Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.889
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38695120

RESUMEN

Small molecule drugs can be used to target nucleic acids (NA) to regulate biological processes. Computational modeling methods, such as molecular docking or scoring functions, are commonly employed to facilitate drug design. However, the accuracy of the scoring function in predicting the closest-to-native docking pose is often suboptimal. To overcome this problem, a machine learning model, RmsdXNA, was developed to predict the root-mean-square-deviation (RMSD) of ligand docking poses in NA complexes. The versatility of RmsdXNA has been demonstrated by its successful application to various complexes involving different types of NA receptors and ligands, including metal complexes and short peptides. The predicted RMSD by RmsdXNA was strongly correlated with the actual RMSD of the docked poses. RmsdXNA also outperformed the rDock scoring function in ranking and identifying closest-to-native docking poses across different structural groups and on the testing dataset. Using experimental validated results conducted on polyadenylated nuclear element for nuclear expression triplex, RmsdXNA demonstrated better screening power for the RNA-small molecule complex compared to rDock. Molecular dynamics simulations were subsequently employed to validate the binding of top-scoring ligand candidates selected by RmsdXNA and rDock on MALAT1. The results showed that RmsdXNA has a higher success rate in identifying promising ligands that can bind well to the receptor. The development of an accurate docking score for a NA-ligand complex can aid in drug discovery and development advancements. The code to use RmsdXNA is available at the GitHub repository https://github.com/laiheng001/RmsdXNA.


Asunto(s)
Aprendizaje Automático , Simulación del Acoplamiento Molecular , Ácidos Nucleicos , Ligandos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Simulación de Dinámica Molecular
2.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38739759

RESUMEN

Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.


Asunto(s)
Biología Computacional , Ácidos Nucleicos , Proteínas , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas/química , Proteínas/metabolismo , Biología Computacional/métodos , Ligandos , Unión Proteica , Humanos
3.
Nat Commun ; 15(1): 3684, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693181

RESUMEN

The metal-nucleic acid nanocomposites, first termed metal-nucleic acid frameworks (MNFs) in this work, show extraordinary potential as functional nanomaterials. However, thus far, realized MNFs face limitations including harsh synthesis conditions, instability, and non-targeting. Herein, we discover that longer oligonucleotides can enhance the synthesis efficiency and stability of MNFs by increasing oligonucleotide folding and entanglement probabilities during the reaction. Besides, longer oligonucleotides provide upgraded metal ions binding conditions, facilitating MNFs to load macromolecular protein drugs at room temperature. Furthermore, longer oligonucleotides facilitate functional expansion of nucleotide sequences, enabling disease-targeted MNFs. As a proof-of-concept, we build an interferon regulatory factor-1(IRF-1) loaded Ca2+/(aptamer-deoxyribozyme) MNF to target regulate glucose transporter (GLUT-1) expression in human epidermal growth factor receptor-2 (HER-2) positive gastric cancer cells. This MNF nanodevice disrupts GSH/ROS homeostasis, suppresses DNA repair, and augments ROS-mediated DNA damage therapy, with tumor inhibition rate up to 90%. Our work signifies a significant advancement towards an era of universal MNF application.


Asunto(s)
Aptámeros de Nucleótidos , ADN Catalítico , Neoplasias Gástricas , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Línea Celular Tumoral , ADN Catalítico/metabolismo , ADN Catalítico/química , Animales , Receptor ErbB-2/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Especies Reactivas de Oxígeno/metabolismo , Ratones , Reparación del ADN , Daño del ADN , Glutatión/metabolismo , Glutatión/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química
4.
Int J Mol Sci ; 25(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732170

RESUMEN

The aim of this Special Issue is to highlight significant and new aspects concerning the chemistry and biology of noncanonical nucleic acid structures, with emphasis on their structure, stability, and conformational equilibria, as well as on the biological relevance of their interactions with proteins and ligands [...].


