Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Biochem Biophys Res Commun ; 702: 149618, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340658

RESUMEN

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Asunto(s)
Queratinocitos , Ácido gammalinolénico , Humanos , Ácido gammalinolénico/metabolismo , Esterificación , Epidermis/metabolismo , Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Aciltransferasas/metabolismo , Fosfolipasas/metabolismo
2.
Chemosphere ; 335: 139107, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37270039

RESUMEN

The production of biodiesel has become an important issue in the effort to reduce gas emissions due to the climate change crisis; therefore, algae have widely used to produce biodiesel for energy sustainability. The present study represented an effort to assess the ability of the alga Arthrospira platensis to produce fatty acids involved in biofuel (diesel) by cultivation in Zarrouk media enriched with different municipal wastewater concentrations. Wastewater was used in different concentrations (5, 15, 25, 35 and 100% [control]). Five fatty acids from the alga were determined and included in the present study. These were inoleic acid, palmitic acid, oleic acid, gamma-linolenic acid, and docosahexaenoic acid. Impact of different cultivation conditions were studied in terms of observed changes in growth rate, doubling time, total carbohydrate, total protein, chlorophyll a, carotenoids, phycocyanin, allophycocyanin, and phycobiliproteins. Results showed an increase in the values of growth rate, total protein content, chlorophyll a, and levels of carotenoids at all treatments except for carbohydrate content, which decreased with an increasing concentration of wastewater. The high value of doubling time (11.605 days) was recorded at treatment 5%. Fatty acids yields were increased at treatment 5% and 15%. The highest concentrations of fatty acids were 3.108 mg/g for oleic acid, gamma-linolenic acid (28.401 mg/g), docosahexaenoic acid (41.707 mg/g), palmitic acid (1.305 mg/g), and linoleic acid (0.296 mg/g). Moreover, the range of phycocyanin (0.017-0.084 mg/l), allophycocyanin (0.023-0.095 mg/l), and phycobiliproteins (0.041-0.180 mg/l) were obtained in treatment with 15-100%, respectively. Cultivation with municipal wastewater reduced the values of nitrate, phosphate, and electrical conductivity as well as increased dissolved oxygen. Maximum electrical conductivity was recorded in untreated wastewater with algae, while the highest level of dissolved oxygen was noted at 35% concentration. The use of the household wastewater is more environmentally friendly as an alternative of the traditional cultivation techniques used for long-term for biofuel production.


Asunto(s)
Microalgas , Spirulina , Aguas Residuales , Ficocianina , Clorofila A/metabolismo , Biocombustibles , Ácido gammalinolénico/metabolismo , Ácidos Docosahexaenoicos , Spirulina/metabolismo , Ácidos Grasos/metabolismo , Ficobiliproteínas/metabolismo , Carotenoides/metabolismo , Carbohidratos , Biomasa
3.
Bioresour Technol ; 383: 129231, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244310

RESUMEN

Omega-6 polyunsaturated fatty acids (ω6-PUFAs), such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), are indispensable nutrients for human health. Harnessing the lipogenesis pathway of Yarrowia lipolytica creates a potential platform for producing customized ω6-PUFAs. This study explored the optimal biosynthetic pathways for customized production of ω6-PUFAs in Y. lipolytica via either the Δ6 pathway from Mortierella alpina or the Δ8 pathway from Isochrysis galbana. Subsequently, the proportion of ω6-PUFAs in total fatty acids (TFAs) was effectively increased by bolstering the provision of precursors for fatty acid biosynthesis and carriers for fatty acid desaturation, as well as preventing fatty acid degradation. Finally, the proportions of GLA, DGLA and ARA synthesized by customized strains accounted for 22.58%, 46.65% and 11.30% of TFAs, and the corresponding titers reached 386.59, 832.00 and 191.76 mg/L in shake-flask fermentation, respectively. This work provides valuable insights into the production of functional ω6-PUFAs.


