Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurotox Res ; 37(1): 126-135, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31286434

RESUMEN

A number of physiological responses in the central nervous system (CNS) are regulated by the endocannabinoid system (ECS). Inhibition of neuronal excitability via activation of cannabinoid receptors (CBr) constitutes a potential protective response against neurotoxic insults. Oleamide (ODA) is a fatty acid amide with endocannabinoid profile exerting several effects in the CNS, though its neuroprotective properties remain unknown. The tryptophan metabolite quinolinic acid (QUIN) elicits toxic effects via overactivation of N-methyl-D-aspartate receptors (NMDAr) after its accumulation in the CNS under pathological conditions. Here, we investigated the protective properties of ODA against the excitotoxic damage induced by QUIN in rat brain synaptosomes and cortical slices, and whether these effects are linked to the stimulation of the endocannabinoid system via CB1 and/or CB2 receptor activation. ODA (1-50 µM) prevented the QUIN (100 µM)-induced loss of mitochondrial reductive capacity in synaptosomes in a mechanism partially mediated by CB1 receptor, as evidenced by the recovery of mitochondrial dysfunction induced by co-incubation with the CB1 receptor antagonist/inverse agonist AM281 (1 µM). In cortical slices, ODA prevented the short-term QUIN-induced loss of cell viability and the cell damage in a partial CB1 and CB2 receptor-dependent manner. Altogether, these findings demonstrate the neuroprotective and modulatory properties of ODA in biological brain preparations exposed to excitotoxic insults and the partial role that the stimulation of CB1 and CB2 receptors exerts in these effects.


Asunto(s)
Supervivencia Celular/fisiología , Corteza Cerebral/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácidos Oléicos/farmacología , Receptor Cannabinoide CB1/fisiología , Receptor Cannabinoide CB2/fisiología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/fisiología , Animales , Encéfalo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Morfolinas/farmacología , Ácidos Oléicos/antagonistas & inhibidores , Pirazoles/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Ratas , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB2/agonistas
2.
Neurochem Int ; 129: 104518, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31381945

RESUMEN

In the present study, we describe the status of somatostatin receptor 2 and 5 (SSTR2 and SSTR5) as well as cannabinoid type 1 receptor (CB1R) in Huntingtin (Htt) knock-in striatal neuronal cells. In mutant Htt (mHtt) knock-in (STHdhQ111/111) and wild type (STHdhQ7/7) striatal neuronal cells, SSTRs and CB1R exhibit prominent cytoplasmic expression and respond to agonist in a receptor specific manner. In response to quinolinic acid (QUIN)-induced toxicity, STHdhQ111/111 cells are more vulnerable and display suppressed cell survival signaling pathways. Receptor-specific agonists protect cells from QUIN-induced toxicity and activate ERK1/2 in both STHdh cells. Co-activation of SSTRs and CB1R resulted in loss of protective effects, delayed ERK1/2 phosphorylation and altered receptor complex composition. These results provide firsthand evidence in support of the protective role of SSTRs in STHdh cells and the possible crosstalk between SSTRs and CB1R in the modulation of excitotoxicity in Huntington's disease.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotoxinas/toxicidad , Ácido Quinolínico/toxicidad , Receptor Cross-Talk , Receptor Cannabinoide CB1/fisiología , Receptores de Somatostatina/fisiología , Animales , Línea Celular Transformada , Cuerpo Estriado/citología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Genes Reporteros , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Neuronas/metabolismo , Neurotoxinas/antagonistas & inhibidores , Fosforilación , Procesamiento Proteico-Postraduccional , Ácido Quinolínico/antagonistas & inhibidores , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/biosíntesis , Receptor Cannabinoide CB1/genética , Receptores de Somatostatina/agonistas , Receptores de Somatostatina/biosíntesis , Receptores de Somatostatina/genética
3.
Neurotox Res ; 24(1): 55-62, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23184648