Asunto(s)
Conformación de Ácido Nucleico , Ácidos Nucleicos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Humanos , Ligandos , ARN/química , ARN/metabolismo
5.
Sci Rep ; 14(1): 7736, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565583

RESUMEN

Evolution shapes protein sequences for their functions. Here, we studied the moonlighting functions of the N-linked sequon NXS/T, where X is not P, in human nucleocytosolic proteins. By comparing membrane and secreted proteins in which sequons are well known for N-glycosylation, we discovered that cyto-sequons can participate in nucleic acid binding, particularly in zinc finger proteins. Our global studies further discovered that sequon occurrence is largely proportional to protein length. The contribution of sequons to protein functions, including both N-glycosylation and nucleic acid binding, can be regulated through their density as well as the biased usage between NXS and NXT. In proteins where other PTMs or structural features are rich, such as phosphorylation, transmembrane ɑ-helices, and disulfide bridges, sequon occurrence is scarce. The information acquired here should help understand the relationship between protein sequence and function and assist future protein design and engineering.


Asunto(s)
Ácidos Nucleicos , Proteínas , Humanos , Proteínas/metabolismo , Glicosilación , Secuencia de Aminoácidos , Fosforilación , Ácidos Nucleicos/metabolismo
6.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672516

RESUMEN

Adenosine triphosphate (ATP) acts as the universal energy currency that drives various biological processes, while nucleic acids function to store and transmit genetic information for all living organisms. Liquid-liquid phase separation (LLPS) represents the common principle for the formation of membrane-less organelles (MLOs) composed of proteins rich in intrinsically disordered regions (IDRs) and nucleic acids. Currently, while IDRs are well recognized to facilitate LLPS through dynamic and multivalent interactions, the precise mechanisms by which ATP and nucleic acids affect LLPS still remain elusive. This review summarizes recent NMR results on the LLPS of human FUS, TDP-43, and the viral nucleocapsid (N) protein of SARS-CoV-2, as modulated by ATP and nucleic acids, revealing the following: (1) ATP binds to folded domains overlapping with nucleic-acid-binding interfaces; (2) ATP and nucleic acids interplay to biphasically modulate LLPS by competitively binding to overlapping pockets of folded domains and Arg/Lys within IDRs; (3) ATP energy-independently induces protein folding with the highest efficiency known so far. As ATP likely emerged in the prebiotic monomeric world, while LLPS represents a pivotal mechanism to concentrate and compartmentalize rare molecules for forming primordial cells, ATP appears to control protein homeostasis and shape genome-proteome interfaces throughout the evolutionary trajectory, from prebiotic origins to modern cells.


Asunto(s)
Adenosina Trifosfato , Proteoma , Humanos , Adenosina Trifosfato/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , SARS-CoV-2/genética , Proteostasis , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Homeostasis , Pliegue de Proteína , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética
7.
J Alzheimers Dis ; 98(3): 1157-1167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489187

RESUMEN

Background: Alzheimer's disease (AD) diagnosis is difficult, and new accurate tools based on peripheral biofluids are urgently needed. Extracellular vesicles (EVs) emerged as a valuable source of biomarker profiles for AD, since their cargo is disease-specific and these can be easily isolated from easily accessible biofluids, as blood. Fourier Transform Infrared (FTIR) spectroscopy can be employed to analyze EVs and obtain the spectroscopic profiles from different regions of the spectra, simultaneously characterizing carbohydrates, nucleic acids, proteins, and lipids. Objective: The aim of this study was to identify blood-derived EVs (bdEVs) spectroscopic signatures with AD discriminatory potential. Methods: Herein, FTIR spectra of bdEVs from two biofluids (serum and plasma) and distinct sets of Controls and AD cases were acquired, and EVs' spectra analyzed. Results: Analysis of bdEVs second derivative peaks area revealed differences between Controls and AD cases in distinct spectra regions, assigned to carbohydrates and nucleic acids, amides, and lipids. Conclusions: EVs' spectroscopic profiles presented AD discriminatory value, supporting the use of bdEVs combined with FTIR as a screening or complementary tool for AD diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Enfermedad de Alzheimer/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos/metabolismo , Lípidos , Carbohidratos
8.
Mol Cell Biol ; 44(3): 103-122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38506112