Asunto(s)
Ácidos Grasos Omega-3 , Yarrowia , Humanos , Yarrowia/metabolismo , Ácidos Grasos , Ácido Araquidónico , Ácido gammalinolénico/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo
4.
Nature ; 618(7964): 365-373, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225978

RESUMEN

Birth presents a metabolic challenge to cardiomyocytes as they reshape fuel preference from glucose to fatty acids for postnatal energy production1,2. This adaptation is triggered in part by post-partum environmental changes3, but the molecules orchestrating cardiomyocyte maturation remain unknown. Here we show that this transition is coordinated by maternally supplied γ-linolenic acid (GLA), an 18:3 omega-6 fatty acid enriched in the maternal milk. GLA binds and activates retinoid X receptors4 (RXRs), ligand-regulated transcription factors that are expressed in cardiomyocytes from embryonic stages. Multifaceted genome-wide analysis revealed that the lack of RXR in embryonic cardiomyocytes caused an aberrant chromatin landscape that prevented the induction of an RXR-dependent gene expression signature controlling mitochondrial fatty acid homeostasis. The ensuing defective metabolic transition featured blunted mitochondrial lipid-derived energy production and enhanced glucose consumption, leading to perinatal cardiac dysfunction and death. Finally, GLA supplementation induced RXR-dependent expression of the mitochondrial fatty acid homeostasis signature in cardiomyocytes, both in vitro and in vivo. Thus, our study identifies the GLA-RXR axis as a key transcriptional regulatory mechanism underlying the maternal control of perinatal cardiac metabolism.


Asunto(s)
Ácidos Grasos , Glucosa , Corazón , Leche Humana , Ácido gammalinolénico , Femenino , Humanos , Recién Nacido , Embarazo , Cromatina/genética , Ácidos Grasos/metabolismo , Ácido gammalinolénico/metabolismo , Ácido gammalinolénico/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Corazón/efectos de los fármacos , Corazón/embriología , Corazón/crecimiento & desarrollo , Homeostasis , Técnicas In Vitro , Leche Humana/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Receptores X Retinoide/metabolismo , Factores de Transcripción/metabolismo
5.
Arch Microbiol ; 204(10): 635, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127512

RESUMEN

γ-Linolenic acid (GLA) is an essential n-6 polyunsaturated fatty acid (PUFA) that has received considerable attention in human and animal feed. GLA is used in many nutritional and medicinal applications, such as the treatment of cancer, inflammatory disorders, and diabetes. Currently, plant seed is the primary dietary source of GLA that is not enough to utilize on an industrial scale. To generate a sustainable novel source of GLA, the gene of delta-6 desaturase, one of the essential enzymes in the GLA production pathway, was isolated from Mucor rouxii DSM1194 and expressed in P. pastoris GS115 by pPICZC vector. The recombinant yeast expressed the GLA up to 19.2% (72 mg/g) of total fatty acids. GLA production of recombinant yeast was studied in a fermenter by oil waste for 5 days, and results detected 6.3 g/l lipid, and 103 mg/g GLA was produced in 72 h. The present study may provide an opportunity to develop an alternative host for manufacturing GLA on an industrial scale.


Asunto(s)
Pichia , Saccharomycetales , Ácido gammalinolénico , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Ácido gammalinolénico/metabolismo
6.
J Biol Chem ; 298(11): 102534, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36162507

RESUMEN

Gut microbiota regulate physiological functions in various hosts, such as energy metabolism and immunity. Lactic acid bacteria, including Lactobacillus plantarum, have a specific polyunsaturated fatty acid saturation metabolism that generates multiple fatty acid species, such as hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and trans-fatty acids. How these bacterial metabolites impact host physiology is not fully understood. Here, we investigated the ligand activity of lactic acid bacteria-produced fatty acids in relation to nuclear hormone receptors expressed in the small intestine. Our reporter assays revealed two bacterial metabolites of γ-linolenic acid (GLA), 13-hydroxy-cis-6,cis-9-octadecadienoic acid (γHYD), and 13-oxo-cis-6,cis-9-octadecadienoic acid (γKetoD) activated peroxisome proliferator-activated receptor delta (PPARδ) more potently than GLA. We demonstrate that both γHYD and γKetoD bound directly to the ligand-binding domain of human PPARδ. A docking simulation indicated that four polar residues (T289, H323, H449, and Y473) of PPARδ donate hydrogen bonds to these fatty acids. Interestingly, T289 does not donate a hydrogen bond to GLA, suggesting that bacterial modification of GLA introducing hydroxy and oxo group determines ligand selectivity. In human intestinal organoids, we determined γHYD and γKetoD increased the expression of PPARδ target genes, enhanced fatty acid ß-oxidation, and reduced intracellular triglyceride accumulation. These findings suggest that γHYD and γKetoD, which gut lactic acid bacteria could generate, are naturally occurring PPARδ ligands in the intestinal tract and may improve lipid metabolism in the human intestine.


