Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.781
Filtrar
1.
Environ Sci Pollut Res Int ; 31(19): 28632-28643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558334

RESUMEN

Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.


Asunto(s)
Fermentación , Lipasa , Ácidos Oléicos , Penicillium , Ácidos Oléicos/biosíntesis , Ácidos Oléicos/metabolismo , Penicillium/metabolismo , Lipasa/metabolismo , Esterificación , Biocatálisis , Lipólisis
2.
Poult Sci ; 103(3): 103408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320393

RESUMEN

High oleic (HO) soybeans may serve as a value-added feed ingredient; providing amino acids and estimating their dietary energy value for broilers is essential. In this study, we determined the apparent metabolizable energy (AME), AME corrected for zero nitrogen retention (AMEn), digestibility, and nitrogen (N) retention of HO full-fat (HO-FF) soybean as compared to solvent-extracted soybean meal (SE-SBM), normal oleic full-fat (NO-FF) and extruded expeller (NO-EE) soybean. A total of 240 Ross-708 male broilers were selected, with 8 replicates per treatment and 6 chicks per cage. The AME and AMEn were estimated using the difference method with a 30% inclusion of test ingredients using a corn-soy reference diet with partial and total excreta collection. The index method with partial excreta collection used titanium dioxide as an inert marker. The same starter diet was provided for all birds for 14 d, followed by the reference and assay diets for the next 6 adaptation days. Total excreta were collected twice a day for 3 d. The AME and AMEn values determined for the HO-FF and NO-FF were higher (P < 0.001) than the NO-EE and SE-SBM. The AME of SE-SBM and NO-EE were similar with both methods, but the AMEn of SE-SBM was lower than the NO-EE only with the partial collection method. The agreement between AME and AMEn values determined by partial and total excreta collection analysis was 98%. Data from the total excreta collection method yielded higher AME and AMEn values (P < 0.001) than those from the partial collection method. In summary, HO-FF and NO-FF soybean meals had similar AME and AMEn values. The HO-FF soybean had 39 and 24% higher AME and AMEn than SE-SBM. Hence, high oleic full-fat soybean meal could serve as a valuable alternative feed ingredient to conventional SE-SBM meals in broiler diets, providing additional energy while providing amino acids and more oleic acid to enrich poultry meat products.


Asunto(s)
Pollos , Glycine max , Animales , Masculino , Pollos/metabolismo , Harina , Nitrógeno/metabolismo , Alimentación Animal/análisis , Metabolismo Energético , Fenómenos Fisiológicos Nutricionales de los Animales , Aminoácidos/metabolismo , Ácidos Oléicos/metabolismo
3.
J Chem Ecol ; 50(3-4): 100-109, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270733

RESUMEN

Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Ácido Graso Desaturasas , Atractivos Sexuales , Conducta Sexual Animal , Animales , Masculino , Femenino , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Atractivos Sexuales/metabolismo , Atractivos Sexuales/farmacología , Ácidos Oléicos/metabolismo , Feromonas/metabolismo
4.
J Allergy Clin Immunol ; 153(4): 998-1009.e9, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38061443

RESUMEN

BACKGROUND: Oleoylethanolamide (OEA), an endogenously generated cannabinoid-like compound, has been reported to be increased in patients with severe asthma and aspirin-exacerbated respiratory disease. Recruitment of activated eosinophils in the airways is a hallmark of bronchial asthma. OBJECTIVE: We explored the direct contribution of cannabinoid receptor 2 (CB2), a cognate receptor of OEA, which induces eosinophil activation in vitro and in vivo. METHODS: We investigated OEA signaling in the eosinophilic cell line dEol-1 in peripheral blood eosinophils from people with asthma. In order to confirm whether eosinophil activation by OEA is CB2 dependent or not, CB2 small interfering RNA and the CB2 antagonist SR144528 were used. The numbers of airway inflammatory cells and the levels of cytokines were measured in bronchoalveolar lavage fluid, and airway hyperresponsiveness was examined in the BALB/c mice. RESULTS: CB2 expression was increased after OEA treatment in both peripheral blood eosinophils and dEol-1 cells. It was also elevated after OEA-induced recruitment of eosinophils to the lungs in vivo. However, SR144528 treatment reduced the activation of peripheral blood eosinophils from asthmatic patients. Furthermore, CB2 knockdown decreased the activation of dEol-1 cells and the levels of inflammatory and type 2 cytokines. SR144528 treatment alleviated airway hyperresponsiveness and eosinophil recruitment to the lungs in vivo. CONCLUSION: CB2 may contribute to the pathogenesis of eosinophilic asthma. Our results provide new insight into the molecular mechanism of signal transduction by OEA in eosinophilic asthma.