RESUMEN

EWSR1 is a member of the FET family of nucleic acid binding proteins that includes FUS and TAF15. Here, we report the systematic analysis of endogenous EWSR1's cellular organization in human cells. We demonstrate that EWSR1, which contains low complexity and nucleic acid binding domains, is present in cells in faster and slower-recovering fractions, indicative of a protein undergoing both rapid exchange and longer-term interactions. The employment of complementary high-resolution imaging approaches shows EWSR1 exists in two visual modalities, a distributed state which is present throughout the nucleoplasm, and a concentrated state consistent with the formation of foci. Both EWSR1 visual modalities localize with nascent RNA. EWSR1 foci concentrate in regions of euchromatin, adjacent to protein markers of transcriptional activation, and significantly colocalize with phosphorylated RNA polymerase II. Our results contribute to bridging the gap between our understanding of the biophysical and biochemical properties of FET proteins, including EWSR1, their functions as transcriptional regulators, and the participation of these proteins in tumorigenesis and neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Ácidos Nucleicos , Proteína EWS de Unión a ARN , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , ARN Polimerasa II/metabolismo , Proteína EWS de Unión a ARN/genética , Proteína EWS de Unión a ARN/metabolismo
9.
Adv Exp Med Biol ; 1444: 97-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467975

RESUMEN

Nucleic acid (NA)-sensing Toll-like receptors (TLRs) reside in the endosomal compartment of innate immune cells, such as macrophages and dendritic cells. NAs transported to the endosomal compartment are degraded by DNases and RNases. Degradation products, including single-stranded DNA, oligoRNA, and nucleosides, are recognized by TLR7, TLR8, and TLR9 to drive the defense responses against pathogens. NA degradation influences endosomal TLR responses by generating and degrading TLR ligands. TLR ligand accumulation because of impaired NA degradation causes constitutive TLR activation, leading to autoinflammatory and autoimmune diseases. Furthermore, some genes associated with these diseases promote endosomal TLR responses. Therefore, endosomal TLRs are promising therapeutic targets for TLR-mediated inflammatory diseases, and novel drugs targeting TLRs are being developed.


Asunto(s)
Enfermedades Autoinmunes , Ácidos Nucleicos , Humanos , Receptores Toll-Like , Enfermedades Autoinmunes/tratamiento farmacológico , Ácidos Nucleicos/metabolismo , Macrófagos/metabolismo
10.
Int J Nanomedicine ; 19: 2241-2264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465204

RESUMEN

Recently, gene therapy has become a subject of considerable research and has been widely evaluated in various disease models. Though it is considered as a stand-alone agent for COVID-19 vaccination, gene therapy is still suffering from the following drawbacks during its translation from the bench to the bedside: the high sensitivity of exogenous nucleic acids to enzymatic degradation; the severe side effects induced either by exogenous nucleic acids or components in the formulation; and the difficulty to cross the barriers before reaching the therapeutic target. Therefore, for the successful application of gene therapy, a safe and reliable transport vector is urgently needed. Extracellular vesicles (EVs) are the ideal candidate for the delivery of gene drugs owing to their low immunogenicity, good biocompatibility and low toxicity. To better understand the properties of EVs and their advantages as gene drug delivery vehicles, this review covers from the origin of EVs to the methods of EVs generation, as well as the common methods of isolation and purification in research, with their pros and cons discussed. Meanwhile, the engineering of EVs for gene drugs is also highlighted. In addition, this paper also presents the progress in the EVs-mediated delivery of microRNAs, small interfering RNAs, messenger RNAs, plasmids, and antisense oligonucleotides. We believe this review will provide a theoretical basis for the development of gene drugs.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Humanos , Preparaciones Farmacéuticas , Vacunas contra la COVID-19/metabolismo , Vesículas Extracelulares/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética , Ácidos Nucleicos/metabolismo
11.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432502

RESUMEN

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Asunto(s)
Corazón , Miocitos Cardíacos , Proteínas de Unión al ARN , Animales , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Proliferación Celular , Mamíferos/metabolismo , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteómica , Factores de Transcripción/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Regeneración , Corazón/fisiología
12.
Angew Chem Int Ed Engl ; 63(20): e202401704, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38456368

RESUMEN

DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.