RESUMEN

Searching for new therapeutic strategies through modulation of glutamatergic transmission using effective neuroprotective agents is essential. Glutamatergic excitotoxicity is a common factor to neurodegenerative diseases and acute events such as cerebral ischemia, traumatic brain injury, and epilepsy. This study aimed to evaluate behavioral and electroencephalographic (EEG) responses of mice cerebral cortex and hippocampus to subconvulsant and convulsant application of NMDA and quinolinic acid (QA), respectively. Moreover, it aimed to evaluate if EEG responses may be related to the neuroprotective effects of NMDA. Mice were preconditioned with NMDA (75 mg/kg, i.p.) and EEG recordings were performed for 30 min. One day later, QA was injected (36.8 nmol/site) and EEG recordings were performed during 10 min. EEG analysis demonstrated NMDA preconditioning promotes spike-wave discharges (SWDs), but it does not display behavioral manifestation of seizures. Animals that were protected by NMDA preconditioning against QA-induced behavioral seizures, presented higher number of SWD after NMDA administration, in comparison to animals preconditioned with NMDA that did display behavioral seizures after QA infusion. No differences were observed in latency for the first seizure or duration of seizures. EEG recordings after QA infusion demonstrated there were no differences in the number of SWD, latency for the first seizure or duration of seizures in animals pretreated with saline or in animals preconditioned by NMDA that received QA. A negative correlation was identified between the number of NMDA-induced SWD and QA-induced seizures severity. These results suggest a higher activation during NMDA preconditioning diminishes mice probability to display behavioral seizures after QA infusion.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Hipocampo/efectos de los fármacos , N-Metilaspartato/farmacología , Ácido Quinolínico/administración & dosificación , Ácido Quinolínico/antagonistas & inhibidores , Convulsiones/tratamiento farmacológico , Animales , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Hipocampo/fisiopatología , Infusiones Intraventriculares , Masculino , Ratones , N-Metilaspartato/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ácido Quinolínico/toxicidad , Convulsiones/inducido químicamente
4.
J Neurol Sci ; 323(1-2): 1-8, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22939820

RESUMEN

The kynurenine pathway (KP), the primary route of tryptophan degradation in mammalian cells, consists of many metabolites including kynurenic acid (KYNA), quinolinic acid (QUIN), 3-hydroxykynurenine (3-HK) and picolinic acid (PIC). The former two are neuroactive, while the latter two are molecules with pro-oxidants and antioxidants properties. These agents are considered to be involved in aging and numerous neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). Several studies have demonstrated that altered kynurenine metabolism plays an important role in the pathogenesis of this group of diseases. The important metabolites and key enzymes show significant importance in those disorders. Both analogs of the neuroprotective metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic compounds may have potential therapeutic significance. In this review we discuss the mechanistic and therapeutic considerations of KP in aging and the main neurodegenerative diseases and review the updated knowledge in this therapeutic field.


Asunto(s)
Quinurenina/metabolismo , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/metabolismo , Envejecimiento/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/prevención & control , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Inflamación/metabolismo , Ácido Quinurénico/antagonistas & inhibidores , Ácido Quinurénico/metabolismo , Quinurenina/análogos & derivados , Quinurenina/farmacología , Quinurenina/uso terapéutico , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/prevención & control , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neurotoxinas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/prevención & control , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/metabolismo , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/fisiología , Triptófano/metabolismo
5.
ACS Chem Neurosci ; 3(2): 114-9, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22860181

RESUMEN

There is evidence that excitotoxicity and prolonged microglial activation are involved in neuronal death in neurodegenerative disorders. Activated microglia express various molecules, including the translocator protein 18 kDa (TSPO; formerly known as the peripheral benzodiazepine receptor) on the outer mitochondrial membrane. The TSPO is a novel target for neuroprotective treatments which aim to reduce microglial activation. The effect of PK 11195 and three other TSPO ligands on the level of microglial activation and neuronal survival was evaluated in a quinolinic acid (QUIN) rat model of excitotoxic neurodegeneration. All three ligands were neuroprotective at a level comparable to PK 11195. All of the ligands decreased microglial activation following the injection of QUIN but had no effect on astrogliosis. Interestingly, we also observed neuroprotective effects from the vehicle, dimethyl sulfoxide (DMSO).


Asunto(s)
Proteínas Portadoras/metabolismo , Muerte Celular/efectos de los fármacos , Isoquinolinas/farmacología , Activación de Macrófagos/fisiología , Microglía/metabolismo , Neostriado/fisiología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Receptores de GABA-A/metabolismo , Animales , Proteínas Portadoras/efectos de los fármacos , Dimetilsulfóxido/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Isoquinolinas/química , Masculino , Microinyecciones , Fármacos Neuroprotectores/química , Vehículos Farmacéuticos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/efectos de los fármacos
6.
Life Sci ; 88(17-18): 784-91, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21362433

