Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 16(11): 2423-2433, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34609124

RESUMEN

Quinolinate synthase, also called NadA, is a [4Fe-4S]-containing enzyme that uses what is probably the oldest pathway to generate quinolinic acid (QA), the universal precursor of the biologically essential cofactor nicotinamide adenine dinucleotide (NAD). Its synthesis comprises the condensation of dihydroxyacetone phosphate (DHAP) and iminoaspartate (IA), which involves dephosphorylation, isomerization, cyclization, and two dehydration steps. The convergence of the three homologous domains of NadA defines a narrow active site that contains a catalytically essential [4Fe-4S] cluster. A tunnel, which can be opened or closed depending on the nature (or absence) of the bound ligand, connects this cofactor to the protein surface. One outstanding riddle has been the observation that the so far characterized active site is too small to bind IA and DHAP simultaneously. Here, we have used site-directed mutagenesis, X-ray crystallography, functional analyses, and molecular dynamics simulations to propose a condensation mechanism that involves the transient formation of a second active site cavity to which one of the substrates can migrate before this reaction takes place.


Asunto(s)
Complejos Multienzimáticos/química , Ácido Quinolínico/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/química , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Conformación Proteica , Especificidad por Sustrato
2.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681715

RESUMEN

Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of several diseases. Despite extensive research aimed at clarifying the mechanisms underlying the development and maintenance of neuropathic pain, the roles of KP metabolites in this process are still not fully known. Although the function of the peripheral KP has been known for several years, it has only recently been acknowledged that its metabolites within the central nervous system have remarkable consequences related to physiology and behavior. Both the products and metabolites of the KP are involved in the pathogenesis of pain conditions. Apart from the neuroactive properties of kynurenines, the KP regulates several neurotransmitter systems in direct or indirect ways. Some neuroactive metabolites are known to have neuroprotective properties (kynurenic acid, nicotinamide adenine dinucleotide cofactor), while others are toxic (3-hydroxykynurenine, quinolinic acid). Numerous animal models show that modulation of the KP may turn out to be a viable target for the treatment of diseases. Importantly, some compounds that affect KP enzymes are currently described to possess analgesic properties. Additionally, kynurenine metabolites may be useful for assessing response to therapy or as biomarkers in therapeutic monitoring. The following review describes the molecular site of action and changes in the levels of metabolites of the kynurenine pathway in the pathogenesis of various conditions, with a particular emphasis on their involvement in neuropathy. Moreover, the potential clinical implications of KP modulation in chronic pain therapy as well as the directions of new research initiatives are discussed.


Asunto(s)
Quinurenina/metabolismo , Neuralgia/patología , Analgésicos/uso terapéutico , Animales , Biomarcadores/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Quinurenina 3-Monooxigenasa/metabolismo , Redes y Vías Metabólicas/genética , Neuralgia/tratamiento farmacológico , Ácido Quinolínico/química , Ácido Quinolínico/metabolismo , Ácido Quinolínico/uso terapéutico , Triptófano/metabolismo
3.
Inorg Chem ; 60(20): 15435-15444, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34546735

RESUMEN

Coordination polymers have emerged as a new class of potent biologically active agents due to a variety of important characteristics such as the presence of bioactive metal centers and linkers, low toxicity, stability, tailorable structures, and bioavailability. The research on intermediate metabolites has also been explored with implications toward the development of selective anticancer, antimicrobial, and antiviral therapeutic strategies. In particular, quinolinic acid (H2quin) is a recognized metabolite in kynurenine pathway and potent neurotoxic molecule, which has been selected in this study as a bioactive building block for assembling a new silver(I) coordination polymer, [Ag(Hquin)(µ-PTA)]n·H2O (1). This product has been prepared from silver oxide, H2quin, and 1,3,5-triaza-7-phosphaadamantane (PTA), and fully characterized by standard methods including single-crystal X-ray diffraction. Compound 1 has revealed distinctive bioactive features, namely (i) a remarkable antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus 36 (Ad-36), (ii) a significant antibacterial activity against clinically important bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), and (iii) a selective cytotoxicity against HeLa (human cervix carcinoma) cell line. The present work widens a growing family of bioactive coordination polymers with potent antiviral, antibacterial, and antiproliferative activity.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Polímeros/farmacología , Ácido Quinolínico/farmacología , Plata/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Polímeros/síntesis química , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Ácido Quinolínico/química , Plata/química , Staphylococcus aureus/efectos de los fármacos
4.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34445176

