cricetulus , Eritropoyetina/metabolismo , Técnicas de Silenciamiento del Gen , Glicosilación , Humanos , Ácido N-Acetilneuramínico/metabolismo , Monoéster Fosfórico Hidrolasas/genética
15.
Biotechnol Adv ; 37(5): 787-800, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31028787

RESUMEN

Sialic acids (SAs) are important functional sugars, and monomers of sialylated human milk oligosaccharides (sialylated HMOs or sialyllactoses), which are crucial for improving infant development and can facilitate infant brain development, maintain brain health, and enhance immunity. The most common form of SA is N-acetylneuraminic acid (NeuAc), and the main forms of sialyllactoses are 6'-sialyllactose (6'-SL) and 3'-sialyllactose (3'-SL). As functional food additive, the demand for NeuAc and sialyllactoses will continuously increase due to their wide and important fields of application. However, NeuAc and sialyllactoses produced by traditional extraction methods are inefficient and may cause allergen contamination, and cannot keep up with the rapidly increasing market demand. Therefore, the production of NeuAc and sialyllactoses by sustainable biotechnological methods have attracted increasing attention. In particular, the development of metabolic engineering and synthetic biology techniques and strategies have promoted efficient biosynthesis of NeuAc and sialyllactoses. In this review, we first discussed the application of NeuAc and sialyllactoses. Secondly, metabolic engineering and protein engineering-fueled progress of whole-cell catalysis and de novo synthesis of NeuAc and sialyllactoses were systematically summarized and compared. Furthermore, challenges of efficient microbial production of NeuAc and sialyllactoses as well as strategies for overcoming the challenges were discussed, such as clustered regularly interspaced short palindromic repeats interference (CRISPRi)-aided identification of key precursor transport pathways, synergistically debottleneck of kinetic and thermodynamic limits in synthetic pathways, and dynamic regulation of metabolic pathways for balancing cell growth and production. We hope this review can further facilitate the understanding of limiting factors that hampered efficient production of sialic acid and sialyllactoses, as well as contribute to the development of strategies for the construction of efficient production hosts for high-level production of sialic acid and sialyllactose based on synthetic biology tools and strategies.


Asunto(s)
Ingeniería Metabólica/métodos , Microorganismos Modificados Genéticamente/metabolismo , Leche Humana/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Oligosacáridos/metabolismo , Humanos , Lactosa/análogos & derivados , Lactosa/biosíntesis , Lactosa/metabolismo , Leche Humana/química , Ácidos Siálicos/biosíntesis , Biología Sintética/economía , Biología Sintética/métodos
16.
J Ind Microbiol Biotechnol ; 46(2): 125-132, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30623269

RESUMEN

Typical N-acetyl-D-neuraminic acid (Neu5Ac) production uses N-acetyl-D-glucosamine (GlcNAc) and excess pyruvate as substrates in the enzymatic or whole-cell biocatalysis process. In a previous study, a Neu5Ac-producing biocatalytic process via engineered Escherichia coli SA-05/pDTrc-AB/pCDF-pck-ppsA was constructed without exogenous pyruvate. In this study, glycerol was found to be a good energy source compared with glucose for the catalytic system with resting cells, and Neu5Ac production increased to 13.97 ± 0.27 g L-1. In addition, a two-stage pH shift strategy was carried out, and the Neu5Ac yield was improved to 14.61 ± 0.31 g L-1. The GlcNAc concentration for Neu5Ac production was optimized. Finally, an integrated strategy was developed for Neu5Ac production, and the Neu5Ac yield reached as high as 18.17 ± 0.27 g L-1. These results provide a new biocatalysis technology for Neu5Ac production without exogenous pyruvate.


Asunto(s)
Escherichia coli/genética , Microorganismos Modificados Genéticamente/genética , Ácido N-Acetilneuramínico/biosíntesis , Acetilglucosamina/metabolismo , Técnicas de Cultivo Celular por Lotes , Biocatálisis , Escherichia coli/metabolismo , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Ingeniería Metabólica , Ácido Pirúvico/metabolismo
17.
Genomics ; 111(1): 59-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29317305

RESUMEN

Actinobacillus spp. are Gram-negative bacteria associated with mucosal membranes. While some are commensals, others can cause important human and animal diseases. A. pleuropneumoniae causes severe fibrinous hemorrhagic pneumonia in swine but not systemic disease whereas other species invade resulting in septicemia and death. To understand the invasive phenotype of Actinobacillus spp., complete genomes of eight isolates were obtained and pseudogenomes of five isolates were assembled and annotated. Phylogenetically, A. suis isolates clustered by surface antigen type and were more closely related to the invasive A. ureae, A. equuli equuli, and A. capsulatus than to the other swine pathogen, A. pleuropneumoniae. Using the LS-BSR pipeline, 251 putative virulence genes associated with serum resistance and invasion were detected. To our knowledge, this is the first genome-wide study of the genus Actinobacillus and should contribute to a better understanding of host tropism and mechanisms of invasion of pathogenic Actinobacillus and related genera.