RESUMEN

AIMS: The aim of this study was to investigate the protective effects of cyclo-oxygenase inhibitors against quinolinic acid (QA) induced Huntington's disease-like alterations in rats. MAIN METHODS: Quinolinic acid (300 nmol) was administered intrastriatally into the striatum to induce Huntington's disease-like alteration. Cyclo-oxygenase inhibitors celecoxib (15 and 30 mg/kg) and meloxicam (10 and 20mg/kg) were given for 21 days. In behavioral assessment locomotor, rotarod, and balance beam walk performances were assessed. Oxidative stress, mitochondrial dysfunction, proinflammatory cytokines and caspase-3 were assessed on day 21 after behavioral assessments. KEY FINDINGS: Intrastriatal quinolinic acid (300 nmol) administration significantly altered the body weight, motor coordination, and induced oxidative damage (as indicated by the increase in lipid peroxidation and nitrite concentration) in the striatum as compared to sham group. Besides quinolinic acid (300 nmol) significantly depleted the mitochondrial enzyme complex levels and increased TNF-α, IL-6 and caspase-3 (marker of apoptotic cell death) levels in the striatum. Chronic treatment with celecoxib (15 and 30 mg/kg) significantly attenuated the quinolinic acid-induced behavioral and biochemical alterations, while meloxicam was able to reverse behavioral alterations at higher dose (20 mg/kg) as compared to the quinolinic acid treated group. Chronic treatment with the selective COX-2 inhibitors significantly restored the mitochondrial enzyme complex activities as well as attenuated TNF-α, IL-6 and caspase-3 levels as compared to the quinolinic acid treated group. SIGNIFICANCE: Results of the present study demonstrate the protective effect of cyclo-oxygenase inhibitors in the experimental models of Huntington's disease; and further provide evidence toward the involvement of neuroinflammatory cascade in the pathogenesis of Huntington's disease.


Asunto(s)
Inhibidores de la Ciclooxigenasa/farmacología , Enfermedad de Huntington/inducido químicamente , Inflamación/tratamiento farmacológico , Ácido Quinolínico/farmacología , Animales , Encéfalo/efectos de los fármacos , Caspasa 3/sangre , Celecoxib , Relación Dosis-Respuesta a Droga , Interleucina-6/sangre , Peroxidación de Lípido/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Meloxicam , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Pirazoles/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ratas , Ratas Wistar , Sulfonamidas/farmacología , Tiazinas/farmacología , Tiazoles/farmacología , Factor de Necrosis Tumoral alfa/sangre
7.
Behav Brain Res ; 219(1): 92-7, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21185872

RESUMEN

Preconditioning by N-methyl-d-aspartate (NMDA) may be promoted in vivo by the administration of a sub-convulsing dose of NMDA, with a neuroprotective effect against seizures and neuronal death induced by the infusion of quinolinic acid (QA) in mice. This study aimed to evaluate the participation of protein kinase C (PKC), cyclic AMP-dependent protein kinase (PKA), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK), Ca(2+)/calmodulin dependent protein kinase II (CaMKII) and phosphatidilinositol-3 kinase (PI3K) signaling pathways in this neuroprotection model. Adult Swiss male mice were preconditioned with NMDA 24 h before the infusion of QA, and were treated with inhibitors of the aforementioned signaling pathways either 15 min before the preconditioning or infusion of QA. Inhibition of the PKA and PI3K pathways abolished the protection evoked by NMDA, and inhibition of the MEK pathway significantly diminished this protection. Treatment with PKC and CaMKII inhibitors did not alter the protection rate. Inhibition of the MEK and PKC pathways resulted in an increased mortality rate when followed by the infusion of QA, or NMDA preconditioning and QA infusion, respectively. These results suggest that the PKA, PI3K and MEK pathways have a crucial role in the achievement of a neuroprotective state following preconditioning.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Agonistas de Aminoácidos Excitadores/farmacología , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Proteínas Quinasas Activadas por Mitógenos/fisiología , N-Metilaspartato/farmacología , Fosfatidilinositol 3-Quinasas/fisiología , Ácido Quinolínico/antagonistas & inhibidores , Convulsiones/prevención & control , Transducción de Señal/efectos de los fármacos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Androstadienos/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Condicionamiento Psicológico/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Flavonoides/farmacología , Inyecciones Intraventriculares , Isoquinolinas/farmacología , Masculino , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Ácido Quinolínico/toxicidad , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Convulsiones/inducido químicamente , Sulfonamidas/farmacología , Wortmanina
8.
Brain Res ; 1340: 18-23, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20435022

RESUMEN

PK11195 was previously reported to attenuate the quinolinic acid (QUIN)-induced enhancement of glucose metabolism in rat brain. In the present study, the effect of PK11195 or anesthesia on [(14)C]2-deoxyglucose ([(14)C]DG) uptake was investigated in order to determine whether the QUIN-induced enhancement of glucose metabolism occurred in glial cells or neurons. We confirmed that the microinjection of QUIN caused a significant enhancement of [(14)C]DG uptake at 2h after the infusion, while the co-injection of PK11195 and QUIN almost completely suppressed this enhancement of [(14)C]DG uptake. No effect of chloral hydrate anesthesia on the QUIN-induced enhancement of [(14)C]DG uptake was observed. In contrast to rats treated with QUIN, PK11195 did not affect the enhancement of [(14)C]DG uptake induced by fluorocitrate (FC); however, chloral hydrate anesthesia completely suppressed the FC-induced increase in [(14)C]DG uptake. These results indicated that the enhancement of glucose metabolism induced by QUIN mainly occurred in glial cells, and the neuroprotective effect of PK11195 in rats injected with QUIN might be related to the suppression of anaerobic glycolysis in glial cells.