Asunto(s)
Asma , Canfanos , Endocannabinoides , Ácidos Oléicos , Eosinofilia Pulmonar , Pirazoles , Receptor Cannabinoide CB2 , Animales , Humanos , Ratones , Asma/metabolismo , Citocinas , Inflamación/patología , Pulmón/patología , Ácidos Oléicos/metabolismo , Eosinofilia Pulmonar/metabolismo , Receptores de Cannabinoides , Receptor Cannabinoide CB2/metabolismo
5.
Bioresour Technol ; 388: 129719, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678650

RESUMEN

Sophorolipids (SLs) represent highly promising biosurfactants. However, its widespread production and application encounter obstacles due to the significant costs involved. Here, an intelligent and precise regulation strategy was elucidated for the fermentation process coupled with in-situ separation production mode, to achieve cost-effective SLs production. Firstly, a mechanism-assisted data-driven model was constructed for "on-demand feeding of cells". Moreover, a strategy of step-wise oxygen supply regulation based on the demand for cell metabolic capacity was developed, which accomplished "on-demand oxygen supply of cells", to optimize the control of energy consumption. Finally, a systematic approach was implemented by integrating a semi-continuous fermentation mode with in-situ separation technology for SLs production. This strategy enhanced SLs productivity and yield, reaching 2.30 g/L/h and 0.57 g/g, respectively. These values represented a 40.2% and 18.7% increase compared to fed-batch fermentation. Moreover, the concentration of crude SLs after separation reached 793.12 g/L, facilitating downstream separation and purification processes.


Asunto(s)
Ácidos Oléicos , Oxígeno , Fermentación , Ácidos Oléicos/metabolismo , Glucolípidos/metabolismo
6.
Chem Res Toxicol ; 36(6): 882-899, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37162359

RESUMEN

Syncytialization, the fusion of cytotrophoblasts into an epithelial barrier that constitutes the maternal-fetal interface, is a crucial event of placentation. This process is characterized by distinct changes to amino acid and energy metabolism. A metabolite of the industrial solvent trichloroethylene (TCE), S-(1,2-dichlorovinyl)-l-cysteine (DCVC), modifies energy metabolism and amino acid abundance in HTR-8/SVneo extravillous trophoblasts. In the current study, we investigated DCVC-induced changes to energy metabolism and amino acids during forskolin-stimulated syncytialization in BeWo cells, a human villous trophoblastic cell line that models syncytialization in vitro. BeWo cells were exposed to forskolin at 100 µM for 48 h to stimulate syncytialization. During syncytialization, BeWo cells were also treated with DCVC at 0 (control), 10, or 20 µM. Following treatment, the targeted metabolomics platform, "Tricarboxylic Acid Plus", was used to identify changes in energy metabolism and amino acids. DCVC treatment during syncytialization decreased oleic acid, aspartate, proline, uridine diphosphate (UDP), UDP-d-glucose, uridine monophosphate, and cytidine monophosphate relative to forskolin-only treatment controls, but did not increase any measured metabolite. Notable changes stimulated by syncytialization in the absence of DCVC included increased adenosine monophosphate and guanosine monophosphate, as well as decreased aspartate and glutamate. Pathway analysis revealed multiple pathways in amino acid and sugar metabolisms that were altered with forskolin-stimulated syncytialization alone and DCVC treatment during syncytialization. Analysis of ratios of metabolites within the pathways revealed that DCVC exposure during syncytialization changed metabolite ratios in the same or different direction compared to syncytialization alone. Building off our oleic acid findings, we found that extracellular matrix metalloproteinase-2, which is downstream in oleic acid signaling, underwent the same changes as oleic acid. Together, the metabolic changes stimulated by DCVC treatment during syncytialization suggest changes in energy metabolism and amino acid abundance as potential mechanisms by which DCVC could impact syncytialization and pregnancy.


