Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
Fish Shellfish Immunol ; 149: 109618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729251

RESUMEN

An eight-week feeding trial was designed to assess which component of commensal Bacillus siamensis LF4 can mitigate SBM-induced enteritis and microbiota dysbiosis in spotted seabass (Lateolabrax maculatus) based on TLRs-MAPKs/NF-кB signaling pathways. Fish continuously fed low SBM (containing 16 % SBM) and high SBM (containing 40 % SBM) diets were used as positive (FM group) and negative (SBM group) control, respectively. After feeding high SBM diet for 28 days, fish were supplemented with B. siamensis LF4-derived whole cell wall (CW), cell wall protein (CWP), lipoteichoic acid (LTA) or peptidoglycan (PGN) until 56 days. The results showed that a high inclusion of SBM in the diet caused enteritis, characterized with significantly (P < 0.05) decreased muscular thickness, villus height, villus width, atrophied and loosely arranged microvillus. Moreover, high SBM inclusion induced an up-regulation of pro-inflammatory cytokines and a down-regulation of occludin, E-cadherin, anti-inflammatory cytokines, apoptosis related genes and antimicrobial peptides. However, dietary supplementation with CW, LTA, and PGN of B. siamensis LF4 could effectively alleviate enteritis caused by a high level of dietary SBM. Additionally, CWP and PGN administration increased beneficial Cetobacterium and decreased pathogenic Plesiomonas and Brevinema, while dietary LTA decreased Plesiomonas and Brevinema, suggesting that CWP, LTA and PGN positively modulated intestinal microbiota in spotted seabass. Furthermore, CW, LTA, and PGN application significantly stimulated TLR2, TLR5 and MyD88 expressions, and inhibited the downstream p38 and NF-κB signaling. Taken together, these results suggest that LTA and PGN from B. siamensis LF4 could alleviate soybean meal-induced enteritis and microbiota dysbiosis in L. maculatus, and p38 MAPK/NF-κB pathways might be involved in those processes.


Asunto(s)
Alimentación Animal , Bacillus , Dieta , Disbiosis , Enteritis , Enfermedades de los Peces , Microbioma Gastrointestinal , Glycine max , Lipopolisacáridos , Peptidoglicano , Ácidos Teicoicos , Animales , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Enteritis/veterinaria , Enteritis/inmunología , Enteritis/microbiología , Disbiosis/veterinaria , Disbiosis/inmunología , Bacillus/fisiología , Bacillus/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta/veterinaria , Glycine max/química , Lipopolisacáridos/farmacología , Ácidos Teicoicos/farmacología , Peptidoglicano/farmacología , Peptidoglicano/administración & dosificación , Lubina/inmunología , Probióticos/farmacología , Probióticos/administración & dosificación , Suplementos Dietéticos/análisis , Distribución Aleatoria
2.
PLoS One ; 19(5): e0302913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728358

RESUMEN

In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.


Asunto(s)
Pollos , Hepatocitos , Lipopolisacáridos , Poli I-C , Animales , Hepatocitos/efectos de los fármacos , Hepatocitos/inmunología , Hepatocitos/metabolismo , Poli I-C/farmacología , Lipopolisacáridos/farmacología , Factores Inmunológicos/farmacología , Ácidos Teicoicos/farmacología , Células Cultivadas , Agentes Inmunomoduladores/farmacología , Agentes Inmunomoduladores/química , Técnicas de Cocultivo , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Citocinas/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 304-312, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38686411

RESUMEN

The effect of neutrophil extracellular traps (NETs) on promoting intravascular microthrombi formation and exacerbating the severity of sepsis in patients has gained extensive attention. However, in sepsis, the mechanisms and key signaling molecules mediating NET formation during direct interactions of endothelial cells and neutrophils still need further explored. Herein, we utilized lipoteichoic acid (LTA), a component shared by Gram-positive bacteria, to induce NET extrusion from neutrophils firmly adhered to the glass slides coated with intercellular adhesion molecule-1(ICAM-1). We also used Sytox green to label NET-DNA and Flou-4 AM as the intracellular Ca 2+ signaling indicator to observe the NET formation and fluctuation of Ca 2+ signaling. Our results illustrated that LTA was able to induce NET release from neutrophils firmly attached to ICAM-1-coated glass slides, and the process was time-dependent. In addition, our study indicated that LTA-induced NET release by neutrophils stably adhered to ICAM-1 depended on Ca 2+ signaling but not intracellular reactive oxygen species (ROS). This study reveals NET formation mediated by direct interactions between endothelial ICAM-1 and neutrophils under LTA stimulation and key signaling molecules involved, providing the theoretical basis for medicine development and clinical treatment for related diseases.


