Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Biochem Biophys Res Commun ; 635: 46-51, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257191

RESUMEN

The sialylation of glycoconjugates is performed by a variety of sialyltransferases using CMP-sialic acid (CMP-Sia) as a substrate. Sialylation requires the translocation of CMP-Sia across the Golgi membranes. This function has been assigned to SLC35A1, the only CMP-Sia transporter identified to date. Mutations in the SLC35A1 gene cause a subtype of congenital disorder of glycosylation (CDG). Over the past several years, heterologous complexes formed in the Golgi membrane by some SLC35A subfamily members and functionally related glycosyltransferases have been reported. However, to date no interaction between SLC35A1 and a sialyltransferase has been identified. In this study we attempted to clarify the role of SLC35A1 in α2,3 sialylation of N-glycans. We showed that SLC35A1 associates with ST3Gal4, the main α2,3-sialyltransferase acting on N-glycans. This phenomenon is compromised by the E196K (but not T156R) mutation in the SLC35A1 gene. We also demonstrated that the E196K mutant is less efficient in restoring N-glycan sialylation upon expression in the SLC35A1 knockout cells. On the basis of our findings, we propose that the interaction between SLC35A1 and ST3Gal4 may be important for proper sialylation.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato , Sialiltransferasas , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosilación , Mutación , Polisacáridos
2.
Chembiochem ; 23(19): e202200340, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35877976

RESUMEN

The interactions between bacteria and their host often rely on recognition processes that involve host or bacterial glycans. Glycoengineering techniques make it possible to modify and study the glycans on the host's eukaryotic cells, but only a few are available for the study of bacterial glycans. Here, we have adapted selective exoenzymatic labeling (SEEL), a chemical reporter strategy, to label the lipooligosaccharides of the bacterial pathogen Neisseria gonorrhoeae, using the recombinant glycosyltransferase ST6Gal1, and three synthetic CMP-sialic acid derivatives. We show that SEEL treatment does not affect cell viability and can introduce an α2,6-linked sialic acid with a reporter group on the lipooligosaccharides by Western blot, flow cytometry and fluorescent microscopy. This new bacterial glycoengineering technique allows for the precise modification, here with α2,6-sialoside derivatives, and direct detection of specific surface glycans on live bacteria, which will aid in further unravelling the precise biological functions of bacterial glycans.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato , Neisseria gonorrhoeae , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosiltransferasas/metabolismo , Lipopolisacáridos , Ácido N-Acetilneuramínico , Polisacáridos Bacterianos/metabolismo , Ácidos Siálicos/metabolismo
3.
Glycobiology ; 32(3): 239-250, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939087

RESUMEN

Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácido N-Acetilneuramínico Citidina Monofosfato , Cromatografía Liquida , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glucosamina/metabolismo , Azúcares
4.
PLoS One ; 16(6): e0249905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34081697

RESUMEN

Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.


Asunto(s)
Transporte Biológico/fisiología , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Regulación de la Expresión Génica/fisiología , Animales , Línea Celular , Citidina Monofosfato/metabolismo , Epigénesis Genética/genética , Glicosilación , Metilación , Proteínas de Transporte de Nucleótidos/metabolismo , Procesamiento Postranscripcional del ARN/genética , Células Sf9 , Spodoptera
5.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111064

RESUMEN

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Imagen por Resonancia Magnética/métodos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerizacion , Conformación Proteica , Dominios Proteicos
6.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31205019

RESUMEN

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Asunto(s)
Proteínas Bacterianas/química , N-Acilneuraminato Citidililtransferasa/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/fisiología , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferasa/farmacología , N-Acilneuraminato Citidililtransferasa/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Ácidos Siálicos/metabolismo
7.
Nat Struct Mol Biol ; 26(6): 415-423, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133698

RESUMEN

The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Aparato de Golgi/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas de Transporte de Nucleótidos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Zea mays/química , Zea mays/metabolismo
8.
Elife ; 82019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985278