RESUMEN

Due to similar coordination chemistry of palladium and platinum, a large number of palladium compounds as well have been investigated for their anticancer activity. In the present study, we describe synthesis, characterization, and anticancer activity of palladium complex [Bis(1,8-quinolato)palladium (II)], coded as NH3 against seven different cancer cell lines. NH3 is found to have higher antitumor activity than cisplatin against both parent ovarian A2780 cell line and cisplatin-resistant cell lines. Also, NH3 has the lower IC50 value in HT-29 colorectal cancer cell line. The higher antitumor activity of NH3 is due to the presence of bulky 8-Hydroxyquinoline ligand, thus reducing its reactivity. Proteomic study has identified significantly expressed proteins which have been validated through bioinformatics. NH3 has been found to be less toxic than cisplatin at 2.5 mg/kg and 5 mg/kg dosages on mice models. Binary combinations of NH3 with curcumin and epigallocatechin gallate (EGCG) have demonstrated dose and sequence-dependent synergism in ovarian and colorectal cancer models. All of the preclinical studies indicate promising therapeutic potential of NH3 [Bis(1,8-quinolato)palladium (II)] as an anticancer drug.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Paladio/química , Paladio/farmacología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Humanos , Masculino , Ratones , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , Ácido Quinolínico/síntesis química , Ácido Quinolínico/química , Ácido Quinolínico/farmacología
5.
Mol Neurobiol ; 58(1): 34-54, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32894500

RESUMEN

In Alzheimer's disease (AD), excessive amounts of quinolinic acid (QUIN) accumulate within the brain parenchyma and dystrophic neurons. QUIN also regulates glutamate uptake into neurons, which may be due to modulation of Na+-dependent excitatory amino acid transporters (EAATs). To determine the biological relationships between QUIN and glutamate dysfunction, we first quantified the functionality and kinetics of [3H]QUIN uptake in primary human neurons using liquid scintillation. We then measured changes in the protein expression of the glutamate transporter EAAT3 and EAAT1b in primary neurons treated with QUIN and the EAAT inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (2,4-PDC) using western blotting and immunohistochemistry. Immunohistochemistry was further used to elucidate intracellular transport of exogenous QUIN and the lysosomal-associated membrane protein 2 (LAMP2). Structural insights into the binding between QUIN and EAAT3 were further investigated using molecular docking techniques. We report significant temperature-dependent high-affinity transport leading to neuronal uptake of [3H]QUIN with a Km of 42.2 µM, and a Vmax of 9.492 pmol/2 min/mg protein, comparable with the uptake of glutamate. We also found that QUIN increases expression of the EAAT3 monomer while decreasing the functional trimer. QUIN uptake into primary neurons was shown to involve EAAT3 as uptake was significantly attenuated following EAAT inhibition. We also demonstrated that QUIN increases the expression of aberrant EAAT1b protein in neurons further implicating QUIN-induced glutamate dysfunction. Furthermore, we demonstrated that QUIN is metabolised exclusively in lysosomes. The involvement of EAAT3 as a modulator for QUIN uptake was further confirmed using molecular docking. This study is the first to characterise a mechanism for QUIN uptake into primary human neurons involving EAAT3, opening potential targets to attenuate QUIN-induced excitotoxicity in neuroinflammatory diseases.