Asunto(s)
Trampas Extracelulares , Molécula 1 de Adhesión Intercelular , Lipopolisacáridos , Neutrófilos , Ácidos Teicoicos , Ácidos Teicoicos/farmacología , Molécula 1 de Adhesión Intercelular/metabolismo , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Señalización del Calcio , Adhesión Celular , Sepsis/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología
4.
J Insect Physiol ; 147: 104518, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119936

RESUMEN

The effects of Gram negative and positive bacterial sepsis depend on the type of toxins released, such as lipopolysaccharides (LPS) or lipoteichoic acid (LTA). Previous studies show LPS to rapidly hyperpolarize larval Drosophila skeletal muscle, followed by desensitization and return to baseline. In larvae, heart rate increased then decreased with exposure to LPS. However, responses to LTA, as well as the combination of LTA and LPS, on the larval Drosophila heart have not been previously examined. This study examined the effects of LTA and a cocktail of LTA and LPS on heart rate. The combined effects were examined by first treating with either LTA or LPS only, and then with the cocktail. The results showed a rapid increase in heart rate upon LTA application, followed by a gradual decline over time. When applying LTA followed by the cocktail, an increase in the rate occurred. However, if LPS was applied before the cocktail, the rate continued declining. These responses indicate the receptors or cellular cascades responsible for controlling heart rate within seconds and the rapid desensitization are affected by LTA or LPS and a combination of the two. The mechanisms for rapid changes which are not regulated by gene expression by exposure to LTA or LPS or associated bacterial peptidoglycans have yet to be identified in cardiac tissues of any organism.


Asunto(s)
Drosophila melanogaster , Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/farmacología
5.
J Immunol ; 210(9): 1386-1395, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897262

RESUMEN

LPS interacts with TLR4, which play important roles in host-against-pathogen immune responses, by binding to MD-2 and inducing an inflammatory response. In this study, to our knowledge, we found a novel function of lipoteichoic acid (LTA), a TLR2 ligand, that involves suppression of TLR4-mediated signaling independently of TLR2 under serum-free conditions. LTA inhibited NF-κB activation induced by LPS or a synthetic lipid A in a noncompetitive manner in human embryonic kidney 293 cells expressing CD14, TLR4, and MD-2. This inhibition was abrogated by addition of serum or albumin. LTAs from different bacterial sources also inhibited NF-κB activation, although LTA from Enterococcus hirae had essentially no TLR2-mediated NF-κB activation. The TLR2 ligands tripalmitoyl-Cys-Ser-Lys-Lys-Lys-Lys (Pam3CSK4) and macrophage-activating lipopeptide-2 (MALP-2) did not affect the TLR4-mediated NF-κB activation. In bone marrow-derived macrophages from TLR2-/- mice, LTA inhibited LPS-induced IκB-α phosphorylation and production of TNF, CXCL1/KC, RANTES, and IFN-ß without affecting cell surface expression of TLR4. LTA did not suppress IL-1ß-induced NF-κB activation mediated through signaling pathways shared with TLRs. LTAs including E. hirae LTA, but not LPS, induced association of TLR4/MD-2 complexes, which was suppressed by serum. LTA also increased association of MD-2, but not TLR4 molecules. These results demonstrate that, under serum-free conditions, LTA induces association of MD-2 molecules to promote formation of an inactive TLR4/MD-2 complex dimer that in turn prevents TLR4-mediated signaling. The presence of LTA that poorly induces TLR2-mediated activation but inhibits TLR4 signaling provides insight into the role of Gram-positive bacteria in suppressing inflammation induced by Gram-negative bacteria in organs such as the intestines where serum is absent.