Asunto(s)
Péptidos , ARN , Humanos , Péptidos/química , Péptidos/metabolismo , ARN/química , ARN/metabolismo , G-Cuádruplex , ADN/química , ADN/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo
13.
Adv Sci (Weinh) ; 11(17): e2306622, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38353402

RESUMEN

Hydrocephalus is one of the most common brain disorders and a life-long incurable condition. An empirical "one-size-fits-all" approach of cerebrospinal fluid (CSF) shunting remains the mainstay of hydrocephalus treatment and effective pharmacotherapy options are currently lacking. Macrophage-mediated ChP inflammation and CSF hypersecretion have recently been identified as a significant discovery in the pathogenesis of hydrocephalus. In this study, a pioneering DNA nano-drug (TSOs) is developed by modifying S2 ssDNA and S4 ssDNA with SPAK ASO and OSR1 ASO in tetrahedral framework nucleic acids (tFNAs) and synthesis via a one-pot annealing procedure. This construct can significantly knockdown the expression of SPAK and OSR1, along with their downstream ion channel proteins in ChP epithelial cells, thereby leading to a decrease in CSF secretion. Moreover, these findings indicate that TSOs effectively inhibit the M0 to M1 phenotypic switch of ChP macrophages via the MAPK pathways, thus mitigating the cytokine storm. In in vivo post-hemorrhagic hydrocephalus (PHH) models, TSOs significantly reduce CSF secretion rates, alleviate ChP inflammation, and prevent the onset of hydrocephalus. These compelling results highlight the potential of TSOs as a promising therapeutic option for managing hydrocephalus, with significant applications in the future.


Asunto(s)
Modelos Animales de Enfermedad , Hidrocefalia , Proteínas Serina-Treonina Quinasas , Animales , Masculino , Líquido Cefalorraquídeo/metabolismo , Hidrocefalia/genética , Macrófagos/metabolismo , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas
14.
Front Immunol ; 15: 1295168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384468

RESUMEN

Candida albicans remains the predominant cause of fungal infections, where adhered microbial cells form biofilms - densely packed communities. The central feature of C. albicans biofilms is the production of an extracellular matrix (ECM) consisting of polymers and extracellular nucleic acids (eDNA, eRNA), which significantly impedes the infiltration of host cells. Neutrophils, as crucial players in the innate host defense, employ several mechanisms to eradicate the fungal infection, including NETosis, endocytosis, or the release of granules containing, among others, antimicrobial peptides (AMPs). The main representative of these is the positively charged peptide LL-37 formed from an inactive precursor (hCAP18). In addition to its antimicrobial functions, this peptide possesses a propensity to interact with negatively charged molecules, including nucleic acids. Our in vitro studies have demonstrated that LL-37 contacting with C. albicans nucleic acids, isolated from biofilm, are complexed by the peptide and its shorter derivatives, as confirmed by electrophoretic mobility shift assays. We indicated that the generation of the complexes induces discernible alterations in the neutrophil response to fungal nucleic acids compared to the effects of unconjugated molecules. Our analyses involving fluorescence microscopy, flow cytometry, and Western blotting revealed that stimulation of neutrophils with DNA:LL-37 or RNA:LL-37 complexes hamper the activation of pro-apoptotic caspases 3 and 7 and fosters increased activation of anti-apoptotic pathways mediated by the Mcl-1 protein. Furthermore, the formation of complexes elicits a dual effect on neutrophil immune response. Firstly, they facilitate increased nucleic acid uptake, as evidenced by microscopic observations, and enhance the pro-inflammatory response, promoting IL-8 production. Secondly, the complexes detection suppresses the production of reactive oxygen species and attenuates NETosis activation. In conclusion, these findings may imply that the neutrophil immune response shifts toward mobilizing the immune system as a whole, rather than inactivating the pathogen locally. Our findings shed new light on the intricate interplay between the constituents of the C. albicans biofilm and the host's immune response and indicate possible reasons for the elimination of NETosis from the arsenal of the neutrophil response during contact with the fungal biofilm.


Asunto(s)
Candida albicans , Ácidos Nucleicos , Candida albicans/fisiología , Neutrófilos , Catelicidinas/farmacología , Ácidos Nucleicos/metabolismo , Biopelículas
15.
Angew Chem Int Ed Engl ; 63(19): e202402405, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38407513

RESUMEN

Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased ß-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Catecoles , Escherichia coli , Sideróforos , Sideróforos/química , Sideróforos/farmacología , Catecoles/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Pruebas de Sensibilidad Microbiana , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo
16.
ACS Nano ; 18(8): 6186-6201, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38346399

