Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 10(8): 1874-1881, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34259519

RESUMEN

Tunicosaponins are natural products extracted from Psammosilene tunicoides, which is an important ingredient of Yunnan Baiyao Powder, an ancient and famous Asian herbal medicine. The representative aglycones of tunicosaponins are the oleanane-type triterpenoids of gypsogenin and quillaic acid, which were found to manipulate a broad range of virus-host fusion via wrapping the heptad repeat-2 (HR2) domain prevalent in viral envelopes. However, the unknown biosynthetic pathway and difficulty in chemical synthesis hinder the therapeutic use of tunicosaponins. Here, two novel cytochrome P450-dependent monooxygenases that take part in the biosynthesis of tunicosaponins, CYP716A262 (CYP091) and CYP72A567 (CYP099), were identified from P. tunicoides. In addition, the whole biosynthesis pathway of the tunicosaponin aglycones was reconstituted in yeast by transforming the platform strain BY-bAS with the CYP716A262 and CYP716A567 genes, the resulting strain could produce 146.84 and 314.01 mg/L of gypsogenin and quillaic acid, respectively. This synthetic biology platform for complicated metabolic pathways elucidation and microbial cell factories construction can provide alternative sources of important natural products, helping conserve natural plant resources.


Asunto(s)
Caryophyllaceae/genética , Sistema Enzimático del Citocromo P-450 , Ácido Oleanólico , Proteínas de Plantas , Plantas Medicinales/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saponinas/biosíntesis , Saponinas/genética
2.
Sci Rep ; 11(1): 9810, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33963244

RESUMEN

Platycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown ß-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of ß-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Metabolómica , Ácido Oleanólico/análogos & derivados , Platycodon , Saponinas , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Platycodon/genética , Platycodon/metabolismo , Saponinas/genética , Saponinas/metabolismo
3.
Curr Pharm Biotechnol ; 22(3): 329-340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32957882

RESUMEN

BACKGROUND: Chaihu is a popular traditional Chinese medicine that has been used for centuries. It is traditionally used to treat cold fever and liver-related diseases. Saikosaponins (SSs) are one of the main active components of chaihu, in addition to essential oils, flavonoids, and polysaccharides. Considerable effort is needed to reveal the biosynthesis and regulation of SSs on the basis of current progress. OBJECTIVE: The aim of this study is to provide a reference for further studies and arouse attention by summarizing the recent achievements of SS biosynthesis. METHODS: All the data compiled and presented here were obtained from various online resources, such as PubMed Scopus and Baidu Scholar in Chinese, up to October 2019. RESULTS: A few genes of the enzymes of SSs participating in the biosynthesis of SSs were isolated. Among these genes, only the P450 gene was verified to catalyze the SS skeleton ß-amyrin synthase. Several UDP-glycosyltransferase genes were predicted to be involved in the biosynthesis of SSs. SSs could be largely biosynthesized in the phloem and then transported from the protoplasm, which is the biosynthetic site, to the vacuoles to avoid self-poisoning. As for the other secondary metabolites, the biosynthesis of SSs was strongly affected by environmental factors and the different species belonging to the genus of Bupleurum. Transcriptional regulation was studied at the molecular level. CONCLUSION: Profound discoveries in SSs may elucidate the mechanism of diverse the monomer formation of SSs and provide a reference for maintaining the stability of SS content in Radix Bupleuri.


Asunto(s)
Antiinflamatorios no Esteroideos/metabolismo , Bupleurum/metabolismo , Medicamentos Herbarios Chinos/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/biosíntesis , Animales , Bupleurum/genética , Flavonoides/biosíntesis , Flavonoides/genética , Humanos , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/genética , Raíces de Plantas , Saponinas/genética , Especificidad de la Especie
4.
Biol Pharm Bull ; 43(12): 1839-1846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268701

RESUMEN

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of ß-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing ß-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with ß-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected ß-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.


Asunto(s)
Clonación Molecular/métodos , Polygala/genética , Polygala/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Filogenia , Saccharomyces cerevisiae , Saponinas/biosíntesis , Saponinas/genética
5.
Molecules ; 24(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013661

RESUMEN

The potential of six ancient Tuscan sweet cherry (Prunus avium L.) varieties as a source of health-promoting pentacyclic triterpenes is here evaluated by means of a targeted gene expression and metabolite analysis. By using a sequence homology criterion, we identify five oxidosqualene cyclase genes (OSCs) and three cytochrome P450s (CYP85s) that are putatively involved in the triterpene production pathway in sweet cherries. We performed 3D structure prediction and induced-fit docking using cation intermediates and reaction products for some OSCs to predict their function. We show that the Tuscan varieties have different amounts of ursolic and oleanolic acids and that these variations are related to different gene expression profiles. This study stresses the interest of valorizing ancient fruits as alternative sources of functional molecules with nutraceutical value. It also provides information on sweet cherry triterpene biosynthetic genes, which could be the object of follow-up functional studies.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Frutas , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Biológicos , Ácido Oleanólico , Proteínas de Plantas , Prunus avium , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Frutas/genética , Frutas/metabolismo , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Prunus avium/genética , Prunus avium/metabolismo , Ácido Ursólico
6.
Mol Biol Rep ; 45(6): 2795-2800, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30194559