Asunto(s)
Lipopolisacáridos , Receptor Toll-Like 2 , Animales , Ratones , Humanos , Receptor Toll-Like 2/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Ácidos Teicoicos/farmacología
6.
Vet Immunol Immunopathol ; 258: 110573, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36840993

RESUMEN

Effects of Holstein genotype on interleukin-1ß response were assessed by ex-vivo stimulation of whole blood with lipopolysaccharide (LPS), lipoteichoic acid (LTA), or sonicated, heat-killed Gram-negative or Gram-positive bacteria. Holstein genotypes were unselected Holsteins (UH, n = 14) not subjected to selection pressures since the mid-1960s and contemporary Holsteins (CH, n = 13). Milk yield of UH and CH cows differ by more than 4500 kg/lactation. Whole blood was mixed with 0.01 µg LPS, 10 µg LTA or 2.5 × 106 CFU of sonicated, heat-killed E. coli, K. pneumoniae, S. marcescens, S. aureus, S. dysgalactiae, or S. uberis per mL of blood and incubated (4 h, 37 °C). Plasma IL-1ß was quantified by ELISA and log10-transformed concentrations analyzed with a multivariate linear mixed effects model. Responses to bacteria were greater than responses to LPS or LTA. Responses to LPS, LTA and the Gram-negative stimulants were greater in UH than in CH cows while responses to the Gram-positive bacteria did not differ between Holstein genotypes. In both genotypes, strong correlations were detected among IL-1ß responses to the Gram-negative stimulants and to LTA. There were strong correlations among IL-1ß responses to the Gram-positive bacteria in CH cows but only between S. aureus and S. dysgalactiae in UH cows. The IL-1ß response to S. uberis was highly correlated with responses to all of the Gram-negative stimulants in CH cows but only with E. coli in the UH cows. The reduced immune response could make contemporary cows more susceptible to infection by Gram-negative bacteria. Results confirm selection practices since the mid-1960s have altered immune response in the Holstein, at least to Gram-negative bacteria, and validate the need for additional studies to further evaluate the impacts of these selection practices on immune function in contemporary Holsteins.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Femenino , Animales , Bovinos , Lipopolisacáridos/farmacología , Staphylococcus aureus , Interleucina-1beta/genética , Calor , Ácidos Teicoicos/farmacología , Bacterias Gramnegativas , Genotipo
7.
Exp Cell Res ; 420(1): 113352, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108712

RESUMEN

Staphylococcus aureus causes subclinical mastitis; lipoteichoic acid (LTA) from S. aureus causes mastitis-like adverse effects on milk production by mammary epithelial cells (MECs). Here, we investigated the early effects of LTA from S. aureus on mouse MECs using a culture model, in which MECs produced milk components and formed less permeable tight junctions (TJs). In MECs of this model, Toll-like receptor 2 (receptor for LTA), was localized on the apical membrane, similar to MECs in lactating mammary glands. LTA weakened the TJ barrier within 1 h, concurrently with localization changes of claudin 4. LTA treatment for 24 h increased αS1-casein and decreased ß-casein levels. In MECs exposed to LTA, the activation level of signal transducer and activator of transcription 5 (major transcriptional factor for milk production) was low. LTA activated signaling pathways related to cell survival (extracellular signal-regulated kinase, heat shock protein 27, and Akt) and inflammation (p38, c-Jun N-terminal kinase, and nuclear factor κB). Thus, LTA caused abnormalities in casein production and weakened the TJs by affecting multiple signaling pathways in MECs. LTA-induced changes in signaling pathways were not uniform in all MECs. Such complex and semi-negative actions of LTA may contribute to subclinical mastitis caused by S. aureus.


Asunto(s)
Mastitis , Staphylococcus aureus , Animales , Caseínas/metabolismo , Caseínas/farmacología , Claudina-4/metabolismo , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lactancia/metabolismo , Lipopolisacáridos/farmacología , Glándulas Mamarias Animales , Mastitis/metabolismo , Ratones , Leche/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/farmacología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
8.
Vet Immunol Immunopathol ; 251: 110463, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35878562

RESUMEN

Effects of Holstein genotype on innate immune response were assessed with ex-vivo lipopolysaccharide (LPS) and lipoteichoic acid (LTA) stimulation of whole blood from unselected (UH, n = 10) and contemporary (CH, n = 11) Holsteins that differ in production by more than 4,500 kg/lactation. Blood was collected at -14, 7, 28, and 49 days in milk (DIM), mixed with a pathogen-associated molecular pattern (PAMP) molecule (0.01 or 1.0 µg LPS or 10 or 100 µg LTA per mL blood) and incubated (4 h, 37 °C). Plasma cytokines were quantified by ELISA, log10-transformed and analyzed by repeated measures with DIM as the repeated effect. Cytokine responses increased with PAMP dose and decreased as DIM increased. There was a genotype by LPS dose interaction for IL-1ß as response to the low dose was greater in UH but did not differ between genotypes for the high dose. The IL-1ß response was greater while the IL-6 response to LTA tended to be greater in UH than in CH cows. The more negative energy balance of CH cows did not impact genotype difference in cytokine responses. Results indicate selection since the mid-1960s has decreased ex-vivo, whole blood cytokine response of CH cows to LPS and to LTA.