Asunto(s)
Intestino Delgado , Lactobacillales , PPAR delta , Ácido gammalinolénico , Humanos , Ácido gammalinolénico/metabolismo , Lactobacillales/metabolismo , Ligandos , Organoides/metabolismo , PPAR delta/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiología
7.
Chin J Physiol ; 64(4): 202-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34472451

RESUMEN

Gamma-linolenic acid (GLA), a natural fatty acid obtained from oils of various vegetables and seeds, has been demonstrated as an anticancer agent. In this work, we investigated the anticancer effects of GLA on breast cancer BT-474 cells. GLA at 30 µM, a concentration reportedly within the range of circulating concentrations in clinical studies, caused apoptotic cell death. GLA caused an elevation in mitochondrial Ca2+ level and a decrease in mitochondrial membrane potential. GLA treatment depleted cyclopiazonic acid (CPA)-sensitive Ca2+ store and triggered substantial Ca2+ influx. Intracellular Ca2+ release triggered by GLA was suppressed by 3 µM xestospongin C (XeC, IP3 receptor-channel blocker) and 100 µM ryanodine (ryanodine receptor-channel blocker), suggesting that the Ca2+ release was via IP3 receptor-channel and ryanodine receptor-channel. Increased expressions of p-eIF2α and CHOP were observed in GLA-treated cells, suggesting GLA-treated cells had increased expressions of p-eIF2α and CHOP, which suggest endoplasmic reticulum (ER) stress. In addition, GLA elicited increased production of reactive oxygen species. Taken together, our results suggest a basal level of GLA induced apoptotic cell death by causing Ca2+ overload, mitochondrial dysfunction, Ca2+ store depletion, ER stress, and oxidative stress. This is the first report to show that GLA caused Ca2+ store depletion and ER stress. GLA-induced Ca2+ store depletion resulted from opening of IP3 receptor-channel and ryanodine receptor-channel.


Asunto(s)
Neoplasias de la Mama , Ácido gammalinolénico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Estrés Oxidativo , Ácido gammalinolénico/metabolismo
8.
J Agric Food Chem ; 69(29): 8257-8267, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34281337

RESUMEN

Excessive fat deposition is the main character in nonalcoholic fatty liver disease (NAFLD), while γ-linolenic acid (GLA) is a polyunsaturated fatty acid that can reduce lipid deposition. This study investigated the effect and regulatory mechanism of GLA (100 µM) on lipid metabolism in alpha mouse liver 12 (AML-12) cells treated by 400 µM palmitic acid (PA). GLA reduced lipid content and increased fatty acid ß oxidation, as indicated by decreasing triglyceride and cholesterol contents and increasing mRNA and protein expressions of CPT1α and PPARα. GLA relieved oxidative stress caused by PA, upregulated mRNA levels of superoxide dismutase and glutathione peroxidase, and decreased reactive oxygen species content. GLA reduced apoptosis, as indicated by decreases in the BAX/BCL2 expression level and apoptosis percentage. GLA activated autophagy, autophagosome-lysosome fusion, and LKB1-AMPK-mTOR signaling and upregulated mRNA and protein expressions of Beclin-1, autophagy-related 5, and liver kinase B1 (LKB1). These effects of GLA on lipid metabolism disorders of PA-treated hepatocytes were reversed by autophagy inhibitor 3MA and AMPK inhibitor compound C, confirming our conclusions. Overall, GLA can protect AML-12 cells from lipid metabolism disorder caused by PA via balancing autophagy and apoptosis mediated by the LKB1-AMPK-mTOR pathway. Consequently, GLA, as a dietary supplement, can help to prevent and treat NAFLD by regulating lipid metabolism and autophagy.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Autofagia , Metabolismo de los Lípidos , Trastornos del Metabolismo de los Lípidos/metabolismo , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Palmítico/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Ácido gammalinolénico/metabolismo
9.
Lipids ; 56(3): 345-353, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33378788