RESUMEN

Structural modification of echinocystic acid (EA), a pentacyclic triterpenoid with wide spread biological activities was investigated by microbial transformation. Microbe-mediate transformation of EA was carried out by filamentous fungus Cunninghamella blakesleana CGMCC 3.910. Four metabolites 3ß, 7ß, 16α-trihydroxy-olean-12-en-28-oic acid (EA-2); 3ß, 7ß, 16ß,19ß-tetrahydroxy-olean-12-en-28-oic acid (EA-3); 3ß, 7ß, 16α, 21ß-tetrahydroxy-olean-12-en-28-oic acid (EA-4); 3ß, 7ß, 16α-trihydroxy-olean-11, 13(18)-dien-28-oic acid (EA-5) were produced. Structures of transformed products were elucidated by 1D and 2D NMR and HR-MS data. EA-3 and EA-4 were new compounds.


Asunto(s)
Cunninghamella/genética , Ácido Oleanólico/análogos & derivados , Biotransformación/genética , Estructura Molecular , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos , Triterpenos
7.
Metab Eng ; 45: 43-50, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29196123

RESUMEN

Glycyrrhetinic acid (GA) and its precursor, 11-oxo-ß-amyrin, are typical triterpenoids found in the roots of licorice, a traditional Chinese medicinal herb that exhibits diverse functions and physiological effects. In this study, we developed a novel and highly efficient pathway for the synthesis of GA and 11-oxo-ß-amyrin in Saccharomyces cerevisiae by introducing efficient cytochrome P450s (CYP450s: Uni25647 and CYP72A63) and pairing their reduction systems from legume plants through transcriptome and genome-wide screening and identification. By increasing the copy number of Uni25647 and pairing cytochrome P450 reductases (CPRs) from various plant sources, the titers of 11-oxo-ß-amyrin and GA were increased to 108.1 ± 4.6mg/L and 18.9 ± 2.0mg/L, which were nearly 1422-fold and 946.5-fold higher, respectively, compared with previously reported data. To the best of our knowledge, these are the highest titers reported for GA and 11-oxo-ß-amyrin from S. cerevisiae, indicating an encouraging and promising approach for obtaining increased GA and its related triterpenoids without destroying the licorice plant or the soil ecosystem.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Fabaceae/genética , Ácido Glicirretínico/metabolismo , Ácido Oleanólico/análogos & derivados , Proteínas de Plantas , Saccharomyces cerevisiae , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Fabaceae/enzimología , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/genética , Oxidación-Reducción , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
8.
Acta Biochim Pol ; 60(3): 467-73, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040627

RESUMEN

In order to initiate hairy root culture initiation cotyledons and hypocotyls of Calendula officinalis L. were infected with Agrobacterium rhizogenes strain ATCC 15834 or the same strain containing pCAMBIA 1381Z vector with ß-glucuronidase reporter gene under control of promoter of NIK (Nematode Induced Kinase) gene. The efficiency of induction of hairy roots reached 33.8% for cotyledons and 66.6% for hypocotyls together for both transformation experiments. Finally, eight control and nine modified lines were established as a long-term culture. The hairy root cultures showed the ability to synthesize oleanolic acid mainly (97%) as glycosides; control lines contained it at the average 8.42 mg · g(-1) dry weight in tissue and 0.23 mg · dm(-3) in medium; modified lines: 4.59 mg · g(-1) for the tissue, and 0.48 mg · dm(-3) for the medium. Additionally lines showed high positive correlation between dry/fresh weight and oleanolic acid concentration in tissue. Using the Killiani mixture in acidic hydrolysis of oleanolic acid glycosides released free aglycones that were partially acetylated in such conditions.