Asunto(s)
Citocinas , Lipopolisacáridos , Animales , Bovinos , Citocinas/genética , Femenino , Genotipo , Lipopolisacáridos/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos , Ácidos Teicoicos/farmacología
9.
Cell Immunol ; 376: 104535, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35537323

RESUMEN

Neutrophils primarily act as first responders in acute infection and directly maintain inflammatory responses. However, a growing body of evidence suggests that neutrophils also bear the potential to mediate chronic inflammation by exhibiting memory-like features. We now asked whether bone marrow-derived murine neutrophils can be primed by lipoteichoic acid (LTA) from gram-positive S. aureus. We found that low-dose (1 ng/mL) LTA-priming promoted increased production of pro-inflammatory mediators (TNF-α, IL-6, ROS), whereas high-dose (10 µg/mL) priming resulted in opposing reactions marked by increased IL-10 and suppressed pro-inflammatory mediators upon a second stimulus. A similar pattern of pro-inflammatory activation (trained sensitivity) and anti-inflammatory properties (tolerance) was recapitulated in cellular functional in vitro assays (transmigration and phagocytosis). Priming by LTA correlated with TLR2/MyD88-mediated regulation of NFκB-p65 through intermediate PI3Ks/MAPK. Collectively, our data suggest a previously unknown capacity of neutrophils to be differentially primed by varying doses of LTA, endorsing memory-like features in neutrophils.


Asunto(s)
Neutrófilos , Staphylococcus aureus , Animales , Médula Ósea , Mediadores de Inflamación , Lipopolisacáridos/farmacología , Ratones , Ácidos Teicoicos/farmacología
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(2): 235-241, 2022 Mar.
Artículo en Chino | MEDLINE | ID: mdl-35332723

RESUMEN

Objective: To study the role and possible mechanism of dltD in the acid tolerance of Streptococcus mutans 593 (SM593), and to provide a theoretical basis for the ecological prevention and control of dental caries by constructing the dltD gene deletion strain of SM593 (SM593-ΔdltD). Methods: 1) SM593-Δ dltD was constructed by homologous recombination. 2) The growth curve of SM593 dltD and SM593-Δ dltD under different pH culture conditions was drawn by the automatic growth curve analyzer to compare their acid tolerance. Colony forming unit (CFU) at different time points was used to calculate the survival rate and to compare the acid tolerance response (ATR) of SM593 and SM593-Δ dltD. 3) Under different pH conditions, glycolysis experiments, proton permeability test and H +-ATPase activity test were conducted to make preliminary exploration into the mechanisms of how dltD gene deletion may affect acid tolerance. Results: 1) PCR and sequencing results showed that the SM593-Δ dltD was constructed successfully. 2) With decreasing pH value of the culture medium, the growth of SM593-Δ dltD slowed down. When the pH value of the culture medium was 5.0, SM593-Δ dltD was not allowed to grow, and its acid tolerance was lower than that of SM593. Compared with SM593, the ATR capability of SM593-Δ dltD was decreased. 3) SM593 dltD and SM593-Δ dltD did not show obvious difference in their glycolysis ability under different pH conditions. Compared with SM593 dltD, the proton permeability of SM593-Δ dltD under different pH conditions was increased significantly (P<0.05), and H +-ATPase activity decreased significantly (P<0.05). Conclusion: Compared with SM593 dltD, SM593-Δ dltD showed obvious decrease in acid tolerance, which may be caused by the significant increase in proton permeability and significant decrease in the H +-ATPase activity induced by the deletion of the dltD gene, hence reducing its ability to maintain intracellular pH homeostasis.