Asunto(s)
Cisteína , Tricloroetileno , Femenino , Humanos , Embarazo , Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Colforsina/metabolismo , Cisteína/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Ácidos Oléicos/metabolismo , Placenta , Tricloroetileno/metabolismo , Trofoblastos
7.
Front Endocrinol (Lausanne) ; 14: 1158287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234803

RESUMEN

Introduction: Oleoylethanolamide (OEA), an endogenous N-acylethanolamine acting as a gut-to-brain signal to control food intake and metabolism, has been attracting attention as a target for novel therapies against obesity and eating disorders. Numerous observations suggested that the OEA effects might be peripherally mediated, although they involve central pathways including noradrenergic, histaminergic and oxytocinergic systems of the brainstem and the hypothalamus. Whether these pathways are activated directly by OEA or whether they are downstream of afferent nerves is still highly debated. Some early studies suggested vagal afferent fibers as the main route, but our previous observations have contradicted this idea and led us to consider the blood circulation as an alternative way for OEA's central actions. Methods: To test this hypothesis, we first investigated the impact of subdiaphragmatic vagal deafferentation (SDA) on the OEA-induced activation of selected brain nuclei. Then, we analyzed the pattern of OEA distribution in plasma and brain at different time points after intraperitoneal administration in addition to measuring food intake. Results: Confirming and extending our previous findings that subdiaphragmatic vagal afferents are not necessary for the eating-inhibitory effect of exogenous OEA, our present results demonstrate that vagal sensory fibers are also not necessary for the neurochemical effects of OEA. Rather, within a few minutes after intraperitoneal administration, we found an increased concentration of intact OEA in different brain areas, associated with the inhibition of food intake. Conclusion: Our results support that systemic OEA rapidly reaches the brain via the circulation and inhibits eating by acting directly on selected brain nuclei.


Asunto(s)
Encéfalo , Ingestión de Alimentos , Ingestión de Alimentos/fisiología , Encéfalo/metabolismo , Endocannabinoides/farmacología , Endocannabinoides/metabolismo , Ácidos Oléicos/farmacología , Ácidos Oléicos/metabolismo
8.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675212

RESUMEN

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Hipotálamo , Termogénesis , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Ácidos Grasos/metabolismo , Hipotálamo/metabolismo , Ácidos Oléicos/metabolismo , Termogénesis/genética , Termogénesis/fisiología
9.
J Nutr Biochem ; 112: 109216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36372312

RESUMEN

Branched fatty acid esters of hydroxy fatty acids are endogenous lipids reported to have antidiabetic and anti-inflammatory effects. Recently, we showed that 9-palmitic acid esters of hydroxypalmitic acid (9-PAHPA) and 9-oleic acid esters of hydroxypalmitic acid increased insulin sensitivity in mice when incorporated to a chow diet or to a high fat and high sucrose diet. However, preventive supplementation with 9-PAHPA and 9-oleic acid esters of hydroxypalmitic acid in high fat and high sucrose diet mice did not impair significant weight gain or the development of hyperglycemia. The aim of this work was therefore to study whether in two animal models of obesity, namely the classical diet-induced obesity (DIO) and the db/db mice, 9-PAHPA may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. In DIO mice, we observed that 9-PAHPA increased body weight and fat mass. In line with this observation, we found that 9-PAHPA supplementation decreased energy expenditure. In liver and in skeletal muscle, mitochondrial activities and oxidative stress parameters were not modified by 9-PAHPA supplementation. In db/db mice, 9-PAHPA had no effect on the dramatic weight gain and hyperglycemia. In addition, 9-PAHPA supplementation did not correct either the hepatomegaly and hepatic steatosis or the severe muscle atrophy recorded compared with db/+ animals. Likewise, supplementation with 9-PAHPA did not impact the different metabolic parameters analyzed, either in the liver or in the skeletal muscles. However, it decreased insulin resistance in DIO and db/db mice. In conclusion, our study indicated that a long-term intake of 9-PAHPA in DIO and db/db mice improved insulin sensitivity but had only few effects on obesity and associated metabolic disorders.