Asunto(s)
Actinobacillus/genética , Actinobacillus/patogenicidad , Genómica , Actinobacillus/metabolismo , Animales , Reordenamiento Génico , Variación Genética , Estudio de Asociación del Genoma Completo , Especificidad del Huésped , Ácido N-Acetilneuramínico/biosíntesis , Ácido N-Acetilneuramínico/genética , Neuraminidasa/genética , Fenotipo , Filogenia , Seudogenes , Inversión de Secuencia , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Porcinos/microbiología , Sistemas de Secreción Tipo V/genética , Sistemas de Secreción Tipo V/metabolismo , Virulencia/genética , Secuenciación Completa del Genoma
18.
J Biol Chem ; 293(42): 16277-16290, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30171074

RESUMEN

Sialic acids are a family of more than 50 structurally distinct acidic sugars on the surface of all vertebrate cells where they terminate glycan chains and are exposed to many interactions with the surrounding environment. In particular, sialic acids play important roles in cell-cell and host-pathogen interactions. The sialic acids or related nonulosonic acids have been observed in Deuterostome lineages, Eubacteria, and Archaea but are notably absent from plants. However, the structurally related C8 acidic sugar 3-deoxy-d-manno-2-octulosonic acid (Kdo) is present in Gram-negative bacteria and plants as a component of bacterial lipopolysaccharide and pectic rhamnogalacturonan II in the plant cell wall. Until recently, sialic acids were not thought to occur in algae, but as in plants, Kdo has been observed in algae. Here, we report the de novo biosynthesis of the deaminated sialic acid, 3-deoxy-d-glycero-d-galacto-2-nonulosonic acid (Kdn), in the toxin-producing microalga Prymnesium parvum Using biochemical methods, we show that this alga contains CMP-Kdn and identified and recombinantly expressed the P. parvum genes encoding Kdn-9-P synthetase and CMP-Kdn synthetase enzymes that convert mannose-6-P to CMP-Kdn. Bioinformatics analysis revealed sequences related to those of the two P. parvum enzymes, suggesting that sialic acid biosynthesis is likely more widespread among microalgae than previously thought and that this acidic sugar may play a role in host-pathogen interactions involving microalgae. Our findings provide evidence that P. parvum has the biosynthetic machinery for de novo production of the deaminated sialic acid Kdn and that sialic acid biosynthesis may be common among microalgae.


Asunto(s)
Haptophyta/metabolismo , Microalgas/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Vías Biosintéticas , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/biosíntesis , Ácidos Neuramínicos
19.
J Biol Chem ; 293(26): 10119-10127, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29764940

RESUMEN

Sialic acid presentation on the cell surface by some pathogenic strains of bacteria allows their escape from the host immune system. It is one of the major virulence factors. Bacterial biosynthesis of sialic acids starts with the conversion of UDP-GlcNAc to UDP and ManNAc by a hydrolyzing 2-epimerase. Here, we present the crystal structure of this enzyme, named NeuC, from Acinetobacter baumannii The protein folds into two Rossmann-like domains and forms dimers and tetramers as does the epimerase part of the bifunctional UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). In contrast to human GNE, which showed only the closed conformation, the NeuC crystals contained both open and closed protomers in each dimer. Substrate soaking changed the space group from C2221 to P212121 In addition to UDP, an intermediate-like ligand was seen bound to the closed protomer. The UDP-binding mode in NeuC was similar to that in GNE, although a few side chains were rotated away. NeuC lacks the CMP-Neu5Ac-binding site for allosteric inhibition of GNE. However, the two enzymes as well as other NeuC homologues (but not SiaA from Neisseria meningitidis) appear to be common in tetrameric organization. The revised two-base catalytic mechanism may involve His-125 (Glu-134 in GNE), as suggested by mutant activity analysis.


Asunto(s)
Acinetobacter baumannii/enzimología , Ácido N-Acetilneuramínico/biosíntesis , Multimerización de Proteína , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Secuencia Conservada , Humanos , Ligandos , Estructura Cuaternaria de Proteína
20.
Mol Biotechnol ; 60(6): 427-434, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29704158

RESUMEN

N-acetyl-D-neuraminic acid (Neu5Ac) is a costly precursor for many drugs such as anti-influenza antivirals. In a previous study, a whole-cell process for Neu5Ac production was developed using a combination of two Escherichia coli cells expressing Anabaena sp. CH1 N-acetyl-D-glucosamine-2-epimerase (bage) and E. coli N-acetyl-D-neuraminic acid aldolase (nanA), respectively. In this study, we constructed a bAGE and NanA co-expression system to improve Neu5Ac production. Two recombinant E. coli strains, E. coli BL21 (DE3) pET-bage-nanA (HA) and E. coli BL21 (DE3) pET-bage-2nanA (HAA), synchronously expressing bAGE and NanA were used as biocatalysts to generate Neu5Ac from N-acetyl-D-glucosamine (GlcNAc) and pyruvate. The HA biocatalysts produced 187.5 mM Neu5Ac within 8 h. The yield of GlcNAc was 15.6%, and the Neu5Ac production rate was 7.25 g/L/h. The most active HAA biocatalysts generated 412.6 mM Neu5Ac and a GlcNAc yield of 34.4%. HAA achieved a Neu5Ac production rate of 15.9 g/L/h, which surpassed those for all reported Neu5Ac production processes so far. The present study demonstrates that using recombinant E. coli cells synchronously expressing bAGE and NanA as biocatalysts could potentially be used in the industrial mass production of Neu5Ac.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Proteínas Portadoras/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Oxo-Ácido-Liasas/metabolismo , Acetilglucosamina/metabolismo , Anabaena/enzimología , Anabaena/genética , Biotecnología/métodos , Carbohidrato Epimerasas/genética , Proteínas Portadoras/genética , ADN Recombinante/genética , ADN Recombinante/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oxo-Ácido-Liasas/genética , Ácido Pirúvico/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...