Asunto(s)
Caries Dental , Streptococcus mutans , Humanos , Concentración de Iones de Hidrógeno , Lipopolisacáridos , Streptococcus mutans/genética , Ácidos Teicoicos/farmacología
11.
Nutrients ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35277082

RESUMEN

Lipoteichoic acid (LTA) from Gram-positive bacteria exerts different immune effects depending on the bacterial source from which it is isolated. Lacticaseibacillus rhamnosus GG LTA (LGG-LTA) oral administration reduces UVB-induced immunosuppression and skin tumor development in mice. In the present work, we evaluate the immunomodulatory effect exerted by LGG-LTA in dendritic cells (DC) and T cells, both in vitro and in the gut-associated lymphoid tissue (GALT). During cell culture, LTA-stimulated BMDC increased CD86 and MHC-II expression and secreted low levels of pro and anti-inflammatory cytokines. Moreover, LTA-treated BMDC increased T cell priming capacity, promoting the secretion of IL-17A. On the other hand, in orally LTA-treated mice, a decrease in mature DC (lamina propria and Peyer's patches) was observed. Concomitantly, an increase in IL-12p35 and IFN-γ transcription was presented (lamina propria and Peyer's Patches). Finally, an increase in the number of CD103+ DC was observed in Peyer's patches. Together, our data demonstrate that LGG-LTA activates DC and T cells. Moreover, we show that a Th1-biased immune response is triggered in vivo after oral LTA administration. These effects justify the oral LTA activity previously observed.


Asunto(s)
Células Dendríticas , Linfocitos T , Animales , Lipopolisacáridos/farmacología , Ratones , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/farmacología
12.
Cells ; 10(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34831486

RESUMEN

Probiotics are defined as microorganisms with beneficial health effects when consumed by humans, being applied mainly to improve allergic or intestinal diseases. Due to the increasing resistance of pathogens to antibiotics, the abuse of antibiotics becomes inefficient in the skin and in systemic infections, and probiotics may also provide the protective effect for repairing the healing of infected cutaneous wounds. Here we selected two Lactobacillus strains, L. plantarum GMNL-6 and L. paracasei GMNL-653, in heat-killed format to examine the beneficial effect in skin wound repair through the selection by promoting collagen synthesis in Hs68 fibroblast cells. The coverage of gels containing heat-killed GMNL-6 or GMNL-653 on the mouse tail with experimental wounds displayed healing promoting effects with promoting of metalloproteinase-1 expression at the early phase and reduced excessive fibrosis accumulation and deposition in the later tail-skin recovery stage. More importantly, lipoteichoic acid, the major component of Lactobacillus cell wall, from GMNL-6/GMNL-653 could achieve the anti-fibrogenic benefit similar to the heat-killed bacteria cells in the TGF-ß stimulated Hs68 fibroblast cell model. Our study offers a new therapeutic potential of the heat-killed format of Lactobacillus as an alternative approach to treating skin healing disorders.


Asunto(s)
Calor , Lactobacillus/fisiología , Piel/patología , Cicatrización de Heridas , Actinas/metabolismo , Animales , Línea Celular , Pared Celular/química , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibrosis , Humanos , Lipopolisacáridos/farmacología , Masculino , Metaloproteinasa 1 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Probióticos/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Cola (estructura animal) , Ácidos Teicoicos/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
Cells ; 10(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34831186

RESUMEN

Macrophage stimulation by pathogen-associated molecular patterns (PAMPs) like lipopolysaccharide (LPS) or lipoteichoic acid (LTA) drives a proinflammatory phenotype and induces a metabolic reprogramming to sustain the cell's function. Nevertheless, the relationship between metabolic shifts and gene expression remains poorly explored. In this context, the metabolic enzyme ATP citrate lyase (ACLY), the producer of citrate-derived acetyl-coenzyme A (CoA), plays a critical role in supporting a proinflammatory response. Through immunocytochemistry and cytosol-nucleus fractionation, we found a short-term ACLY nuclear translocation. Protein immunoprecipitation unveiled the role of nuclear ACLY in NF-κB acetylation and in turn its full activation in human PBMC-derived macrophages. Notably, sepsis in the early hyperinflammatory phase triggers ACLY-mediated NF-κB acetylation. The ACLY/NF-κB axis increases the expression levels of proinflammatory genes, including SLC25A1-which encodes the mitochondrial citrate carrier-and ACLY, thus promoting the existence of a proinflammatory loop involving SLC25A1 and ACLY genes.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Inflamación/genética , Macrófagos/metabolismo , FN-kappa B/metabolismo , ATP Citrato (pro-S)-Liasa/genética , Acetilación/efectos de los fármacos , Anciano , Núcleo Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Sepsis/genética , Ácidos Teicoicos/farmacología , Regulación hacia Arriba/genética , Adulto Joven
14.
Microbiol Spectr ; 9(2): e0052821, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668723

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 µg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 µg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 µg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly ß-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of ß-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, ß-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the ß-conformation. By experimentally increasing the proportion of ß-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the ß-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.