Asunto(s)
Agrobacterium/genética , Calendula/genética , Glicósidos/biosíntesis , Ácido Oleanólico/biosíntesis , Raíces de Plantas/genética , Calendula/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Genes Reporteros , Vectores Genéticos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Glicósidos/genética , Hidrólisis , Hipocótilo/genética , Hipocótilo/metabolismo , Ácido Oleanólico/genética , Raíces de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
9.
Theor Appl Genet ; 126(3): 721-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23229125

RESUMEN

Although certain saponins in soybean seeds have been reported to have health benefits, group A acetyl saponins cause undesirable bitter and astringent tastes in soy products. Therefore, reduction or elimination of group A saponins is an important target for soybean breeders. A wide survey of cultivated and wild soybean germplasm identified a mutant line that lacked group A saponins. The absence of soyasapogenol A, a group A saponin aglycone, is controlled by a single recessive allele, sg-5 that mapped genetically near the SSR marker, Satt117, on soybean chromosome 15 (linkage group E). The locus is epistatic to Sg-1, which controls the terminal sugar variation on the C-22 sugar chain of soyasapogenol A, and allelic differences at this locus lead to changes in the amount of DDMP saponins and their derivatives group B and E products. These findings provide a new insight into the biosynthetic pathway of soybean saponins, and identify a genetic approach that can be applied to improve the quality of foods produced from soybean.


Asunto(s)
Ácido Oleanólico/análogos & derivados , Saponinas/química , Saponinas/genética , Leche de Soja/química , Gusto/fisiología , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Eliminación de Gen , Genes Recesivos , Sitios Genéticos , Repeticiones de Microsatélite , Ácido Oleanólico/biosíntesis , Ácido Oleanólico/química , Ácido Oleanólico/genética , Glycine max/química
10.
Plant Physiol ; 160(2): 1120-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22885935

RESUMEN

Plants prevent dehydration by coating their aerial, primary organs with waxes. Wax compositions frequently differ between species, organs, and developmental stages, probably to balance limiting nonstomatal water loss with various other ecophysiological roles of surface waxes. To establish structure-function relationships, we quantified the composition and transpiration barrier properties of the gl1 mutant leaf waxes of Arabidopsis (Arabidopsis thaliana) to the necessary spatial resolution. The waxes coating the upper and lower leaf surfaces had distinct compositions. Moreover, within the adaxial wax, the epicuticular layer contained more wax and a higher relative quantity of alkanes, whereas the intracuticular wax had a higher percentage of alcohols. The wax formed a barrier against nonstomatal water loss, where the outer layer contributed twice as much resistance as the inner layer. Based on this detailed description of Arabidopsis leaf waxes, structure-function relationships can now be established by manipulating one cuticle component and assessing the effect on cuticle functions. Next, we ectopically expressed the triterpenoid synthase gene AtLUP4 (for lupeol synthase4 or ß-amyrin synthase) to compare water loss with and without added cuticular triterpenoids in Arabidopsis leaf waxes. ß-Amyrin accumulated solely in the intracuticular wax, constituting up to 4% of this wax layer, without other concomitant changes of wax composition. This triterpenoid accumulation caused a significant reduction in the water barrier effectiveness of the intracuticular wax.


Asunto(s)
Arabidopsis/química , Ácido Oleanólico/análogos & derivados , Hojas de la Planta/química , Ceras/química , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/genética , Alcanos/química , Arabidopsis/enzimología , Arabidopsis/genética , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Deshidratación , Genes de Plantas , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Ácido Oleanólico/química , Ácido Oleanólico/genética , Estomas de Plantas/fisiología , Transpiración de Plantas , Relación Estructura-Actividad , Transformación Genética , Triterpenos/química , Agua/química , Ceras/análisis
11.
Plant Physiol Biochem ; 47(7): 551-61, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19375343

RESUMEN

Although the terpenoid pathway constitutes, with the phenylpropanoid metabolism, the major pathway of secondary metabolism in plants, little is known about its regulation. Overexpression of a Vitis vinifera R2R3-MYB transcription factor (VvMYB5b) in tomato induced pleiotropic changes including dwarfism, modified leaf structure, alterations of floral morphology, pigmented and glossy fruits at the "green-mature" stage and impaired seed germination. Two main branches of secondary metabolism, which profoundly influence the organoleptic properties of the fruit, were affected in the opposite way by VvMYB5b overexpression. Phenylpropanoid metabolism was down regulated whereas the amount of beta-carotene was up regulated. This is the first example of the independent regulation of phenylpropanoid and carotenoid metabolism. The strongest modification concerns a decrease in beta-amyrin, the precursor of the oleanolic acid, which is the major component of grape waxes. Scanning electron microscopy analysis of fruits and leaves confirms the alteration of wax metabolism and a modification of cell size and shape. This may potentially impact resistance/tolerance to biotic and abiotic stresses. The results are compared with a similar approach using heterologous expression of VvMYB5b in tobacco.


Asunto(s)
Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Propanoles/metabolismo , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , beta Caroteno/metabolismo , Flavonoides/genética , Genes de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Proteínas de Plantas/genética , Estructuras de las Plantas/genética , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Terpenos/metabolismo , Ceras/metabolismo , beta Caroteno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...