Asunto(s)
Encéfalo/citología , Encéfalo/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Glucólisis/efectos de los fármacos , Isoquinolinas/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ácido Quinolínico/antagonistas & inhibidores , Anaerobiosis/efectos de los fármacos , Anaerobiosis/fisiología , Animales , Antineoplásicos/farmacología , Encéfalo/metabolismo , Regulación hacia Abajo/fisiología , Glucosa/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Ácido Quinolínico/fisiología , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
9.
FEBS J ; 277(2): 368-82, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20015232

RESUMEN

Quinolinic acid (QUIN) excitotoxicity is mediated by elevated intracellular Ca(2+) levels, and nitric oxide-mediated oxidative stress, resulting in DNA damage, poly(ADP-ribose) polymerase (PARP) activation, NAD(+) depletion and cell death. We evaluated the effect of a series of polyphenolic compounds [i.e. epigallocatechin gallate (EPCG), catechin hydrate, curcumin, apigenin, naringenin and gallotannin] with antioxidant properties on QUIN-induced excitotoxicity on primary cultures of human neurons. We showed that the polyphenols, EPCG, catechin hydrate and curcumin can attenuate QUIN-induced excitotoxicity to a greater extent than apigenin, naringenin and gallotannin. Both EPCG and curcumin were able to attenuate QUIN-induced Ca(2+) influx and neuronal nitric oxide synthase (nNOS) activity to a greater extent compared with apigenin, naringenin and gallotannin. Although Ca(2+) influx was not attenuated by catechin hydrate, nNOS activity was reduced, probably through direct inhibition of the enzyme. All polyphenols reduced the oxidative effects of increased nitric oxide production, thereby reducing the formation of 3-nitrotyrosine and poly (ADP-ribose) polymerase activity and, hence, preventing NAD(+) depletion and cell death. In addition to the well-known antioxidant properties of these natural phytochemicals, the inhibitory effect of some of these compounds on specific excitotoxic processes, such as Ca(2+) influx, provides additional evidence for the beneficial health effects of polyphenols in excitable tissue, particularly within the central nervous system.


Asunto(s)
Flavonoides/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fenoles/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Apigenina/farmacología , Señalización del Calcio/efectos de los fármacos , Catequina/análogos & derivados , Catequina/farmacología , Células Cultivadas , Curcumina/farmacología , Activación Enzimática/efectos de los fármacos , Flavanonas/farmacología , Humanos , Taninos Hidrolizables/farmacología , L-Lactato Deshidrogenasa/metabolismo , NAD/metabolismo , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Polifenoles , Tirosina/análogos & derivados , Tirosina/biosíntesis
10.
J Neural Transm (Vienna) ; 116(11): 1403-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19618107

RESUMEN

Parkinson's, Alzheimer's and Huntington's diseases are chronic neurodegenerative disorders of a progressive nature which lead to a considerable deterioration of the quality of life. Their pathomechanisms display some common features, including an imbalance of the tryptophan metabolism. Alterations in the concentrations of neuroactive kynurenines can be accompanied by devastating excitotoxic injuries and metabolic disturbances. From therapeutic considerations, possibilities that come into account include increasing the neuroprotective effect of kynurenic acid, or decreasing the levels of neurotoxic 3-hydroxy-L-kynurenine and quinolinic acid. The experimental data indicate that neuroprotection can be achieved by both alternatives, suggesting opportunities for further drug development in this field.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ácido Quinurénico/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/fisiopatología , Ácido Glutámico/metabolismo , Humanos , Ácido Quinurénico/agonistas , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , NAD/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/metabolismo , Triptófano/metabolismo
11.
Exp Brain Res ; 197(3): 287-96, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19565224