RESUMEN

Borage oil [BO: 40.9% linoleic acid (LNA) and 24.0% γ-linolenic acid (GLA)] reverses disrupted epidermal lipid barrier in essential fatty acid deficiency (EFAD). We determined the effects of BO on lamellar body (LB) content and LNA and GLA incorporation into epidermal ceramide 1 (CER1) and epidermal ceramide 2 (CER2), major barrier lipids. EFAD was induced in guinea pigs by a diet of 6% hydrogenated coconut oil (HCO) for 10 weeks (group HCO) or 8 weeks followed by 6% BO for 2 weeks (group HCO + BO). LB content and LNA and GLA incorporation into CER1 were higher in group HCO + BO than in group HCO. Small but significant levels of LNA, GLA, and their C20-metabolized fatty acids [dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA)] were incorporated into CER2, where ARA was detected at a level lower than LNA, but DGLA incorporation exceeded that for GLA in group HCO + BO. Dietary BO enhanced LB content and differential incorporation of GLA into CER1 and DGLA into CER2.


Asunto(s)
Ceramidas/metabolismo , Aceite de Coco/efectos adversos , Epidermis/química , Cuerpos Lamelares/metabolismo , Aceites de Plantas/administración & dosificación , Ácido gammalinolénico/administración & dosificación , Animales , Cromatografía Liquida , Cobayas , Hidrogenación , Cuerpos Lamelares/efectos de los fármacos , Ácido Linoleico/metabolismo , Masculino , Aceites de Plantas/farmacología , Espectrometría de Masas en Tándem , Ácido gammalinolénico/metabolismo , Ácido gammalinolénico/farmacología
10.
Biomed Res Int ; 2020: 3621543, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204691

RESUMEN

γ-Linolenic acid (GLA) and carotenoids have attracted much interest due to their nutraceutical and pharmaceutical importance. Mucoromycota, typical oleaginous filamentous fungi, are known for their production of valuable essential fatty acids and carotenoids. In the present study, 81 fungal strains were isolated from different Egyptian localities, out of which 11 Mucoromycota were selected for further GLA and carotenoid investigation. Comparative analysis of total lipids by GC of selected isolates showed that GLA content was the highest in Rhizomucor pusillus AUMC 11616.A, Mucor circinelloides AUMC 6696.A, and M. hiemalis AUMC 6031 that represented 0.213, 0.211, and 0.20% of CDW, respectively. Carotenoid analysis of selected isolates by spectrophotometer demonstrated that the highest yield of total carotenoids (640 µg/g) was exhibited by M. hiemalis AUMC 6031 and M. hiemalis AUMC 6695, and these isolates were found to have a similar carotenoid profile with, ß-carotene (65%), zeaxanthin (34%), astaxanthin, and canthaxanthin (5%) of total carotenoids. The total fatty acids of all tested isolates showed moderate antimicrobial activity against Staphylococcus aureus and Salmonella Typhi, and Penicillium chrysogenum. To the best of our knowledge, this is the first report on the highest yield of total lipid accumulation (51.74% CDW) by a new oleaginous fungal isolate R. pusillus AUMC 11616.A. A new scope for a further study on this strain will be established to optimize and improve its total lipids with high GLA production. So, R. pusillus AUMC 11616.A might be a potential candidate for industrial application.


Asunto(s)
Carotenoides/metabolismo , Ácido Linoleico/biosíntesis , Mucor/metabolismo , Rhizomucor/metabolismo , Ácido gammalinolénico/metabolismo , Antiinfecciosos/farmacología , Egipto , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Liofilización , Metabolismo de los Lípidos , Pruebas de Sensibilidad Microbiana , Mucor/química , Mucor/genética , Mucor/aislamiento & purificación , Filogenia , Rhizomucor/química , Rhizomucor/genética , Rhizomucor/aislamiento & purificación
11.
Plant Cell Physiol ; 61(7): 1335-1347, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379869