Asunto(s)
Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/farmacología , Staphylococcus aureus Resistente a Vancomicina/efectos de los fármacos , Staphylococcus aureus Resistente a Vancomicina/metabolismo , Vancomicina/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Glicosilación , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Peptidoglicano/metabolismo , Infecciones Estafilocócicas , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Vancomicina/genética
15.
Cells ; 10(8)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34440679

RESUMEN

The liver with resident tissue macrophages is the site of vivid innate immunity, activated also by pathogen-associated molecular patterns (PAMPs) leaking through the intestinal barrier. As gut-derived inflammatory diseases are of outstanding importance in broiler chickens, the present study aimed to establish a proper hepatic inflammatory model by comparing the action of different PAMPs from poultry pathogens on chicken 2D and 3D primary hepatocyte-non-parenchymal cell co-cultures, the latter newly developed with a magnetic bioprinting method. The cultures were challenged by the bacterial endotoxins lipopolysaccharide (LPS) from Escherichia coli, lipoteichoic acid (LTA) from Staphylococcus aureus and by enterotoxin (ETxB) from Escherichia coli, Salmonella Typhimurium derived flagellin, phorbol myristate acetate (PMA) as a model proinflammatory agent and polyinosinic polycytidylic acid (poly I:C) for mimicking viral RNA exposure. Cellular metabolic activity was assessed with the CCK-8 test, membrane damage was monitored with the lactate dehydrogenase (LDH) leakage assay and interleukin-6 and -8 (Il-6 and -8) concentrations were measured in cell culture medium with a chicken specific ELISA. Both LPS and LTA increased the metabolic activity of the 3D cultures, concomitantly decreasing the LDH leakage, while in 2D cultures ETxB stimulated, PMA and poly I:C depressed the metabolic activity. Based on the moderately increased extracellular LDH activity, LTA seemed to diminish cell membrane integrity in 2D and poly I:C in both cell culture models. The applied endotoxins remarkably reduced the IL-8 release of 3D cultured cells, suggesting the effective metabolic adaptation and the presumably initiated anti-inflammatory mechanisms of the 3D spheroids. Notwithstanding that the IL-6 and IL-8 production of 2D cells was mostly not influenced by the endotoxins used, only the higher LTA dose was capable to evoke an IL-8 surge. Flagellin, PMA and poly I:C exerted proinflammatory action in certain concentrations in both 2D and 3D cultures, reflected by the increased cellular IL-6 release. Based on these data, LTA, flagellin, PMA and poly I:C can be considered as potent candidates to induce inflammation in chicken primary hepatic cell cultures, while LPS failed to trigger proinflammatory cytokine production, suggesting the relatively high tolerance of avian liver cells to certain bacterial endotoxins. These results substantiate that the established 3D co-cultures seemed to be proper tools for testing potential proinflammatory molecules; however, the remarkable differences between 2D and 3D models should be addressed and further studied.


Asunto(s)
Pollos/inmunología , Inmunidad Innata/efectos de los fármacos , Hígado/efectos de los fármacos , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Pollos/metabolismo , Técnicas de Cocultivo , Enterotoxinas/farmacología , Flagelina/farmacología , Mediadores de Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Hígado/inmunología , Hígado/metabolismo , Masculino , Poli I-C/farmacología , Esferoides Celulares , Ácidos Teicoicos/farmacología , Acetato de Tetradecanoilforbol/farmacología
16.
Fish Shellfish Immunol ; 115: 104-111, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34062237

RESUMEN

C-type lectins (CTLs) are important pathogen pattern recognition receptors that recognize carbohydrate structures. In present study, a C-type lectin domain family 4 member E-like gene from turbot, which tentatively named SmCLEC4E-like (SmCLEC4EL), was identified, and the expressional and functional analyses were performed. In our results, SmCLEC4EL showed conserved synteny with CLEC4E-like genes from several fish species in genome, and possessed a typical type II transmembrane CTL architecture: an N-terminal intracellular region, a transmembrane domain and a C-terminal extracellular region which contained a predicted carbohydrate recognition domain (CRD). In addition, SmCLEC4EL exhibited the highest expression level in spleen in healthy fish, and showed significantly induced expression in mucosal tissues, intestine and skin, under bacteria challenge. Finally, the recombinant SmCLEC4EL protein combined with LPS, PGN, LTA and five different kinds of bacteria in a dose-dependent manner, and agglutinated these bacteria strains in the presence of calcium. These findings collectively demonstrated that SmCLEC4EL, a calcium-dependent CTL, could function as a pattern recognition receptor in pathogen recognition and participate in host anti-bacteria immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Peces Planos/genética , Peces Planos/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/veterinaria , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica/veterinaria , Lectinas Tipo C/química , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Filogenia , Alineación de Secuencia/veterinaria , Ácidos Teicoicos/farmacología
17.
Sci Rep ; 11(1): 13353, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172796