RESUMEN

Cell rescue is a primary need during acute and chronic insults to the central nervous system. Functional preservation during the early stages of toxicity in a given degenerative event may represent a significant amelioration of detrimental processes linked to neuronal cell loss. Excitotoxicity and depleted cellular energy are toxic events leading to cell death in several neurodegenerative disorders. In this work, the effects of the well-known antioxidant and energy precursor, L: -carnitine (L: -CAR), were tested as a post-treatment in two neurotoxic models under in vitro and in vivo conditions. The experimental models tested included: (1) a typical excitotoxic and pro-oxidant inducer, quinolinic acid (QUIN); and (2) a mitochondrial energy inhibitor, 3-nitropropionic acid (3-NP). For in vitro studies, increasing concentrations of L: -CAR (10-1,000 microM) were added to the isolated brain synaptosomes at different times (1, 3 and 6 h) after the incubation with toxins (100 microM QUIN and 1 mM 3-NP), and 30 min later, lipid peroxidation (LP) and mitochondrial dysfunction (MD) were evaluated. For in vivo purposes, L: -CAR (100 mg/kg, i.p.) was given to rats either as a single administration 120 min after the intrastriatal infusion of QUIN (240 nmol/microl) or 3-NP (500 nmol/microl), or for 7 consecutive days (starting 120 min post-lesion). LP and MD were evaluated 4 h and 7 days post-lesions in isolated striatal synaptosomes. Our results show that, despite some variations depending on the toxic model tested, the time of exposure, or the biomarker evaluated, nerve ending protection can be mostly achieved by L: -CAR within the first hours after the toxic insults started, suggesting that targeting the ongoing oxidative damage and/or energy depletion during the first stages of neurotoxic events is essential to rescue nerve endings.


Asunto(s)
Encéfalo/efectos de los fármacos , Carnitina/farmacología , Metabolismo Energético/efectos de los fármacos , Neurotoxinas/antagonistas & inhibidores , Estrés Oxidativo/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Encéfalo/metabolismo , Encéfalo/fisiopatología , Carnitina/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Metabolismo Energético/fisiología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neurotoxinas/metabolismo , Nitrocompuestos/antagonistas & inhibidores , Nitrocompuestos/metabolismo , Oxidantes/antagonistas & inhibidores , Oxidantes/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/fisiología , Terminales Presinápticos/metabolismo , Propionatos/antagonistas & inhibidores , Propionatos/metabolismo , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/metabolismo , Ratas , Ratas Wistar , Sinaptosomas , Complejo Vitamínico B/farmacología , Complejo Vitamínico B/uso terapéutico
12.
J Neurosci Methods ; 179(2): 219-23, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19428530

RESUMEN

Ketamine, a non-competitive N-methyl-D-aspartate (NMDA) antagonist, is a commonly used injectable anaesthetic agent. In the present study, ketamine- and isoflurane-induced anaesthesias were tested to identify the influence of different anaesthesia methods in conjunction with the unilateral quinolinic acid-induced excitotoxic lesion rat model of Huntington's disease (HD). Quinolinic acid, a glutamate analogue, exerts its excitotoxic effect via the NMDA receptor, the principle target of ketamine as well, rendering the choice of anaesthesia an important pharmacokinetic issue. Twenty Sprague-Dawley females were lesioned using quinolinic acid: one group was anaesthetised with ketamine and the other with isoflurane. The injection coordinates and the dosage of quinolinic acid were identical. Two weeks post-lesion, the animals were tested on apomorphine-induced rotation test, followed by perfusion, immunohistochemical and volumetric analysis. The isoflurane, compared with the ketamine, anaesthetised animals showed greater ipsilateral rotation behaviour, larger striatal lesions and significant differences in other measurements reflecting the extent of the lesion. The data demonstrates that the use of ketamine anaesthesia in the excitotoxic model of HD can severely compromise the development of the lesion.


Asunto(s)
Encéfalo/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Enfermedad de Huntington/inducido químicamente , Ketamina/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Anestésicos por Inhalación/farmacología , Animales , Antiparkinsonianos , Apomorfina , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Interacciones Farmacológicas/fisiología , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Isoflurano/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/toxicidad , Ácido Quinolínico/toxicidad , Ratas , Ratas Sprague-Dawley
13.
Neurochem Res ; 34(8): 1372-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19191025

RESUMEN

Valeriana officinalis L. (Valerian) is widely used as a traditional medicine to improve the quality of sleep. Although V. officinalis have been well documented as promising pharmacological agent; the exact mechanisms by which this plant act is still unknown. Limited literature data have indicated that V. officinalis extracts can exhibit antioxidant properties against iron in hippocampal neurons in vitro. However, there is no data available about the possible antioxidant effect of V. officinalis against other pro-oxidants in brain. In the present study, the protective effect of V. officinalis on lipid peroxidation (LPO) induced by different pro-oxidant agents with neuropathological importance was examined. Ethanolic extract of valerian (0-60 microg/ml) was tested against quinolinic acid (QA); 3-nitropropionic acid; sodium nitroprusside; iron sulfate (FeSO4) and Fe2+/EDTA induced LPO in rat brain homogenates. The effect of V. officinalis in deoxyribose degradation and reactive oxygen species (ROS) production was also investigated. In brain homogenates, V. officinalis inhibited thiobarbituric acid reactive substances induced by all pro-oxidants tested in a concentration dependent manner. Similarly, V. officinalis caused a significant decrease on the LPO in cerebral cortex and in deoxyribose degradation. QA-induced ROS production in cortical slices was also significantly reduced by V. officinalis. Our results suggest that V. officinalis extract was effective in modulating LPO induced by different pro-oxidant agents. These data may imply that V. officinalis extract, functioning as antioxidant agent, can be beneficial for reducing insomnia complications linked to oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/toxicidad , Valeriana/química , Animales , Química Encefálica/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Desoxirribosa/metabolismo , Ácido Edético/farmacología , Ácido Gálico/farmacología , Peróxidos Lipídicos/metabolismo , Masculino , Nitrocompuestos/antagonistas & inhibidores , Nitrocompuestos/toxicidad , Oxidantes/farmacología , Extractos Vegetales/farmacología , Raíces de Plantas/química , Propionatos/antagonistas & inhibidores , Propionatos/toxicidad , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
14.
Nutr Neurosci ; 12(1): 35-42, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19178790