RESUMEN

Nucleotide-sugar transporters (NSTs) are critical components of the cellular glycosylation machinery. They transport nucleotide-sugar conjugates into the Golgi lumen, where they are used for the glycosylation of proteins and lipids, and they then subsequently transport the nucleotide monophosphate byproduct back to the cytoplasm. Dysregulation of human NSTs causes several debilitating diseases, and NSTs are virulence factors for many pathogens. Here we present the first crystal structures of a mammalian NST, the mouse CMP-sialic acid transporter (mCST), in complex with its physiological substrates CMP and CMP-sialic acid. Detailed visualization of extensive protein-substrate interactions explains the mechanisms governing substrate selectivity. Further structural analysis of mCST's unique lumen-facing partially-occluded conformation, coupled with the characterization of substrate-induced quenching of mCST's intrinsic tryptophan fluorescence, reveals the concerted conformational transitions that occur during substrate transport. These results provide a framework for understanding the effects of disease-causing mutations and the mechanisms of this diverse family of transporters.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Animales , Transporte Biológico , Cristalografía por Rayos X , Ratones , Unión Proteica , Conformación Proteica
9.
Glycobiology ; 27(6): 513-517, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922867

RESUMEN

Sialic acids have a special place in vertebrate glycobiology, where they constitute the dominant terminal saccharides on many cell surface glycans. From early studies that identified sialoglycans as receptors for important pathogens and toxins to more recent discoveries of sialic acid-binding proteins essential for immune system (and other) functions in humans, sialic acids and sialoglycans have become cornerstones in understanding vertebrate glycobiology and pathology. During a remarkable 3-year period in the late 1950s, a newly minted postdoctoral fellow (Donald G. Comb) and his young mentor (Saul Roseman) made a surprising series of discoveries that put sialic acid research on sound chemical and biochemical footing. A detailed personal letter written by Dr. Roseman that describes this period of intense sialic acid discovery, complete with inserted figures, was given to one of us (Y.C.L.) several years later. The text and figures of this letter provide a look back at the enthusiasm, rigor and serendipity that led to their important findings through the eyes of one of the key figures in sialic acid research.


Asunto(s)
Bioquímica de los Carbohidratos/historia , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Historia del Siglo XX
10.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395125

RESUMEN

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Asunto(s)
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Expresión Génica , Glucolípidos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferasa/genética , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferasas/química , Sialiltransferasas/genética , Especificidad por Sustrato , beta-Galactosida alfa-2,3-Sialiltransferasa
11.
Glycobiology ; 26(4): 353-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26582604

RESUMEN

Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosiltransferasas/química , Sialiltransferasas/química , Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosiltransferasas/genética , Neuraminidasa/química , Neuraminidasa/genética , Polisacáridos/química , Polisacáridos/metabolismo , Sialiltransferasas/genética
12.
Chemistry ; 21(41): 14614-29, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26397189

RESUMEN

Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Citidina Monofosfato/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Receptores ErbB/química , Riñón/enzimología , Ácidos Siálicos/química , Ácidos Siálicos/síntesis química , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/química , Citidina Monofosfato/síntesis química , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Humanos , Riñón/química , Sialiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos
13.
Biol Pharm Bull ; 38(8): 1220-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26235586

RESUMEN

Cytidine monophosphate (CMP) N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) is an essential enzyme for N-glycolylneuraminic acid (Neu5Gc) synthesis. In humans, Neu5Gc cannot be synthesized because of a deletion in the CMAH gene. Since Neu5Gc research has not been actively performed in comparison with Neu5Ac research, little is known about the function of Neu5Gc. Possible reasons are that CMAH for controlling Neu5Gc synthesis is not understood well at the molecular level, that commercial Neu5Gc is expensive, and that addition of exogenous Neu5Gc to glycoconjugates is not a general method because of the difficulty in obtaining CMAH. One solution to these problems is to achieve large-scale production of CMAH with enzymatic activity. To produce and purify CMAH as simply as possible, we generated simian CMAH as a secretory protein with a histidine tag using a baculovirus protein expression system. After culture of baculovirus-infected cells in serum-free medium, secretory simian CMAH (approximately 180 µg) was highly purified from the supernatant (150 mL) of cell culture. HPLC analysis showed conversion of CMP-Neu5Ac to CMP-Neu5Gc by the secretory CMAH. We succeeded in producing secretory CMAH with enzymatic activity that is easy to purify. In addition, peptide-N-glycosidase F treatment of CMAH indicated that secretory CMAH was a glycoprotein with N-glycan. It will also contribute to research on Neu5Gc function by easy-to-use methods for controlling Neu5Gc synthesis, for exogenous addition of Neu5Gc to glycoconjugates and by application to industrial Neu5Gc synthesis.