RESUMEN

Periodontitis is an inflammatory disease associated with severe alveolar bone loss and is dominantly induced by lipopolysaccharide from Gram-negative bacteria; however, the role of Gram-positive bacteria in periodontal bone resorption remains unclear. In this study, we examined the effects of lipoteichoic acid (LTA), a major cell-wall factor of Gram-positive bacteria, on the progression of inflammatory alveolar bone loss in a model of periodontitis. In coculture of mouse primary osteoblasts and bone marrow cells, LTA induced osteoclast differentiation in a dose-dependent manner. LTA enhanced the production of PGE2 accompanying the upregulation of the mRNA expression of mPGES-1, COX-2 and RANKL in osteoblasts. The addition of indomethacin effectively blocked the LTA-induced osteoclast differentiation by suppressing the production of PGE2. Using ex vivo organ cultures of mouse alveolar bone, we found that LTA induced alveolar bone resorption and that this was suppressed by indomethacin. In an experimental model of periodontitis, LTA was locally injected into the mouse lower gingiva, and we clearly detected alveolar bone destruction using 3D-µCT. We herein demonstrate a new concept indicating that Gram-positive bacteria in addition to Gram-negative bacteria are associated with the progression of periodontal bone loss.


Asunto(s)
Pérdida de Hueso Alveolar/inducido químicamente , Pared Celular/metabolismo , Bacterias Grampositivas/metabolismo , Inflamación/inducido químicamente , Lipopolisacáridos/farmacología , Osteoblastos/efectos de los fármacos , Prostaglandinas E/metabolismo , Ácidos Teicoicos/farmacología , Pérdida de Hueso Alveolar/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Osteoblastos/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Periodontitis/inducido químicamente , Periodontitis/metabolismo , Células RAW 264.7
18.
Neurochem Res ; 46(5): 1224-1238, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33835366

RESUMEN

The hormone hepcidin plays a central role in controlling iron homeostasis. Iron-mediated hepcidin synthesis is triggered via the BMP/SMAD pathway. At inflammation, mainly IL-6 pro-inflammatory cytokine mediates the regulation of hepcidin via the JAK/STAT signalling pathway. Microglial cells of the central nervous system are able to recognize a broad spectrum of pathogens via toll-like receptors and initiate inflammatory response. Although the regulation of hepcidin synthesis is well described in many tissues, little is known about the inflammation mediated hepcidin regulation in microglia. In this study, we investigated the pathways, which are involved in HAMP regulation in BV2 microglia due to inflammatory mediators and the possible relationships between the iron regulatory pathways. Our results showed that IL-6 produced by resting BV2 cells was crucial in maintaining the basal HAMP expression and hepcidin secretion. It was revealed that IL-6 neutralization decreased both STAT3 and SMAD1/5/9 phosphorylation suggesting that IL-6 proinflammatory cytokine is necessary to maintain SMAD1/5/9 activation. We revealed that IL-6 influences BMP6 and TMPRSS6 protein levels, moreover it modified TfR2 expression, as well. In this study, we revealed that BV2 microglia increased their hepcidin secretion upon IL-6 neutralization although the major regulatory pathways were inhibited. Based on our results it seems that both at inflammation and at normal condition the absence of IL-6 triggered HAMP transcription and hepcidin secretion via the NFκB pathway and possibly by the autocrine effect of TNFα cytokine on BV2 microglia.