Asunto(s)
Endocitosis , Neuronas/metabolismo , Neurotoxinas/metabolismo , Ácido Quinolínico/metabolismo , Células Cultivadas , Transportador 1 de Aminoácidos Excitadores/metabolismo , Transportador 3 de Aminoácidos Excitadores/química , Transportador 3 de Aminoácidos Excitadores/metabolismo , Feto/metabolismo , Humanos , Cinética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Modelos Moleculares , Ácido Quinolínico/química , Factores de Tiempo
6.
Analyst ; 145(9): 3359-3363, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32232246

RESUMEN

We report a colorimetric array, which consists of two carboxylic acids (quinolinic acid (QA), tannic acid (TCA)) as the sensor element and Eriochrome Black T (EBT) as the colorimetric signal readout. The assay is based on coordination binding between lanthanide ions and EBT, and between lanthanide ions and the carboxylic acids. The competitive binding of lanthanide ions with the carboxylic acids and EBT leads to the change in absorbance and color of the solutions. To test the efficacy of our sensor array, the sensor array was exposed to five target lanthanide ions (La3+, Sm3+, Eu3+, Gd3+ and Yb3+) with diverse concentrations (10, 50, 100, 200, 300, 400, and 500 nM). Linear discriminant analysis (LDA) results show that the sensor array can identify the five lanthanide ions, with a low discrimination limit of 10 nM. More importantly, the sensor array realizes fast discrimination of lanthanide ions in river samples, showing potential in environmental monitoring.


Asunto(s)
Colorimetría/métodos , Elementos de la Serie de los Lantanoides/análisis , Ácido Quinolínico/química , Taninos/química , Compuestos Azo/química , Análisis Discriminante , Agua Dulce/análisis , Iones/química , Elementos de la Serie de los Lantanoides/química , Límite de Detección
7.
J Mol Biol ; 430(20): 3847-3862, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30098337

RESUMEN

Quinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as in cellular models of Alzheimer's disease and related disorders. Furthermore, intrastriatal inoculation of mice with QA results in increased levels of phosphorylated α-synuclein and neurodegenerative pathological and behavioral characteristics. However, the cellular and molecular mechanisms underlying the involvement of QA accumulation in protein aggregation and neurodegeneration remain elusive. We recently established that self-assembled ordered structures are formed by various metabolites and hypothesized that these "metabolite amyloids" may seed amyloidogenic proteins. Here we demonstrate the formation of QA amyloid-like fibrillar assemblies and seeding of α-synuclein aggregation by these nanostructures both in vitro and in cell culture. Notably, α-synuclein aggregation kinetics was accelerated by an order of magnitude. Additional amyloid-like properties of QA assemblies were demonstrated using thioflavin T assay, powder X-ray diffraction and cell apoptosis analysis. Moreover, fluorescently labeled QA assemblies were internalized by neuronal cells and co-localized with α-synuclein aggregates. In addition, we observed cell-to-cell propagation of fluorescently labeled QA assemblies in a co-culture of treated and untreated cells. Our findings suggest that excess QA levels, due to mutations in the kynurenine pathway, for example, may lead to the formation of metabolite assemblies that seed α-synuclein aggregation, resulting in neuronal toxicity and induction of Parkinson's disease.


Asunto(s)
Amiloide/química , Ácido Quinolínico/química , alfa-Sinucleína/química , Enfermedad de Alzheimer , Amiloide/metabolismo , Amiloide/ultraestructura , Agregado de Proteínas , Agregación Patológica de Proteínas , Conformación Proteica , Análisis Espectral , Relación Estructura-Actividad , alfa-Sinucleína/metabolismo
8.
Food Chem ; 240: 174-182, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28946259