RESUMEN

Alpha-linolenic acid (ALA, 18:3Δ9,12,15) and γ-linolenic acid \ (GLA, 18:3Δ6,9,12) are important trienoic fatty acids, which are beneficial for human health in their own right, or as precursors for the biosynthesis of long-chain polyunsaturated fatty acids. ALA and GLA in seed oil are synthesized from linoleic acid (LA, 18:2Δ9,12) by the microsomal ω-3 fatty acid desaturase (FAD3) and Δ6 desaturase (D6D), respectively. Cotton (Gossypium hirsutum L.) seed oil composition was modified by transforming with an FAD3 gene from Brassica napus and a D6D gene from Echium plantagineum, resulting in approximately 30% ALA and 20% GLA, respectively. The total oil content in transgenic seeds remained unaltered relative to parental seeds. Despite the use of a seed-specific promoter for transgene expression, low levels of GLA and increased levels of ALA were found in non-seed cotton tissues. At low temperature, the germinating cottonseeds containing the linolenic acid isomers elongated faster than the untransformed controls. ALA-producing lines also showed higher photosynthetic rates at cooler temperature and better fiber quality compared to both untransformed controls and GLA-producing lines. The oxidative stability of the novel cottonseed oils was assessed, providing guidance for potential food, pharmaceutical and industrial applications of these oils.


Asunto(s)
Fibra de Algodón , Aceite de Semillas de Algodón/metabolismo , Germinación/genética , Gossypium/genética , Fotosíntesis/genética , Semillas/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , Ácido gammalinolénico/metabolismo , Brassica napus/genética , Respuesta al Choque por Frío , Fibra de Algodón/normas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ingeniería Genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Ácido alfa-Linolénico/genética , Ácido gammalinolénico/genética
12.
J Agric Food Chem ; 68(14): 4245-4251, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32181644

RESUMEN

Mucor circinelloides is a valuable oleaginous filamentous fungus rich in γ-linolenic acid (GLA, 18:3; n-6), which is beneficial for human health. Our previous comparative proteomic analysis between high lipid-producing M. circinelloides WJ11 and low lipid-producing M. circinelloides CBS 277.49 indicated that glucose 6-phosphate dehydrogenase (G6PDH) and ß-isopropylmalate dehydrogenase (IPMDH) were closely involved in lipid accumulation. Transcription analysis suggested that in the strain WJ11, g6pdh1 and g6pdh2, which encode G6PDH, and leuB, which encodes IPMDH, could be the key genes regulating lipid accumulation. To further analyze the effects of these three genes (i.e., g6pdh1, g6pdh2, and leuB) on lipid accumulation, we respectively overexpressed these genes from M. circinelloides WJ11 in defective CBS 277.49 strains in this study. The results showed that overexpression of g6pdh1 and g6pdh2 genes from strain WJ11 increased the fatty acid content of cell dry weight by 23-38 and 41-47%, respectively, compared with the control strain. Furthermore, overexpression of the leuB gene from strain WJ11 increased the fatty acid content of cell dry weight by up to 67-73%. These results suggest that g6pdh1, g6pdh2, and especially leuB genes play important roles in regulating fatty acid synthesis in M. circinelloides.


Asunto(s)
3-Isopropilmalato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Mucor/genética , Ácido gammalinolénico/metabolismo , 3-Isopropilmalato Deshidrogenasa/genética , Secuencia de Bases , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/genética , Genoma Microbiano , Glucosafosfato Deshidrogenasa/genética , Metabolismo de los Lípidos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
13.
Gene ; 741: 144559, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32169630

RESUMEN

The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.


Asunto(s)
Acetilcoenzima A/biosíntesis , Ácido Araquidónico/genética , Genoma Fúngico/genética , Mortierella/metabolismo , Acetilcoenzima A/genética , Ácido Araquidónico/biosíntesis , Vías Biosintéticas/genética , Ácido Graso Desaturasas/genética , Elongasas de Ácidos Grasos/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Mortierella/genética , Mucorales/genética , Mucorales/metabolismo , Ácido gammalinolénico/genética , Ácido gammalinolénico/metabolismo
14.
Am J Clin Nutr ; 111(5): 1068-1078, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32167131