Asunto(s)
Baculoviridae/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Oxigenasas de Función Mixta/biosíntesis , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Glucanos/metabolismo , Glicoconjugados/metabolismo , Glicoproteínas/biosíntesis , Glicoproteínas/aislamiento & purificación , Haplorrinos , Oxigenasas de Función Mixta/aislamiento & purificación
14.
Top Curr Chem ; 366: 97-137, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-23842869

RESUMEN

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase is the key enzyme of sialic acid biosynthesis in vertebrates. It catalyzes the first two steps of the cytosolic formation of CMP-N-acetylneuraminic acid from UDP-N-acetylglucosamine. In this review we give an overview of structure, biochemistry, and genetics of the bifunctional enzyme and its complex regulation. Furthermore, we will focus on diseases related to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Miopatías Distales/genética , Genes Reguladores , Complejos Multienzimáticos/metabolismo , Enfermedad por Almacenamiento de Ácido Siálico/genética , Uridina Difosfato N-Acetilglucosamina/metabolismo , Animales , Modelos Animales de Enfermedad , Miopatías Distales/enzimología , Miopatías Distales/patología , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación , Estructura Cuaternaria de Proteína , Enfermedad por Almacenamiento de Ácido Siálico/enzimología , Enfermedad por Almacenamiento de Ácido Siálico/patología
15.
Top Curr Chem ; 366: 139-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24141690

RESUMEN

Sialoglycoconjugates form the outermost layer of animal cells and play a crucial role in cellular communication processes. An essential step in the biosynthesis of sialylated glycoconjugates is the activation of sialic acid to the monophosphate diester CMP-sialic acid. Only the activated sugar is transported into the Golgi apparatus and serves as a substrate for the linkage-specific sialyltransferases. Interference with sugar activation abolishes sialylation and is embryonic lethal in mammals. In this chapter we focus on the enzyme catalyzing the activation of sialic acid, the CMP-sialic acid synthetase (CMAS), and compare the enzymatic properties of CMASs isolated from different species. Information concerning the reaction mechanism and active site architecture is included. Moreover, the unusual nuclear localization of vertebrate CMASs as well as the biotechnological application of bacterial CMAS enzymes is addressed.


Asunto(s)
Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Células Eucariotas/enzimología , Glicoconjugados/metabolismo , N-Acilneuraminato Citidililtransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/química , Transporte Biológico , Dominio Catalítico , Comunicación Celular , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Células Eucariotas/química , Glicoconjugados/química , Aparato de Golgi/química , Aparato de Golgi/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , N-Acilneuraminato Citidililtransferasa/química , Homología de Secuencia de Aminoácido , Especificidad de la Especie
16.
FEBS Lett ; 588(24): 4720-9, 2014 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-25451227

RESUMEN

Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2-6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2-6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.


Asunto(s)
Photobacterium/enzimología , Sialiltransferasas/química , Sitios de Unión , Cristalografía por Rayos X , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Metales/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Sialiltransferasas/metabolismo , beta-D-Galactósido alfa 2-6-Sialiltransferasa
17.
Protein Expr Purif ; 101: 165-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25050460

RESUMEN

Membrane proteins, including solute transporters play crucial roles in cellular function and have been implicated in a variety of important diseases, and as such are considered important targets for drug development. Currently the drug discovery process is heavily reliant on the structural and functional information discerned from high-resolution crystal structures. However, membrane protein structure determination is notoriously difficult, due in part to challenges faced in their expression, solubilisation and purification. The CMP-sialic acid transporter (CST) is considered to be an attractive target for drug discovery. CST inhibition reduces cancer cell sialylation and decreases the metastatic potential of cancer cells and to date, no crystal structure of the CST, or any other nucleotide sugar transporter exists. Here we describe the optimised conditions for expression in Pichia pastoris, solubilisation using n-nonyl ß-d-maltopyranoside (NM) and single step purification of a functional CST. Importantly we show that despite being able to solubilise and purify the CST using a number of different detergents, only NM was able to maintain CST functionality.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Transportadores de Anión Orgánico/biosíntesis , Transportadores de Anión Orgánico/genética , Pichia/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Transporte Biológico , Western Blotting , Detergentes/farmacología , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Pichia/genética , Proteolípidos/metabolismo
18.
FEBS Lett ; 588(17): 2978-84, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-24945729