Asunto(s)
Proteína Morfogenética Ósea 6/metabolismo , Hepcidinas/metabolismo , Interleucina-6/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Receptores de Transferrina/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Microglía/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Ácidos Teicoicos/farmacología
19.
Cancer Immunol Immunother ; 70(11): 3303-3312, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33855601

RESUMEN

Pancreatic adenocarcinoma is one of the leading causes of cancer-related deaths, and its therapy remains a challenge. Our proposed therapeutic approach is based on the intratumoral injections of mannan-BAM, toll-like receptor ligands, and anti-CD40 antibody (thus termed MBTA therapy), and has shown promising results in the elimination of subcutaneous murine melanoma, pheochromocytoma, colon carcinoma, and smaller pancreatic adenocarcinoma (Panc02). Here, we tested the short- and long-term effects of MBTA therapy in established subcutaneous Panc02 tumors two times larger than in previous study and bilateral Panc02 models as well as the roles of CD4+ and CD8+ T lymphocytes in this therapy. The MBTA therapy resulted in eradication of 67% of Panc02 tumors with the development of long-term memory as evidenced by the rejection of Panc02 cells after subcutaneous and intracranial transplantations. The initial Panc02 tumor elimination is not dependent on the presence of CD4+ T lymphocytes, although these cells seem to be important in long-term survival and resistance against tumor retransplantation. The resistance was revealed to be antigen-specific due to its inability to reject B16-F10 melanoma cells. In the bilateral Panc02 model, MBTA therapy manifested a lower therapeutic response. Despite numerous combinations of MBTA therapy with other therapeutic approaches, our results show that only simultaneous application of MBTA therapy into both tumors has potential for the treatment of the bilateral Panc02 model.


Asunto(s)
Adenocarcinoma/patología , Antígenos CD40/antagonistas & inhibidores , Imidazoles/farmacología , Lipopolisacáridos/farmacología , Mananos/farmacología , Neoplasias Pancreáticas/patología , Poli I-C/farmacología , Ácidos Teicoicos/farmacología , Adenocarcinoma/inmunología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inmunoterapia , Ligandos , Ratones , Neoplasias Pancreáticas/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Receptores Toll-Like , Neoplasias Pancreáticas
20.
Gynecol Obstet Invest ; 86(1-2): 139-148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33540416

RESUMEN

OBJECTIVES: Vitamin D has potent immunoregulatory features and modulates innate and adaptive immune responses. There is a significant association between intrauterine infection-associated inflammatory responses and pregnancy complications such as abortion and preterm labor. Here, we investigated how 1,25 (OH)2 D3 could modulate inflammatory responses of endometrial cells. DESIGN: This is an in vitro experimental study. Endometrial stromal cells (ESCs) and whole endometrial cells (WECs) were collected from 15 apparently normal women, and the immunomodulatory effects of 1,25 (OH)2 D3 on lipopolysaccharide (LPS)- or lipoteichoic acid (LTA)-treated ESCs and WECs were investigated. Participants/Materials, Setting, and Methods: Women with no history of abortion, infertility, endometriosis, or sign of vaginal infection were enrolled in this study. Endometrial samples were collected by gynecologists using a Pipelle pipette in the proliferative phase of the menstrual cycle. WECs and ESCs were collected and treated with either LPS or LTA. The levels of IL-6, IL-8, and TNF-α in culture supernatants were quantified using the ELISA technique. TLR2, TLR4, and MyD88 expressions were assessed by RT-qPCR. TLR4 expression at the protein level was studied by the Western blot technique. RESULTS: 1,25 Dihydroxycholecalciferol (1,25 (OH)2 D3) significantly reduced TNF-α production in LPS-activated ESCs and TNF-α and IL-6 production by LTA-stimulated WECs. In contrast, 1,25 (OH)2 D3 pretreatment increased the production of IL-8 by LPS- and LTA-stimulated endometrial cells. 1,25 (OH)2 D3 pretreatment markedly reduced LPS-induced TLR4 protein expression by ESCs. LPS treatment of ESCs significantly induced MyD88 gene expression. This effect was reversed when these cells were pretreated with 1,25 (OH)2 D3 before stimulation with LPS. LIMITATIONS: Because of the small size of samples, doing experiments all together on some samples was not feasible. Confirmation of the results obtained here needs well-designed in vivo studies. CONCLUSIONS: 1,25 (OH)2 D3 is an immunomodulatory molecule essential for maintaining endometrial immune homeostasis by controlling potentially harmful inflammatory responses associated with female reproductive tract infections.


Asunto(s)
Calcitriol/farmacología , Endometrio/inmunología , Inflamación/prevención & control , Receptor Toll-Like 2/efectos de los fármacos , Receptor Toll-Like 4/efectos de los fármacos , Adulto , Citocinas/biosíntesis , Citocinas/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/farmacología , Lipopolisacáridos/farmacología , Factor 88 de Diferenciación Mieloide/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/genética , Embarazo , Células del Estroma/efectos de los fármacos , Células del Estroma/fisiología , Ácidos Teicoicos/farmacología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...