RESUMEN

BACKGROUND: Unexplained heterogeneity in clinical trials has resulted in questions regarding the effectiveness of É£-linolenic acid (GLA)-containing botanical oil supplements. This heterogeneity may be explained by genetic variation within the fatty acid desaturase (FADS) gene cluster that is associated with circulating and tissue concentrations of arachidonic acid (ARA) and dihomo-É£-linolenic acid (DGLA), both of which may be synthesized from GLA and result in proinflammatory and anti-inflammatory metabolites, respectively. OBJECTIVES: The objective of this study was to prospectively compare the capacity of a non-Hispanic white cohort, stratified by FADS genotype at the key single-nucleotide polymorphism (SNP) rs174537, to metabolize 18-carbon omega-6 (n-6) PUFAs in borage oil (BO) and soybean oil (SO) to GLA, DGLA, and ARA. METHODS: Healthy adults (n = 64) participated in a randomized, double-blind, crossover intervention. Individuals received encapsulated BO (Borago officinalis L.; 37% LA and 23% GLA) or SO [Glycine max (L.) Merr.; 50% LA and 0% GLA] for 4 wk, followed by an 8-wk washout period, before consuming the opposite oil for 4 wk. Serum lipids and markers of inflammation (C-reactive protein) were assessed for both oil types at baseline and during weeks 2 and 4 of the intervention. RESULTS: SO supplementation failed to alter circulating concentrations of any n-6 long-chain PUFAs. In contrast, a modest daily dose of BO elevated serum concentrations of GLA and DGLA in an rs174537 genotype-dependent manner. In particular, DGLA increased by 57% (95% CI: 0.38, 0.79) in GG genotype individuals, but by 141% (95% CI: 1.03, 2.85) in TT individuals. For ARA, baseline concentrations varied substantially by genotype and increased modestly with BO supplementation, suggesting a key role for FADS variation in the balance of DGLA and ARA. CONCLUSIONS: The results of this study clearly suggest that personalized and population-based approaches considering FADS genetic variation may be necessary to optimize the design of future clinical studies with GLA-containing oils. This trial was registered at clinicaltrials.gov as NCT02337231.


Asunto(s)
Ácido Graso Desaturasas/genética , Ácido Linoleico/sangre , Aceites de Plantas/metabolismo , Aceite de Soja/metabolismo , Ácido gammalinolénico/sangre , Ácido 8,11,14-Eicosatrienoico/sangre , Adulto , Anciano , Estudios de Cohortes , delta-5 Desaturasa de Ácido Graso , Método Doble Ciego , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/sangre , Femenino , Genotipo , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Población Blanca/genética , Adulto Joven , Ácido gammalinolénico/metabolismo
15.
J Biotechnol ; 311: 1-11, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32057783

RESUMEN

Solid-state fermentation is a technique employing microorganisms grown on a solid substrate in the absence of free water. The substrates used in this process are mostly waste from the agro-industry (brans, spent malt grains, distiller grains, etc.) that improves not only the economy of the process but also has positive effect on waste management problems. Zygomycetous fungi are not only able to grow in such conditions but also enrich fermented materials with various types of bioactive compounds. Mucor sp. strains have been identified as producers of gamma-linolenic acid and beta-carotene in submerged fermentation. The aim of the present study was to identify the best microbial producer of gamma-linolenic acid and beta-carotene among four different Mucor strains and to study the requirements for the dual production of these metabolites. Mucor wosnessenskii was identified as the most suitable producer of both metabolites. After optimization of the fermentation conditions, the highest yields obtained were 10.7 g of gamma-linolenic acid/kg of fermented product and 261.5 mg of beta-carotene/kg of fermented product. This yield of beta-carotene is the highest among the results published so far.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Mucor/metabolismo , beta Caroteno/biosíntesis , Carotenoides/metabolismo , Fabaceae , Fermentación/fisiología , Residuos Industriales , Mucor/fisiología , Ácido gammalinolénico/metabolismo
16.
Recent Pat Food Nutr Agric ; 11(1): 40-48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30588890