RESUMEN

Bacterial sialyltransferases of the glycosyltransferase family GT-80 exhibit pronounced hydrolase activity toward CMP-activated sialyl donor substrates. Using in situ proton NMR, we show that hydrolysis of CMP-Neu5Ac by Pasteurella dagmatis α2,3-sialyltransferase (PdST) occurs with axial-to-equatorial inversion of the configuration at the anomeric center to release the α-Neu5Ac product. We propose a catalytic reaction through a single displacement-like mechanism where water replaces the sugar substrate as a sialyl group acceptor. PdST variants having His(284) in the active site replaced by Asn, Asp or Tyr showed up to 10(4)-fold reduced activity, but catalyzed CMP-Neu5Ac hydrolysis with analogous inverting stereochemistry. The proposed catalytic role of His(284) in the PdST hydrolase mechanism is to facilitate the departure of the CMP leaving group.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Pasteurella/enzimología , Sialiltransferasas/metabolismo , Biocatálisis , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Sialiltransferasas/química , Sialiltransferasas/genética , Estereoisomerismo , Especificidad por Sustrato
19.
Neurology ; 81(7): 681-7, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23873973

RESUMEN

OBJECTIVE: To identify the underlying genetic defect in a patient with intellectual disability, seizures, ataxia, macrothrombocytopenia, renal and cardiac involvement, and abnormal protein glycosylation. METHODS: Genetic studies involved homozygosity mapping by 250K single nucleotide polymorphism array and SLC35A1 sequencing. Functional studies included biochemical assays for N-glycosylation and mucin-type O-glycosylation and SLC35A1-encoded cytidine 5'-monophosphosialic acid (CMP-sialic acid) transport after heterologous expression in yeast. RESULTS: We performed biochemical analysis and found combined N- and O-glycosylation abnormalities and specific reduction in sialylation in this patient. Homozygosity mapping revealed homozygosity for the CMP-sialic acid transporter SLC35A1. Mutation analysis identified a homozygous c.303G > C (p.Gln101His) missense mutation that was heterozygous in both parents. Functional analysis of mutant SLC35A1 showed normal Golgi localization but 50% reduction in transport activity of CMP-sialic acid in vitro. CONCLUSION: We confirm an autosomal recessive, generalized sialylation defect due to mutations in SLC35A1. The primary neurologic presentation consisting of ataxia, intellectual disability, and seizures, in combination with bleeding diathesis and proteinuria, is discriminative from a previous case described with deficient sialic acid transporter. Our study underlines the importance of sialylation for normal CNS development and regular organ function.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Adolescente , Western Blotting , Niño , Análisis Mutacional de ADN , Femenino , Glicosilación , Trastornos Hemorrágicos/genética , Trastornos Hemorrágicos/metabolismo , Humanos , Discapacidad Intelectual/fisiopatología , Masculino , Mutación Missense , Linaje , Polimorfismo de Nucleótido Simple , Adulto Joven
20.
Glycobiology ; 23(5): 536-45, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23300007

RESUMEN

Sialyltransferases (STs) play essential roles in signaling and in the cellular recognition processes of mammalian cells by selectively installing cell-surface sialic acids in an appropriate manner both temporally and organ-specifically. The availability of the first three-dimensional structure of a mammalian (GT29) sialyltransferase has, for the first time, allowed quantitative structure/function analyses to be performed, thereby providing reliable insights into the roles of key active site amino acids. Kinetic analyses of mutants of ST3Gal-I, in conjunction with structural studies, have confirmed the mechanistic roles of His302 and His319 as general acid and base catalysts, respectively, and have quantitated other interactions with the cytosine monophosphate-N-acetyl ß-neuraminic acid donor substrate. The contributions of side chains that provide key interactions with the acceptor substrate, defining its specificity, have also been quantitated. Particularly important transition-state interactions of 2.5 and 2.7 kcal mol(-1) are found between the acceptor axial 4-hydroxyl and the conserved side chains of Gln108 and Tyr269, respectively. These results provide a basis for the engineering of mammalian STs to accommodate non-natural substrate analogs that should prove valuable as chemical biological probes of sialyltransferase function.


Asunto(s)
Mutación Missense , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Cinética , Datos de Secuencia Molecular , Unión Proteica , Sialiltransferasas/química , Especificidad por Sustrato , Porcinos , beta-Galactosida alfa-2,3-Sialiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...