RESUMEN

Endocytosis is a major bottleneck toward cytosolic delivery of nucleic acids, as the vast majority of nucleic acid drugs remain trapped within endosomes. Current trends to overcome endosomal entrapment and subsequent degradation provide varied success; however, active delivery agents such as cell-penetrating peptides have emerged as a prominent strategy to improve cytosolic delivery. Yet, these membrane-active agents have poor selectivity for endosomal membranes, leading to toxicity. A hallmark of endosomes is their acidic environment, which aids in degradation of foreign materials. Here, we develop a pH-triggered spherical nucleic acid that provides smart antisense oligonucleotide (ASO) release upon endosomal acidification and selective membrane disruption, termed DNA EndosomaL Escape Vehicle Response (DELVR). We anchor i-Motif DNA to a nanoparticle (AuNP), where the complement strand contains both an ASO sequence and a functionalized endosomal escape peptide (EEP). By orienting the EEP toward the AuNP core, the EEP is inactive until it is released through acidification-induced i-Motif folding. In this study, we characterize a small library of i-Motif duplexes to develop a structure-switching nucleic acid sequence triggered by endosomal acidification. We evaluate antisense efficacy using HIF1a, a hypoxic indicator upregulated in many cancers, and demonstrate dose-dependent activity through RT-qPCR. We show that DELVR significantly improves ASO efficacy in vitro. Finally, we use fluorescence lifetime imaging and activity measurement to show that DELVR benefits synergistically from nuclease- and pH-driven release strategies with increased ASO endosomal escape efficiency. Overall, this study develops a modular platform that improves the cytosolic delivery of nucleic acid therapeutics and offers key insights for overcoming intracellular barriers.


Asunto(s)
Ácidos Nucleicos , Ácidos Nucleicos/metabolismo , Endosomas/química , Endocitosis/fisiología , Membranas Intracelulares , ADN/metabolismo
17.
Int J Mol Sci ; 25(4)2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396646

RESUMEN

Extracellular vesicles (EVs) are lipid-bilayer particles secreted from cells that primarily assist in cell-to-cell communication through the content of their cargo, such as proteins and RNA. EVs have been implicated in the pathogenesis of various autoimmune diseases, including dermatomyositis (DM), an inflammatory autoimmune disease characterized by distinct cutaneous manifestations, myopathy, and lung disease. We sought to review the role of EVs in DM and understand how they contribute to the pathogenesis and clinical characterization of the disease. We summarized the research progress on EVs in dermatomyositis based on recent publications. EV cargoes, such as double-stranded DNA, microRNA, and proteins, contribute to DM pathogenesis and mediate the proinflammatory response and cytokine release through signaling pathways such as the stimulator of interferon genes (STING) pathway. These nucleic acids and proteins have been proposed as disease-specific, stable biomarkers to monitor disease activity and responses to therapy. They also correlate with clinical parameters, inflammatory markers, and disease severity scores. Furthermore, some markers show an association with morbidities of DM, such as muscle weakness and interstitial lung disease. The continued study of EVs will help us to further elucidate our understanding of dermatomyositis.


Asunto(s)
Dermatomiositis , Exosomas , Vesículas Extracelulares , Enfermedades Pulmonares Intersticiales , MicroARNs , Ácidos Nucleicos , Humanos , Dermatomiositis/diagnóstico , Dermatomiositis/terapia , Dermatomiositis/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/terapia , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Exosomas/metabolismo
18.
Nature ; 626(7998): 271-279, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326590

RESUMEN

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered 'the enemy within' the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases.


Asunto(s)
Inflamación , Mitocondrias , Modelos Biológicos , Simbiosis , Humanos , Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Dieta/efectos adversos , Homeostasis , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/fisiología , Proteínas Mitocondriales/metabolismo , Ácidos Nucleicos/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/patología , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simbiosis/fisiología , Animales
19.
Proc Natl Acad Sci U S A ; 121(4): e2309628121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227660

RESUMEN

Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.


Asunto(s)
Ácidos Nucleicos , Pancitopenia , Animales , Humanos , Ratones , Apoptosis/genética , Trastornos de Fallo de la Médula Ósea , Muerte Celular/fisiología , Células Madre Hematopoyéticas/metabolismo , Necrosis/metabolismo , Ácidos Nucleicos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
20.
Osteoarthritis Cartilage ; 32(4): 372-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38199296

RESUMEN

OBJECTIVES: Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN: This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS: Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS: In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.


Asunto(s)
Ácidos Nucleicos , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/terapia , Osteoartritis/metabolismo , Cartílago/metabolismo , Terapia Genética , Dolor/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...