Asunto(s)
Hiperglucemia , Resistencia a la Insulina , Enfermedades Metabólicas , Ratones , Animales , Obesidad/metabolismo , Dieta , Hígado/metabolismo , Aumento de Peso , Ratones Endogámicos , Ácidos Grasos/metabolismo , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Sacarosa/metabolismo , Hiperglucemia/metabolismo , Ácidos Oléicos/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos
10.
Cell Rep ; 41(7): 111668, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36384126

RESUMEN

Fatty acids (FAs) are widely involved in diverse biological functions. In mice with myeloid-specific deletion of fatty acid-binding protein 5 (FABP5), OVA-induced allergic airway inflammation (AAI) is significantly exacerbated by increasing alternatively activated macrophages (M2). Fabp5 deficiency increases IL-4-induced M2 in vitro. In macrophages, Fabp5 deletion causes significant accumulation of free long-chain unsaturated FAs, such as oleic acid, but does not cause detectable changes to other groups of FAs. Interestingly, excessive uptake of oleic acid aggravates AAI pathogenesis, with increased M2 polarization in bronchoalveolar lavage fluid. Informatics and mechanistic studies indicate that Fabp5 deficiency may reprogram metabolic pathways by enhancing FA ß oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, in addition to producing more ATP through activation of the PPARγ signaling pathway, reshaping macrophages in favor of M2 polarization. These results emphasize the importance of FABP5 and oleic acid in AAI, suggesting preventive and therapeutic strategies for allergic asthma.


Asunto(s)
Asma , Activación de Macrófagos , Ratones , Animales , Asma/metabolismo , Macrófagos/metabolismo , Inflamación/patología , Ácidos Grasos Insaturados/metabolismo , Ácidos Oléicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo
11.
Front Cell Infect Microbiol ; 12: 977157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268228

RESUMEN

Increased levels of 17-ß estradiol (E2) due to pregnancy in young women or to hormonal replacement therapy in postmenopausal women have long been associated with an increased risk of yeast infections. Nevertheless, the effect underlying the role of E2 in Candida albicans infections is not well understood. To address this issue, functional, transcriptomic, and metabolomic analyses were performed on C. albicans cells subjected to temperature and serum induction in the presence or absence of E2. Increased filament formation was observed in E2 treated cells. Surprisingly, cells treated with a combination of E2 and serum showed decreased filament formation. Furthermore, the transcriptomic analysis revealed that serum and E2 treatment is associated with downregulated expression of genes involved in filamentation, including HWP1, ECE1, IHD1, MEP1, SOD5, and ALS3, in comparison with cells treated with serum or estrogen alone. Moreover, glucose transporter genes HGT20 and GCV2 were downregulated in cells receiving both serum and E2. Functional pathway enrichment analysis of the differentially expressed genes (DEGs) suggested major involvement of E2 signaling in several metabolic pathways and the biosynthesis of secondary metabolites. The metabolomic analysis determined differential secretion of 36 metabolites based on the different treatments' conditions, including structural carbohydrates and fatty acids important for hyphal cell wall formation such as arabinonic acid, organicsugar acids, oleic acid, octadecanoic acid, 2-keto-D-gluconic acid, palmitic acid, and steriacstearic acid with an intriguing negative correlation between D-turanose and ergosterol under E2 treatment. In conclusion, these findings suggest that E2 signaling impacts the expression of several genes and the secretion of several metabolites that help regulate C. albicans morphogenesis and virulence.


Asunto(s)
Candida albicans , Hifa , Femenino , Humanos , Pared Celular/metabolismo , Ergosterol/metabolismo , Ácidos Grasos/metabolismo , Estrógenos/farmacología , Polisacáridos/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Ácidos Esteáricos/metabolismo , Ácidos Esteáricos/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/farmacología , Carbohidratos , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacología , Ácidos Oléicos/metabolismo , Ácidos Oléicos/farmacología , Regulación Fúngica de la Expresión Génica
12.
Nutrients ; 14(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145246