RESUMEN

The Fenton reaction is used to produce hydroxyl radicals for the evaluation of the antioxidant activity of plant extracts. In this paper the parameters affecting the production of hydroxyl radicals and their spin trapping with DMPO were studied. The use of quinolinic acid (Quin) as an Fe(II) ligand was proposed for antioxidant activity determination of Green tea, orange juice and asparagus extracts. Quin, buffers and pH affect the DMPO-OH signal intensity of the EPR spectra. Quin/Fe(II) and low pH enhance the OH generation. Phosphate and Tris-HCl buffers decrease the signal intensity measured in Fe(II)-sulfate and Fe(II)-Quin systems. The extracts were analyzed with Fenton systems containing Fe(II)-sulfate and Fe(II)-Quin with and without buffer. The highest activity was shown with Fe(II)-Quin without buffer, this system being less influenced by pH and chelating agents present in the extracts. This paper will help researchers to better design spin trapping experiments for food matrices.


Asunto(s)
Radical Hidroxilo/química , Quelantes del Hierro/química , Extractos Vegetales/química , Ácido Quinolínico/química , Tampones (Química) , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Hierro
9.
Int J Nanomedicine ; 12: 3281-3294, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28458546

RESUMEN

Liposomal nanoparticles are versatile drug delivery vehicles that show great promise in cancer therapy. In an effort to quantitatively measure their in vivo pharmacokinetics, we developed a highly efficient 89Zr liposome-labeling method based on a rapid ligand exchange reaction between the membrane-permeable 89Zr(8-hydroxyquinolinate)4 complex and the hydrophilic liposomal cavity-encapsulated deferoxamine (DFO). This novel 89Zr-labeling strategy allowed us to prepare radiolabeled forms of a folic acid (FA)-decorated active targeting 89Zr-FA-DFO-liposome, a thermosensitive 89Zr-DFO-liposome, and a renal avid 89Zr-PEG-DFO-liposome at room temperature with near-quantitative isolated radiochemical yields of 98%±1% (n=6), 98%±2% (n=5), and 97%±1% (n=3), respectively. These 89Zr-labeled liposomal nanoparticles showed remarkable stability in phosphate-buffered saline and serum at 37°C without leakage of radioactivity for 48 h. The uptake of 89Zr-FA-DFO-liposome by the folate receptor-overexpressing KB cells was almost 15-fold higher than the 89Zr-DFO-liposome in vitro. Positron emission tomography imaging and ex vivo biodistribution studies enabled us to observe the heterogeneous distribution of the 89Zr-FA-DFO-liposome and 89Zr-DFO-liposome in the KB tumor xenografts, the extensive kidney accumulation of the 89Zr-FA-DFO-liposome and 89Zr-PEG-DFO-liposome, and the different metabolic fate of the free and liposome-encapsulated 89Zr-DFO. It also unveiled the poor resistance of all three liposomes against endothelial uptake resulting in their catabolism and high uptake of free 89Zr in the skeleton. Thus, this technically simple 89Zr-labeling method would find widespread use to guide the development and clinical applications of novel liposomal nanomedicines.


Asunto(s)
Marcaje Isotópico/métodos , Liposomas/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Circonio/farmacocinética , Animales , Deferoxamina/química , Estabilidad de Medicamentos , Femenino , Ácido Fólico/química , Humanos , Liposomas/química , Ratones , Ratones Desnudos , Nanopartículas/química , Ácido Quinolínico/química , Radioisótopos/química , Radioisótopos/farmacocinética , Ratas , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Circonio/química
10.
Biochemistry ; 55(30): 4135-9, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27404889

RESUMEN

The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a [4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogues, and quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its keto and hydroxyl groups. The active site architecture suggests that the cluster acts as a Lewis acid in enediolate formation, like zinc in class II aldolases. The DHAP and putative iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of structures suggests a two-state system, which may be exploited in early steps.


Asunto(s)
Proteínas Arqueales/química , Complejos Multienzimáticos/química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/química , Dominio Catalítico , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Conformación Proteica , Pyrococcus horikoshii/enzimología , Ácido Quinolínico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA