Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.270
Filtrar
1.
Food Res Int ; 186: 114337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729718

RESUMEN

A major concern for wineries is haze formation in white wines due to protein instability. Despite its prevalent use, the conventional bentonite method has shortcomings, including potential alteration of color and aroma, slow processing times, and notable wine wastage. Zirconium oxide (ZrO2) effectively removes proteins without affecting wine characteristics. However, producing cost-effective ZrO2 materials with efficient protein removal capabilities poses a significant challenge. This research aims to assess the viability of designing a porous material impregnated with zirconia to remove turbidity-causing proteins effectively. For this purpose, the support material alone (Al2O3) and the zirconia-impregnated support (ZrO2/Al2O3) were subjected to different calcination temperatures. It was observed that high-temperature treatments (750 °C) enhanced wine stability and protein adsorption capacity. The optimal adsorbent achieved a notable reduction in turbidity, decreasing the ΔNTU from 42 to 18, alongside a significant 44 % reduction in the total protein content, particularly affecting proteins in the molecular weight range of 10 to 70 kDa. This result is attributed to modifying the textural properties of ZrO2/Al2O3, characterized by the reduction of acidic sites, augmented pore diameters from 4.81 to 7.74 nm, and the emergence of zirconia clusters across the surface of the porous support. In summary, this study presents the first application of zirconia on the alumina support surface for protein stabilization in white wine. Combining ZrO2/Al2O3 and a high-temperature treatment emerges as a promising, cost-efficient, and environmentally sustainable strategy for protein removal in white wine.


Asunto(s)
Óxido de Aluminio , Vino , Circonio , Vino/análisis , Circonio/química , Óxido de Aluminio/química , Adsorción , Estabilidad Proteica , Calor , Manipulación de Alimentos/métodos
2.
J Hazard Mater ; 471: 134455, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691931

RESUMEN

Bacteria-driven strategies have gained attention because of their effectiveness, viability, and cost-efficiency in the soil formation process of bauxite residues. However, further investigation is needed to enhance the extreme environment of bauxite residues and facilitate long-term sustainable development of bacteria. Here, soil, phosphogypsum, and leaf litter were selected as amendments, and soil and leaf litter were also used as bacterial inoculants in a 12-month microcosm experiment with bauxite residues. The results showed significant improvements in physicochemical properties, including alkalinity, organic carbon content, nutrient availability, and physical structure, when bauxite residue was mixed with amendments, particularly when different amendments were combined. The diversity, structure, and function of the bacterial community were significantly enhanced with the amelioration of the physicochemical properties. In the treated samples, especially those treated with a combination of different amendments, the relative abundance (RA) of alkali-resistant bacterial taxa decreased, whereas the RA of some common taxa found in normal soil increased, and the structure of the bacterial community gradually changed towards that of normal soil. A strong correlation between physicochemical and biological properties was found. These findings suggest that rational application of soil, phosphogypsum, and leaf litter effectively improves the environmental conditions of bauxite residues and facilitate long-term sustainable bacterial communities.


Asunto(s)
Óxido de Aluminio , Bacterias , Microbiología del Suelo , Óxido de Aluminio/química , Hojas de la Planta/química , Sulfato de Calcio/química , Suelo/química , Fósforo/química
3.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38704848

RESUMEN

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Asunto(s)
Óxido de Aluminio , Resinas Compuestas , Pulido Dental , Saliva Artificial , Compuestos de Silicona , Propiedades de Superficie , Resinas Compuestas/química , Pulido Dental/métodos , Humanos , Saliva Artificial/química , Concentración de Iones de Hidrógeno , Óxido de Aluminio/química , Compuestos de Silicona/química , Compuestos Inorgánicos de Carbono/química , Ensayo de Materiales , Nanocompuestos/química , Ácido Cítrico/química , Saliva/enzimología , Saliva/metabolismo , Saliva/química , Erosión de los Dientes , Goma/química , Materiales Dentales/química
4.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719407

RESUMEN

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Asunto(s)
Óxido de Aluminio , Técnicas Biosensibles , Dendrímeros , Oro , MicroARNs , MicroARNs/análisis , Oro/química , Dendrímeros/química , Óxido de Aluminio/química , Humanos , Técnicas Biosensibles/métodos , Nanopartículas del Metal/química , Límite de Detección , Técnicas Electroquímicas/métodos , Nanoestructuras/química
5.
Luminescence ; 39(5): e4757, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712382

RESUMEN

The orange luminescence of α-Al2O3 under UV excitation is characterized by a 2.07-eV orange broadband emission that has not yet been elucidated. This emission is present in natural and synthetic crystals and powders, as well as in Be-treated samples. All orange-luminescent materials have low Fe concentration (mostly <1000 ppm) with traces of divalent cations, mostly Mg, or Be in Be-diffused material (dozens of ppm). Mg2+, Mn2+, and Be2+ cations substitute for trivalent Al. To accommodate the charge deficit, several defects are created, including oxygen vacancies also called F centers. Indeed, our excitation spectra revealed the presence of several different F centers (F, F+, and clustered F2, F2 +, F2 2+) in those samples. However, the thermal stability and the measured luminescence lifetimes do not match with previously reported characteristics of isolated F centers. Based on our experiments, we suggest that a complex aggregate of two F centers (F2 2+) trapped at divalent cations is a major cause of this uncommon microsecond lifetime emission, even if a variety of other defects, including Cr3+, V3+, or interstitial Al3+, are present.


Asunto(s)
Óxido de Aluminio , Luminiscencia , Óxido de Aluminio/química , Cationes Bivalentes/química , Mediciones Luminiscentes
6.
BMC Oral Health ; 24(1): 513, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698366

RESUMEN

BACKGROUND: This study aims to evaluate the effect of surface treatment and resin cement on the shear bond strength (SBS) and mode of failure of polyetheretherketone (PEEK) to lithium disilicate ceramic (LDC). This is suggested to study alternative veneering of PEEK frameworks with a ceramic material. METHODS: eighty discs were prepared from PEEK blank and from lithium disilicate ceramic. Samples were divided into four groups according to surface treatment: Group (A) air abraded with 110 µm Al2O3, Group (AP) air abrasion and primer application, Group (S) 98% sulfuric acid etching for 60 s, Group (SP) Sulfuric acid and primer. Each group was subdivided into two subgroups based on resin cement type used for bonding LDC:1) subgroup (L) self- adhesive resin cement and 2) subgroup (B) conventional resin cement (n = 10). Thermocycling was done for all samples. The bond strength was assessed using the shear bond strength test (SBS). Failure mode analysis was done at 50X magnification with a stereomicroscope. Samples were chosen from each group for scanning electron microscope (SEM). The three-way nested ANOVA followed by Tukey's post hoc test were used for statistical analysis of results. Comparisons of effects were done utilizing one way ANOVA and (p < 0.05). RESULTS: The highest mean of shear bond strength values was demonstrated in Group of air abrasion with primer application using conventional resin cement (APB) (12.21 ± 2.14 MPa). Sulfuric acid groups showed lower shear bond strength values and the majority failed in thermocycling especially when no primer was applied. The failure mode analysis showed that the predominant failure type was adhesive failure between cement and PEEK, while the remaining was mixed failure between cement and PEEK. CONCLUSION: The air abrasion followed by primer application and conventional resin cement used for bonding Lithium Disilicate to PEEK achieved the best bond strength. Primer application did not have an effect when self-adhesive resin cement was used in air-abraded groups. Priming step is mandatory whenever sulfuric acid etching surface treatment is utilized for PEEK.


Asunto(s)
Benzofenonas , Recubrimiento Dental Adhesivo , Porcelana Dental , Análisis del Estrés Dental , Cetonas , Ensayo de Materiales , Polietilenglicoles , Polímeros , Cementos de Resina , Resistencia al Corte , Propiedades de Superficie , Recubrimiento Dental Adhesivo/métodos , Grabado Ácido Dental/métodos , Ácidos Sulfúricos , Cerámica/química , Abrasión Dental por Aire/métodos , Óxido de Aluminio , Coronas con Frente Estético , Grabado Dental/métodos , Humanos
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731513

RESUMEN

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Asunto(s)
Óxido de Aluminio , Fibroínas , Nanopartículas , Rayos Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Aluminio/química , Animales , Bombyx , Calor , Humanos , Seda/química
8.
Bioresour Technol ; 401: 130743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677388

RESUMEN

The cost of detoxification and neutralization poses certain challenges to the development of an economically viable lactic acid biorefinery with lignocellulosic biomass as feedstock. Herein, red mud, an alkaline waste, was explored as both a detoxifying agent and a neutralizer. Red mud treatment of lignocellulosic hydrolysate effectively removed the inhibitors generated in dilute acid pretreatment, improving the lactic acid productivity from 1.0 g/L·h-1 to 1.9 g/L·h-1 in later fermentation. In addition, red mud could replace CaCO3 as a neutralizer in lactic acid fermentation, which in turn enabled simultaneous bioleaching of valuable metals (Sc, Y, Nd, and Al) from red mud. The neutralization of alkali in red mud by acids retained in lignocellulosic hydrolysate and lactic acid produced from fermentation led to effective dealkalization, rendering a maximum alkali removal efficiency of 92.2 %. Overall, this study offered a win-win strategy for the valorization of both lignocellulosic biomass and red mud.


Asunto(s)
Ácido Láctico , Lignina , Lignina/química , Fermentación , Óxido de Aluminio/química , Biomasa , Hidrólisis , Residuos Industriales
9.
Chemosphere ; 357: 142042, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38621490

RESUMEN

The presence of dissolved organic nitrogen (DON) in stormwater treatment processes is a continuous challenge because of the intertwined nature of its decomposition, bioavailability, and biodegradability and its unclear molecular characteristics. In this paper, 21 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in combination with quantitative polymerase chain reaction was applied to elucidate the molecular change of DON and microbial population dynamics in a field-scale water filtration system filled with two specialty adsorbents for comparison in South Florida where the dry and wet seasons are distinctive annually. The adsorbents included CPS (clay-perlite and sand sorption media) and ZIPGEM (zero-valent iron and perlite-based green environmental media). Our study revealed that seasonal effects can significantly influence the dynamic characteristics and biodegradability of DON. The microbial population density in the filter beds indicated that three microbial species in the nitrogen cycle were particularly thrived for denitrification, dissimilatory nitrate reduction to ammonium, and anaerobic ammonium oxidation via competition and commensalism relationships during the wet season. Also, there was a decrease in the compositional complexity and molecular weight of the DON groups (CnHmOpN1, CnHmOpN2, CnHmOpN3, and CnHmOpN4), revealed by the 21 T FT-ICR MS bioassay, driven by a microbial population quantified by polymerase chain reaction from the dry to the wet season. These findings indirectly corroborate the assumption that the metabolism of microorganisms is much more vigorous in the wet season. The results affirm that the sustainable materials (CPS and ZIPGEM) can sustain nitrogen removal intermittently by providing a suitable living environment in which the metabolism of microbial species can be cultivated and enhanced to facilitate physico-chemical nitrogen removal across the two types of green sorption media.


Asunto(s)
Filtración , Nitrógeno , Nitrógeno/metabolismo , Filtración/métodos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Biodegradación Ambiental , Desnitrificación , Adsorción , Microbiota , Florida , Óxido de Aluminio/química , Eliminación de Residuos Líquidos/métodos
10.
Phys Med Biol ; 69(10)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38565123