RESUMEN

The antiperoxidative properties of alpha-mangostin, a xanthone isolated from mangosteen fruit, were tested for the first time in nerve tissue exposed to different toxic insults. Two reliable biological preparations (rat brain homogenates and synaptosomal P2 fractions) were exposed to the toxic actions of a free radical generator (ferrous sulfate), an excitotoxic agent (quinolinate), and a mitochondrial toxin (3-nitropropionate). alpha-Mangostin decreased the lipoperoxidative action of FeSO(4) in both preparations in a concentration-dependent manner, and completely abolished the peroxidative effects of quinolinate, 3-nitropropionate and FeSO(4) + quinolinate at all concentrations tested. Interestingly, when tested alone in brain homogenates, alpha-mangostin significantly decreased the lipoperoxidation even below basal levels. alpha-Mangostin also prevented the decreased reductant capacity of mitochondria in synaptosomal fractions. Our results suggest that alpha-mangostin exerts a robust antiperoxidative effect in brain tissue preparations probably through its properties as a free radical scavenger. In light of these findings, this antioxidant should be tested in other neurotoxic models involving oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Encéfalo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Xantonas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/ultraestructura , Relación Dosis-Respuesta a Droga , Compuestos Ferrosos/antagonistas & inhibidores , Compuestos Ferrosos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Nitrocompuestos/antagonistas & inhibidores , Nitrocompuestos/farmacología , Propionatos/antagonistas & inhibidores , Propionatos/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/farmacología , Ratas , Ratas Wistar , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
15.
J Mol Neurosci ; 35(3): 345-54, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18483877

RESUMEN

Somatostatin (SST) is a multifunctional peptide and involves in several neurodegenerative diseases. N-Methyl-D-asparate (NMDA) receptor agonist quinolinic acid (QUIN)-induced neurotoxicity mimics an experimental model of Huntington's disease that is characterized by the selective preservation of medium-sized aspiny interneurons and degeneration of medium-sized spiny projection neurons in striatum. In QUIN- and NMDA-induced neurotoxicity, increased expression of SST and messenger RNA levels along with SST release in culture medium is generally observed. However, the molecular mechanisms and the functional consequences of increased SST are still obscure. In the present study, the role of SST was determined using immunoneutralization and immunoblockade of SST in cultured striatal neurons upon QUIN- and NMDA-induced neurotoxicity. The immunoblockade of SST with antisense oligonucleotides and immunoabsorption of released SST with specific antibodies potentiate QUIN- and NMDA-induced neuronal cell death. NADPH-diaphorase positive neurons that are selectively spared in several processes of neurodegeneration result in severe damage upon immunoblockade or immunoabsorption of SST. In addition, exogenous SST along with QUIN and NMDA provides selective preservation of projection neurons, which are selectively susceptible in excitotoxicity. Neuroprotective effect of SST is completely blocked by pertussis toxins, suggesting the role of somatostatin receptors. Taken together, these results provide first evidence that the presence of SST is a unique feature for the selective sparing of medium sized aspiny interneurons in excitotoxicity.


Asunto(s)
Citoprotección/fisiología , Interneuronas/metabolismo , Neostriado/metabolismo , Degeneración Nerviosa/metabolismo , Neurotoxinas/toxicidad , Somatostatina/metabolismo , Animales , Anticuerpos/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Citoprotección/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Interneuronas/efectos de los fármacos , Interneuronas/patología , N-Metilaspartato/antagonistas & inhibidores , N-Metilaspartato/toxicidad , NADPH Deshidrogenasa/metabolismo , Neostriado/efectos de los fármacos , Neostriado/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/prevención & control , Neurotoxinas/antagonistas & inhibidores , Oligonucleótidos Antisentido/farmacología , Toxina del Pertussis/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Ratas , Receptores de Somatostatina/efectos de los fármacos , Receptores de Somatostatina/metabolismo , Somatostatina/antagonistas & inhibidores , Somatostatina/inmunología
16.
Neuroscience ; 145(2): 495-504, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17257765