RESUMEN

Hyperlipidemia with high blood levels of free fatty acids (FFA) is the leading cause of non-alcoholic steatohepatitis. CCN1 is a secreted matricellular protein that drives various cellular functions, including proliferation, migration, and differentiation. However, its role in mediating FFA-induced pro-inflammatory cell death and its underlying molecular mechanisms have not been characterized. In this study, we demonstrated that CCN1 was upregulated in the livers of obese mice. The increase in FFA-induced CCN1 was evaluated in vitro by treating hepatocytes with a combination of oleic acid and palmitic acid (2:1). Gene silencing using specific small interfering RNAs (siRNA) revealed that CCN1 participated in FFA-induced intracellular lipid accumulation, caspase-1 activation, and hepatocyte pyroptosis. Next, we identified integrin α5ß1 as a potential receptor of CCN1. Co-immunoprecipitation demonstrated that the binding between CCN1 and integrin α5ß1 increased in hepatocytes upon FFA stimulation in the livers of obese mice. Similarly, the protein levels of integrin α5 and ß1 were increased in vitro and in vivo. Experiments with specific siRNAs confirmed that integrin α5ß1 played a part in FFA-induced intracellular lipid accumulation, NLRP3 inflammasome activation, and pyroptosis in hepatocytes. In conclusion, these results provide novel evidence that the CCN1/integrin α5ß1 is a novel mediator that drives hepatic lipotoxicity via NLRP3-dependent pyroptosis.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Caspasas/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Hepatocitos/metabolismo , Inflamasomas/metabolismo , Integrina alfa5beta1/metabolismo , Ratones , Ratones Obesos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ácidos Oléicos/metabolismo , Ácidos Palmíticos/metabolismo , ARN Interferente Pequeño/metabolismo
13.
Prostaglandins Other Lipid Mediat ; 163: 106671, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36028068

RESUMEN

Activation of hepatic stellate cells (HSCs) is generally recognized as a central driver of liver fibrosis. Metabolism of fatty acids (FA) plays a critical role in the activation of HSCs. Proteomics analysis on lysine acetylation of proteins in activated HSCs in our previous study indicated that acetylation of the lysine residues on ACSF2 is one of the most significantly upregulated sites in activated-HSCs and K179 is its important acetylation site. However, the role of acetylation at K179 of ACSF2 on activation of HSCs and free fatty acids (FFA) metabolism remains largely unknown. The reported study demonstrates that acetylation at K179 of ACSF2 promoted HSCs activation. The targeted lipidomic analysis indicated K179 acetylation of ACSF2 mainly affected long chain fatty acids (LCFA) metabolism, especially oleic acid, elaidic acid and palmitoleic acid. And the liquid chromatography mass spectrometry (LC-MS) analysis further demonstrated the formation of many long-chain acyl-CoAs were catalyzed by acetylation at K179 of ACSF2 including oleic acid, elaidic acid and palmitoleic acid. In conclusion, this study indicated that ACSF2 may be a potential therapeutic targets by regulating the metabolism of LCFA for liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Lisina , Ratas , Animales , Células Estrelladas Hepáticas/metabolismo , Acetilación , Lisina/metabolismo , Lipidómica , Cirrosis Hepática/metabolismo , Ácidos Grasos/metabolismo , Ácidos Oléicos/metabolismo
14.
Arch Biochem Biophys ; 727: 109338, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35779593

RESUMEN

The genome of Streptomyces avermitilis contains 33 cytochrome P450 genes. Among the P450 gene products of S. avermitilis, we characterized the biochemical function and structural aspects of CYP184A1. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that CYP184A1 induced an epoxidation reaction to produce 9,10-epoxystearic acid. Steady-state kinetic analysis yielded a kcat value of 0.0067 min-1 and a Km value 10 µM. The analysis of its crystal structures illustrated that the overall CYP184A1 structure adopts the canonical scaffold of cytochrome P450 and possesses a narrow and deep substrate pocket architecture that is required for binding to linear chain fatty acids. In the structure of the CYP184A1 oleic acid complex (CYP184A1-OA), C9-C10 of oleic acid was bound to heme for the productive epoxidation reaction. This study elucidates the roles of P450 enzymes in the oxidative metabolism of fatty acids in Streptomyces species.