RESUMEN

AIMS AND BACKGROUND: Spirulina (Arthrospira) platensis (SP) microalgae were cultured in Zarrouk Medium (ZM), containing three nitrogen concentrations (N-limited, N-optimal and Nrich medium) in ten liter-photo-bioreactor (10 L PBR) for 15-days, in order to study changes in lipid compounds (total carotenoids and total lipids and their effect on fatty acid profile). Based on US patent, the yield of bioactive compounds (such as gamma-linolenic acid GLA, C18:3) extracted from microalgae biomass, mainly depends on the extraction processes (1). GLA has much attention with respect to its therapeutic properties such as its ability to decrease blood cholesterol levels. METHODS: The impact of the addition of N in cultures of S. platensis in terms of growth, biomasses and induced lipid compounds (total carotenoids and total lipid contents and its fatty acid profile), as well as the Sonication (SON) and Microwave (MIC) process as aiding techniques for lipid extraction compared with a Cold Condition (COL), was examined. GC/MS method was used to determine the fatty acid profile of lipid extract of SP cultures. RESULTS: In all S. platensis tested culture, the SP was growing successfully, with varying degrees. In N-rich media, the highest cell growth rate and biomass yield were obtained compared with that recorded in other cultures. Under an N-limited condition, SP had higher Total Carotenoids (TCAR, 45.54 mg/g dw) and total lipid contents (TL, 29.51%± 1.92 g/100g dw) compared with that recorded either in N-rich (11.2 mg/g dw) or in N-optimal (6.23 mg/g dw) cultures. Thus, SP copes with the N -stress by altering the metabolic pathways towards inducing lipid biosynthesis. To maximize the TL and TCAR extraction yields, from N-limited cultures, a set of operating process was applied including the Sonication (SON) and Microwave (MIC), which were used as aiding techniques for lipid extraction compared with the Cold Condition (COL) techniques. The results showed that the extraction efficiency of the S. platensis TL increased in the following order: MIC (29.51%± 1.92) > SON (25.46% ± 1.65> COL (20.43% ±1.43). In a comparative study for its fatty acid profiles (FAPs) among all SP cultures, lipids were analyzed by GC/MS. The predominant fatty acids (>10%, of total FA) were found to be myristic acid (C14:0, MA), palmitic acid (C16:0, PA) and oleic acid (C18:1). CONCLUSION: The study concluded that the N-limited condition was found to have a strong influence on biomass dry weight and lipid contents and total carotenoids in SP cells compared to either Nrich or N-optimal conditions. The use of sonication and the microwave techniques lead to a great increase in the extraction of lipid contents and in high amount Polyunsaturated Fatty Acids (PUFAs) in N-limited cultures, in particular, the omega-6 (ω 6) and omega-3 (ω 3) of the essential C18 fatty acids. It seems that the SP rich in lipid content with a high amount of GLC produced under nitrogen limitation in PBR conditions can be used as a food additive or as a nutritional supplement.


Asunto(s)
Biomasa , Carotenoides/metabolismo , Medios de Cultivo/química , Ácidos Grasos/metabolismo , Microalgas/efectos de los fármacos , Nitrógeno/administración & dosificación , Spirulina/efectos de los fármacos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Nitrógeno/farmacología , Patentes como Asunto , Fotobiorreactores , Spirulina/crecimiento & desarrollo , Spirulina/metabolismo , Ácido gammalinolénico/metabolismo
17.
Food Chem ; 310: 125927, 2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-31835232

RESUMEN

Two filamentous fungi (Actinomucor elegans and Umbelopsis isabellina), were tested for their ability to enrich white grape pomace simultaneously with both γ-linolenic acid (GLA) and carotenoids through solid-state fermentation (SSF) processes. U. isabellina presented higher ability to produce GLA-rich lipids (composed mainly of neutral fractions) than A. elegans (the 6-th day of SSF: 378.85 mg/100 g of pomace -U. isabellina and 193.36 mg/100 g of pomace- A. elegans). The amounts of ß-carotene and lutein for both SSFs gradually increased until the end of the fermentation processes. The effect of fermentation time on the phenolic content and antioxidant activity of grape pomace was also studied. The SSF with A. elegans increased significantly total phenolic and flavonoid contents and DPPH scavenging activity of grape popmace. These bioprocessed grape pomaces with significant amounts of carotenoids and GLA-rich lipids (>94% nutritionally-valuable polyunsaturated fatty acids at the sn-2 position) could be very attractive for food industry.


Asunto(s)
Antioxidantes/química , Carotenoides/química , Manipulación de Alimentos/métodos , Hongos no Clasificados/metabolismo , Vitis/química , Ácido gammalinolénico/química , Antioxidantes/metabolismo , Carotenoides/metabolismo , Fermentación , Flavonoides/metabolismo , Lípidos/análisis , Lípidos/química , Fenoles/análisis , Fenoles/metabolismo , beta Caroteno/metabolismo , Ácido gammalinolénico/metabolismo
18.
Methods Mol Biol ; 1995: 229-248, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148133