RESUMEN

Hippocalcin, which is a member of the neuronal calcium-sensor protein family, is highly expressed in hippocampal pyramidal cells. Recently, it was demonstrated that hippocalcin deficit caused an increase in neuronal cell death in the field CA3 of Ammon's horn (CA3) region of the hippocampus following the systemic injection of kainic acid. Treatment with kainic acid results in seizure-induced cell death in CA3. In the present study, we injected quinolinic acid, which is an N-methyl-d-aspartate receptor agonist, into the hippocampal field CA1 of Ammon's horn (CA1) region in hippocalcin-knockout (-/-) mice, a procedure which mimics transient ischemia. Although significant pyknotic changes were observed at the injected site in wild-type (+/+) mice 24 h after injection, the area of pyknotic cells extended throughout the hippocampus in -/- mice. The quantification of cell numbers in Nissl-stained sections indicated that the cell damage in -/- mice was more severe than that in +/+ mice. The density of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling-positive cells roughly paralleled that of Nissl-stained pyknotic cells. Primary cultures of hippocampal neurons showed that the number of surviving neurons from -/- mice after 7 days in culture was smaller than the number from +/+ mice. The measurement of intracellular calcium concentrations in single cells revealed that the calcium extrusion from -/- neurons was slower than that from +/+ neurons. The involvement of hippocalcin in the upkeep of calcium extrusion was confirmed using hippocalcin-expressing COS7 cells. These results suggest that hippocalcin plays an important role in calcium extrusion from neurons and, in turn, helps to protect them against calcium-dependent excitotoxin damage in the hippocampus.


Asunto(s)
Calcio/metabolismo , Citoprotección/fisiología , Hipocalcina/fisiología , Hipocampo/metabolismo , Neuronas/metabolismo , Neurotoxinas/antagonistas & inhibidores , Animales , Células COS , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Chlorocebus aethiops , Citoprotección/efectos de los fármacos , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Hipocalcina/genética , Hipocampo/efectos de los fármacos , Ratones , Ratones Noqueados , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/fisiopatología , Degeneración Nerviosa/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ratas , Ratas Wistar , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
17.
Neurobiol Dis ; 25(2): 266-73, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17184995

RESUMEN

Activity of c-AMP responsive element-binding protein (CREB) is decreased in Huntington's disease (HD). Such decrease was also described by our group in the quinolinic acid lesion model of striatal excitotoxicity. The phosphodiesterase type IV inhibitor rolipram increases CREB phosphorylation. Such drug has a protective effect in global ischaemia and embolism in rats. In this study, we sought to determine whether rolipram displays a neuroprotective effect in our rat model of HD. Animals were surgically administered QA and subsequently treated with rolipram daily up to 2 and 8 weeks respectively. After these time points, rats were sacrificed and immunohistochemical studies were performed in the striata. In the rolipram-treated animals, striatal lesion size was about 62% smaller that in the vehicle-treated ones at 2 weeks time point. Moreover, the surviving cell number was several times higher in the rolipram-treated animals than in the vehicle group at both time points. Rolipram also showed to be effective in increasing significantly the levels of activated CREB in the striatal spiny neurons, which accounts mostly for its beneficial effect in our rodent model of excitotoxicity. Our findings show that rolipram could be considered as a valid therapeutic approach for HD.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Enfermedad de Huntington/tratamiento farmacológico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Rolipram/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/fisiopatología , Inmunohistoquímica , Masculino , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Fosforilación/efectos de los fármacos , Ácido Quinolínico/antagonistas & inhibidores , Ratas , Ratas Wistar , Rolipram/uso terapéutico , Resultado del Tratamiento , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
18.
Life Sci ; 80(10): 918-25, 2007 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-17174341

RESUMEN

The concentration of the endogenous neurotoxin quinolinic acid (QA) is increased in the central nervous system of mice with herpes simplex encephalitis. We have previously shown that the antiherpetic agent acyclovir (AC) has the ability to reduce QA-induced neuronal damage in rat brain, by attenuating lipid peroxidation. The mechanism by which QA induces lipid peroxidation includes the enhancement of the iron (Fe)-mediated Fenton reaction and the generation of free radicals, such as the superoxide anion (O(2)(-)). Thus, the present study determined whether AC has the ability to reduce Fe(2+)-induced lipid peroxidation, O(2)(-) generation and QA-induced superoxide anion generation, and to bind free Fe. O(2)(-) and Fe(2+) are also cofactors of the enzymes, indoleamine-2,3-dioxygenase (IDO) and 3-hydroxyanthranilate-3,4-dioxygenase (3-HAO) respectively. These enzymes catalyse steps in the biosynthesis of QA; thus, the effect of AC on their activity was also investigated. AC significantly attenuates Fe(2+)-induced lipid peroxidation and O(2)(-) generation. AC reduces O(2)(-) generation in the presence of QA and strongly binds Fe(2+) and Fe(3+). It also reduces the activity of both IDO and 3-HAO, which could be attributed to the superoxide anion scavenging and iron binding properties, respectively, of this drug.