Asunto(s)
Ácidos Grasos , Streptomyces , Sistema Enzimático del Citocromo P-450/química , Ácidos Grasos/metabolismo , Cinética , Ácidos Oléicos/metabolismo
15.
Adv Med Sci ; 67(2): 283-290, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843155

RESUMEN

PURPOSE: Cryoablation is a recommended, modern and well-tolerated method of treating atrial fibrillation (AF). The study evaluates plasma biomarkers related to AF and the effectiveness of its treatment - cryoablation. Heart- and adipocyte-type fatty acid binding proteins (H-FABP and A-FABP, respectively) as well as fatty acids (FAs) were assessed in patients that underwent cryoballoon ablation (CBA) for AF. PATIENTS AND METHODS: Concentrations of plasma FABPs and FAs were measured in 33 AF patients on admission and 24 â€‹h after CBA (enzyme-linked immunoassay and gas liquid chromatography, respectively). The control group consisted of 20 volunteers. RESULTS: We showed that plasma H-FABP and A-FABP concentrations were significantly higher in the patients with AF than in the control group (1135 â€‹pg/mL vs 836 â€‹pg/mL, and 34.29 â€‹ng/mL vs 15.14 â€‹ng/mL, respectively; p â€‹< â€‹0.05). After CBA, H-FABP plasma concentration increased even further (1574 â€‹pg/mL vs 1135 â€‹pg/mL; p â€‹< â€‹0.05) and FAs levels decreased concomitantly. AF recurred in 8 patients (24.25%) after 3 months and in 13 patients (39.4%) after 6 months. Initially higher concentration of oleic acid (680.24 â€‹± â€‹189.768 vs 567.04 â€‹± â€‹70.002; p â€‹< â€‹0.05) correlated substantially with lower AF relapse rate in 6 months follow-up. CONCLUSIONS: The patients with AF showed increased concentration of H-FABP, whereas CBA triggered further elevation of H-FABP with a simultaneous decline in the total plasma FAs concentration. H-FABP and A-FABP could not be confirmed as new biomarkers of cryoablation efficiency, but this requires further investigation due to the limitations of the study.


Asunto(s)
Fibrilación Atrial , Criocirugía , Humanos , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Miocardio/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Biomarcadores , Ácidos Oléicos/metabolismo
16.
Microbiol Spectr ; 10(3): e0133022, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35647620

RESUMEN

Staphylococcus aureus is a major human pathogen that secretes several toxins associated with the pathogenesis of sepsis and pneumonia. Its antibiotic resistance is notorious, and its biofilms play a critical role in antibiotic tolerance. We hypothesized fatty acids might inhibit S. aureus biofilm formation and the expressions of its virulence factors. Initially, the antibiofilm activities of 27 fatty acids against a methicillin-sensitive S. aureus strain were investigated. Of the fatty acids tested, three C18 unsaturated fatty acids, that is, petroselinic, vaccenic, and oleic acids at 100 µg/mL, inhibited S. aureus biofilm formation by more than 65% without affecting its planktonic cell growth (MICs were all > 400 µg/mL). Notably, petroselinic acid significantly inhibited biofilm formation of two methicillin-resistant S. aureus strains and two methicillin-sensitive S. aureus strains. In addition, petroselinic acid significantly suppressed the production of three virulence factors, namely, staphyloxanthin, lipase, and α-hemolysin. Transcriptional analysis showed that petroselinic acid repressed the gene expressions of quorum sensing regulator agrA, effector of quorum sensing RNAIII, α-hemolysin hla, nucleases nuc1 and nuc2, and the virulence regulator saeR. Furthermore, petroselinic acid dose-dependently inhibited S. aureus biofilm formation on abiotic surfaces and porcine skin. These findings suggest that fatty acids, particularly petroselinic acid, are potentially useful for controlling biofilm formation by S. aureus. IMPORTANCE Fatty acids with a long carbon chain have recently attracted attention because of their antibiofilm activities against microbes. Here, we report the antibiofilm activities of 27 fatty acids against S. aureus. Of the fatty acids tested, three C18 unsaturated fatty acids (petroselinic, vaccenic, and oleic acids) significantly inhibited biofilm formation by S. aureus. Furthermore, petroselinic acid inhibited the production of several virulence factors in S. aureus. The study also reveals that the action mechanism of petroselinic acid involves repression of quorum-sensing-related and virulence regulator genes. These findings show that natural and nontoxic petroselinic acid has potential use as a treatment for S. aureus infections, including infections by methicillin-resistant S. aureus strains, and in food processing facilities.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Biopelículas , Ácidos Grasos Insaturados , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Humanos , Meticilina/metabolismo , Ácidos Oléicos/metabolismo , Staphylococcus aureus/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
17.
J Leukoc Biol ; 112(4): 617-628, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35213745