RESUMEN

Microbes can produce not only commodity fatty acids, such as palmitic acid (16:0) and stearic acid (18:0), but also high-value fatty acids (essential fatty acids). Most high value fatty acids belong to long chain polyunsaturated fatty acids (PUFA), such as omega-3 fatty acids (e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) and omega-6 fatty acids (e.g., arachidonic acid (ARA) and γ-linolenic acid (GLA)). EPA (20:5n-3) is a 20-carbon fatty acid with five double bonds, and the first double bond is in the n-3 position. DHA (22:6n-3) is a 22-carbon fatty acid with 6 double bonds and the first double bond is also in the n-3 position. Both EPA and DHA play an essential role in cardiovascular health including prevention of atherosclerotic disease development (Zehr and Walker, Prostaglandins Other Lipid Mediat 134:131-140, 2018). ARA (20:4n-6) is a 20-carbon fatty acid with four double bonds, and the first double bond is in the n-6 position. GLA (18:3n-6) is an 18-carbon fatty acid with three double bonds, and the first double bond is in the n-6 position. ARA and GLA have multiple biological effects, such as lowering blood cholesterol, and lowering cardiovascular mortality (Poli and Visioli, Eur J Lipid Sci Technol 117(11):1847-1852, 2015). This chapter provides details on microbial production of EAP, DHA, ARA, and GLA.


Asunto(s)
Bacterias/metabolismo , Ácidos Grasos Insaturados/metabolismo , Hongos/metabolismo , Microbiología Industrial/métodos , Ácido Araquidónico/metabolismo , Técnicas de Cultivo de Célula/métodos , Ácidos Docosahexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Fermentación , Microalgas/metabolismo , Ácido gammalinolénico/metabolismo
19.
Breast ; 45: 113-117, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30959386

RESUMEN

OBJECTIVE: Since it is thought that breast adipose tissue could influence breast cancer clinical presentation, we wanted to characterize specifically the relationship between breast adipose tissue fatty acid profile and Inflammatory Breast cancer (IBC). METHODS: Two hundred thirty-four women presenting with breast cancer were managed in our centre between January 2009 and December 2011. Breast adipose tissue specimens were collected during breast surgery. We established the biochemical profile of adipose tissue fatty acids (FA) by gas chromatography and assessed whether there were differences in function of the presence of breast inflammation or not. RESULTS: We found that IBC was associated with decreased levels in breast adipose tissue of eicosapentaenoic acid (EPA), one of the two main polyunsaturated n-3 fatty acids (n-3 PUFA) of marine origin, but also with decreased levels of Gamma Linolenic acid (GLA). Inversely, an increase in palmitic acid levels was associated with IBC. CONCLUSION: These differences in lipid content may contribute to the occurrence of breast cancer inflammation.


Asunto(s)
Tejido Adiposo/metabolismo , Neoplasias de la Mama/metabolismo , Mama/metabolismo , Ácido Eicosapentaenoico/metabolismo , Neoplasias Inflamatorias de la Mama/metabolismo , Ácido gammalinolénico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Cromatografía de Gases , Femenino , Humanos , Persona de Mediana Edad , Estudios Retrospectivos
20.
Microb Cell Fact ; 18(1): 64, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943965

RESUMEN

BACKGROUND: Dihomo-gamma linolenic acid (DGLA, 20:3, n-6) is the elongated product of Gamma linolenic acid (GLA, 18:3, n-6) catalyzed by the enzyme delta-6 elongase (D6E) or gamma linolenic acid elongase (GLELO). Construction of engineered oleaginous microbes have been attracting significant interest to produce DGLA because of its nutritional value and medicinal applications. Mucor circinelloides is a GLA producing filamentous fungus which can be a useful tool to produce DGLA. We have, therefore, overexpressed the D6E (GLELO) gene in this fungus to construct DGLA producing cell factory. RESULT: To produce DGLA in M. circinelloides, homologous overexpression of D6E (GLELO) gene was analyzed. When the gene was overexpressed in M. circinelloides CBS277.49, up to 5.72% DGLA was produced in this strain. CONCLUSION: To our knowledge, this is the first report describing the overexpression of D6E (GLELO) gene in M. circinelloides to construct DGLA producing cell factory. A new scope for further research has been established by this work for improved production of DGLA in this fungus, specifically in its high lipid-producing strain, WJ11.


Asunto(s)
Mucor/genética , Mucor/metabolismo , Ácido gammalinolénico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...