Asunto(s)
Aciclovir/farmacología , Antimetabolitos/farmacología , Síndromes de Neurotoxicidad/prevención & control , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , 3-Hidroxiantranilato 3,4-Dioxigenasa/metabolismo , Animales , Electroquímica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/enzimología , Hierro/farmacología , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Oxidación-Reducción , Ratas , Ratas Wistar , Superóxidos/metabolismo
19.
Metab Brain Dis ; 21(2-3): 221-33, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16850258

RESUMEN

Alzheimer's disease (AD) is the most common form of neurodegenerative disease in the elderly. Anti-inflammatory agents have been shown to be beneficial in preventing neurodegenerative disorders such as AD. In this study we investigated the possible antioxidant and neuroprotective properties of two non-steroidal anti-inflammatory drugs (NSAIDS), tolmetin and sulindac, using quinolinic acid (QA)-induced neurotoxicity as a model. We used the thiobarbituric acid assay to measure the extent of lipid peroxidation and the nitroblue tetrazolium assay to measure the superoxide anion generated in rat brain homogenate. QA (1 mM) induced lipid peroxidation in rat brain homogenate was significantly curtailed by co-treatment of the homogenate with tolmetin and/or sulindac. Tolmetin and sulindac both reduced the generation of superoxide anions by the known neurotoxin, potassium cyanide (KCN). Intrahippocampal injections of QA induced neurotoxicity in rat hippocampus. N-Methyl-D-Aspartate (NMDA) receptor counts were conducted do give an indication of the amount protection offered by the NSAIDS. QA drastically reduced the number of NMDA binding sites by approximately 37%. This sharp decrease was considerably attenuated by the pre-treatment of the rats with tolmetin and sulindac (5 mg/kg/bd for five days). This study shows the antioxidant and neuroprotective properties of tolmetin and sulindac and hereby postulates that these drugs have important implications in the prevention or treatment of neurodegenerative diseases such as AD.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Química Encefálica/efectos de los fármacos , Hipocampo/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/prevención & control , Neuronas/patología , Fármacos Neuroprotectores , Estrés Oxidativo/efectos de los fármacos , Cloruro de Potasio/farmacología , Ácido Quinolínico/antagonistas & inhibidores , Ácido Quinolínico/toxicidad , Sulindac/farmacología , Tolmetina/farmacología , Animales , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Cinética , Peroxidación de Lípido/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Superóxidos/metabolismo , Termodinámica
20.
J Pineal Res ; 39(3): 266-75, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16150107

RESUMEN

Quinolinic acid is a well-known excitotoxin that induces oxidative stress and damage. In the present study, oxidative damage to biomolecules was followed by measuring lipid peroxidation and protein carbonyl formation in rat brain tissue culture over a period of 24 hr of exposure to this prooxidant agent at a concentration of 0.5 mm. Quinolinic acid enhanced lipid peroxidation in an early stage of tissue culture, and protein carbonyl at a later stage. These data confirm and extend previous studies demonstrating that quinolinic acid can induce significant oxidative damage. Melatonin, an antioxidant and neuroprotective agent with multiple actions as a radical scavenger and signaling molecule, completely prevented these prooxidant actions of quinolinic acid at a concentration of 1 mm. Morphological lesions and neurotoxicity induced by quinolinic acid were evaluated by light microscopy. Quinolinic acid produced extensive apoptosis/necrosis which was significantly attenuated by melatonin. Cotreatment with melatonin exerted a profound protective effect antagonizing the neurotoxicity induced by quinolinic acid. Glutathione reductase and catalase activities were increased by quinolinic acid and these effects were antagonized by melatonin. Furthermore, melatonin induced superoxide dismutase activity. Quinolinic acid and melatonin acted independently and by different mechanisms in modulating antioxidant enzyme activities. Our findings using quinolinic acid and melatonin clearly demonstrate that such changes should always be seen in the context of oxidative neurotoxicity and antioxidant neuroprotection.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Melatonina/química , Estrés Oxidativo/fisiología , Ácido Quinolínico/antagonistas & inhibidores , Animales , Encéfalo/enzimología , Química Encefálica/efectos de los fármacos , Química Encefálica/fisiología , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Peroxidación de Lípido/fisiología , Masculino , Melatonina/fisiología , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Ácido Quinolínico/toxicidad , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...