RESUMEN

Tumor-infiltrating monocytes can mature into Macrophages that support tumor survival or that display antitumor properties. To explore mechanisms steering Macrophage maturation, we assessed the effects of supernatants from squamous cell carcinoma cell lines (FaDu and SCC) on monocyte-derived Macrophage maturation. Purified monocytes were incubated in medium or medium supplemented with supernatants from FaDu and SCC9 or the leukemia monocytic cell line, THP-1. Macrophages were examined for markers of maturation (CD14, CD68), activation (HLA-DR, CD86, IL15R), scavenger receptor (CD36), toll-like receptor (TLR4), M2 marker (CD206), immune checkpoint (PD-L1), and intracellular chemokine expression (IP-10). Compared to other conditions, cells incubated with FaDu or SCC9 supernatants displayed enhanced survival, down-regulation of cell surface HLA-DR, CD86, IL-15R, CD36, and intracellular IP-10 expression, and increased cell surface PD-L1, CD14, and CD206 expression. Despite expressing TLR4 and CD14, Macrophages matured in tumor supernatants failed to respond to stimulation with the canonical TLR4 agonist, LPS. These changes were accompanied by a decrease in intracellular phospho-p38 expression in tumor supernatant conditioned Macrophages. Depletion of fatty acids from tumor supernatants or treatment of cell cultures with an inhibitor of fatty acid oxidation, Etomoxir, reversed a number of these phenotypic changes induced by tumor supernatants. Additionally, Macrophages incubated with either palmitic acid or oleic acid developed similar phenotypes as cells incubated in tumor supernatants. Together, these data suggest that fatty acids derived from tumor cells can mediate the maturation of Macrophages into a cell type with limited pro-inflammatory characteristics.


Asunto(s)
Antígeno B7-H1 , Neoplasias de Cabeza y Cuello , Antígeno B7-H1/metabolismo , Quimiocina CXCL10/metabolismo , Ácidos Grasos/metabolismo , Antígenos HLA-DR/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ácidos Oléicos/metabolismo , Ácidos Oléicos/farmacología , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacología , Receptor Toll-Like 4/metabolismo
18.
J Sci Food Agric ; 102(3): 1245-1254, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34378222

RESUMEN

BACKGROUND: Phytopathogenic microorganisms are the main cause of plant diseases, generating significant economic losses for the agricultural and food supply chain. Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are very perishable plants and highly demanding in the use of pesticides; therefore, alternative solutions such as biosurfactants have aroused as a potent substituent. The main objective of the present study was to investigate the antimicrobial activity of sophorolipids against the phytopathogens Botrytis cinerea, Sclerotium rolfsii, Rhizoctonia solani and Pythium ultimum. RESULTS: The biosurfactant inhibited the mycelial growth in vitro with a minimum concentration of 2 mg mL-1 . The application of sophorolipids at 1, 2 and 4 mg mL-1 in detached leaves of tomato before the inoculation of the fungus B. cinerea was the best treatment, reducing leaf necrosis by up to 76.90%. The use of sophorolipids for washing tomato fruits before the inoculation of B. cinerea was able to inhibit the development of gray mold by up to 96.27%. CONCLUSION: The results for tomato leaves and fruits revealed that the biosurfactant acts more effectively when used preventively. Sophorolipids are stable molecules that show promising action for the potential replacement of pesticides in the field and the post-harvest process against the main tomato phytopathogens. © 2021 Society of Chemical Industry.


Asunto(s)
Botrytis/efectos de los fármacos , Fungicidas Industriales/farmacología , Ácidos Oléicos/farmacología , Enfermedades de las Plantas/microbiología , Rhizoctonia/efectos de los fármacos , Saccharomycetales/metabolismo , Solanum lycopersicum/microbiología , Botrytis/fisiología , Frutas/microbiología , Fungicidas Industriales/metabolismo , Ácidos Oléicos/metabolismo , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Rhizoctonia/fisiología , Saccharomycetales/química
19.
Life Sci ; 290: 120229, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34914931

RESUMEN

Lipokines are bioactive compounds, derived from adipose tissue depots, that control several molecular signaling pathways. Recently, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), an oxylipin, has gained prominence in the scientific literature. An increase in circulating 12,13-diHOME has been associated with improved metabolic health, and the action of this molecule appears to be mediated by brown adipose tissue (BAT). Scientific evidence indicates that the increase in serum levels of 12,13-diHOME caused by stimuli such as physical exercise and exposure to cold may favor the absorption of fatty acids by brown adipose tissue and stimulate the browning process in white adipose tissue (WAT). Thus, strategies capable of increasing 12,13-diHOME levels may be promising for the prevention and treatment of obesity and metabolic diseases. This review explores the relationship of 12,13-diHOME with brown adipose tissue and its role in the metabolic health context, as well as the signaling pathways involved between 12,13-diHOME and BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Ácidos Oléicos/metabolismo , Tejido Adiposo Blanco/metabolismo , Humanos , Terapia Molecular Dirigida , Ácidos Oléicos/sangre , Ácidos Oléicos/farmacología , Oxilipinas/metabolismo
20.
BMC Immunol ; 22(1): 77, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920714

RESUMEN

BACKGROUND: Inflammatory arthritis including rheumatoid arthritis (RA) and spondyloarthritis (SpA) is characterized by inflammation and destruction of the joints. Approximately one third of patients do not respond to first-line treatments. Nitro-fatty acids are bioactive lipids with anti-inflammatory properties and tissue-protective functions. The nitro-fatty acid 10-NO2-oleic acid (10-NO2-OA) is being tested in clinical trials for patients with fibrotic and inflammatory conditions. Here, we tested whether 10-NO2-OA could inhibit immune reactions involved in the inflammatory and joint destructive processes in inflammatory arthritis. METHODS: Synovial fluid and blood samples were obtained from 14 patients with active RA or SpA. The in vitro models consisted of synovial fluid mononuclear cells (SFMCs) cultured for 48 h, SFMCs cultured for 21 days, and fibroblast-like synovial cells (FLSs) co-cultured with peripheral blood mononuclear cells (PBMCs) for 48 h. Cells were treated with or without 10-NO2-OA or the tumor necrosis factor alpha (TNFα) inhibitor etanercept. Supernatants were analyzed for type I interferon, monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase 3 (MMP3) and tartrate resistant acid phosphatase (TRAP). RESULTS: In SFMCs cultured for 48 h, 10-NO2-OA dose-dependently decreased the secretion of bioactive type I interferons and MCP-1 but not MMP3 (P = 0.032, P = 0.0001, and P = 0.58, respectively). Both MCP-1 and MMP3 were decreased by etanercept (P = 0.0031 and P = 0.026, respectively). In SFMCs cultured for 21 days, 10-NO2-OA significantly decreased the production of MCP-1 but not TRAP (P = 0.027 and P = 0.1523, respectively). Etanercept decreased the production of TRAP but not MCP-1 (P < 0.001 and P = 0.84, respectively). In co-cultures of FLSs and PBMCs, 10-NO2-OA decreased the production of MCP-1 (P < 0.0001). This decrease in MCP-1 production was not seen with etanercept treatment (P = 0.47). CONCLUSION: 10-NO2-OA decreased the release of MCP-1 in three models of inflammatory arthritis. Of particular interest, 10-NO2-OA inhibited type I interferon, and 10-NO2-OA was more effective in reducing MCP-1 production in cultures dominated by FLSs compared with etanercept. Our results encourage clinical investigations of 10-NO2-OA in patients with inflammatory arthritis.


Asunto(s)
Antiinflamatorios/metabolismo , Artritis Reumatoide/metabolismo , Fibroblastos/fisiología , Leucocitos Mononucleares/inmunología , Ácidos Oléicos/metabolismo , Espondilitis Anquilosante/metabolismo , Líquido Sinovial/inmunología , Adulto , Células Cultivadas , Quimiocina CCL2/metabolismo , Técnicas de Cocultivo , Etanercept/farmacología , Femenino , Humanos , Interferón Tipo I/metabolismo , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...