RESUMEN

Objective.To evaluate the reduction in energy dependence and aging effect of the lithium salt of pentacosa-10,-12-diynoic acid (LiPCDA) films with additives including aluminum oxide (Al2O3), propyl gallate (PG), and disodium ethylenediaminetetracetate (EDTA).Approach. LiPCDA films exhibited energy dependence on kilovoltage (kV) and megavoltage (MV) photon energies and experienced deterioration over time. Evaluations were conducted with added Al2O3and antioxidants to mitigate these issues, and films were produced with and without Al2O3to assess energy dependence. The films were irradiated at doses of 0, 3, 6, and 12 cGy at photon energies of 75 kV, 105 kV, 6 MV, 10 MV, and 15 MV. For the energy range of 75 kV to 15 MV, the mean and standard deviation (std) were calculated and compared for the values normalized to the net optical density (netOD) at 6 MV, corresponding to identical dose levels. To evaluate the aging effect, PG and disodium EDTA were incorporated into the films: sample C with 1% PG, sample D with 2% PG, sample E with 0.62% disodium EDTA added to sample D, and sample F with 1.23% disodium EDTA added to sample D.Main results. Films containing Al2O3demonstrated a maximum 15.8% increase in mean normalized values and a 15.1% reduction in std, reflecting a greater netOD reduction at kV than MV energies, which indicates less energy dependence in these films. When the OD of sample 1-4 depending on the addition of PG and disodium EDTA, was observed for 20 weeks, the transmission mode decreased by 8.7%, 8.3%, 29.3%, and 27.3%, respectively, while the reflection mode was 5.4%, 3.0%, 37.0%, and 34.5%, respectively.Significance. Al2O3effectively reduced the voltage and MV energy dependence. PG was more effective than disodium EDTA in preventing the deterioration of film performance owing to the aging effect.


Asunto(s)
Dosimetría por Película , Dosimetría por Película/instrumentación , Dosimetría por Película/métodos , Óxido de Aluminio/química , Ácido Edético/química , Galato de Propilo , Fotones
11.
J Mech Behav Biomed Mater ; 154: 106533, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598918

RESUMEN

The present work aims to develop a production method of pre-sintered zirconia-toughened-alumina (ZTA) composite blocks for machining in a computer-aided design and computer-aided manufacturing (CAD-CAM) system. The ZTA composite comprised of 80% Al2O3 and 20% ZrO2 was synthesized, uniaxially and isostatically pressed to generate machinable CAD-CAM blocks. Fourteen green-body blocks were prepared and pre-sintered at 1000 °C. After cooling and holder gluing, a stereolithography (STL) file was designed and uploaded to manufacture disk-shaped specimens projected to comply with ISO 6872:2015. Seventy specimens were produced through machining of the blocks, samples were sintered at 1600 °C and two-sided polished. Half of the samples were subjected to accelerated autoclave hydrothermal aging (20h at 134 °C and 2.2 bar). Immediate and aged samples were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical and mechanical properties were assessed by reflectance tests and by biaxial flexural strength test, Vickers indentation and fracture toughness, respectively. Samples produced by machining presented high density and smooth surfaces at SEM evaluation with few microstructural defects. XRD evaluation depicted characteristic peaks of alpha alumina and tetragonal zirconia and autoclave aging had no effect on the crystalline spectra of the composite. Optical and mechanical evaluations demonstrated a high masking ability for the composite and a characteristic strength of 464 MPa and Weibull modulus of 17, with no significant alterations after aging. The milled composite exhibited a hardness of 17.61 GPa and fracture toughness of 5.63 MPa m1/2, which remained unaltered after aging. The synthesis of ZTA blocks for CAD-CAM was successful and allowed for the milling of disk-shaped specimens using the grinding method of the CAD-CAM system. ZTA composite properties were unaffected by hydrothermal autoclave aging and present a promising alternative for the manufacture of infrastructures of fixed dental prostheses.


Asunto(s)
Óxido de Aluminio , Cerámica , Ensayo de Materiales , Óxido de Aluminio/química , Cerámica/química , Propiedades de Superficie , Circonio/química , Diseño Asistido por Computadora , Materiales Dentales
12.
Eur J Med Res ; 29(1): 254, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659074

RESUMEN

BACKGROUND: Yttrium-stabilized zirconia (YSZ) and alumina are the most commonly used dental esthetic crown materials. This study aimed to provide detailed information on the comparison between yttrium-stabilized zirconia (YSZ) and alumina, the two materials most often used for esthetic crowns in dentistry. METHODOLOGY: The ground-state energy of the materials was calculated using the Cambridge Serial Total Energy Package (CASTEP) code, which employs a first-principles method based on density functional theory (DFT). The electronic exchange-correlation energy was evaluated using the generalized gradient approximation (GGA) within the Perdew (Burke) Ernzerhof scheme. RESULTS: Optimization of the geometries and investigation of the optical properties, dynamic stability, band structures, refractive indices, and mechanical properties of these materials contribute to a holistic understanding of these materials. Geometric optimization of YSZ provides important insights into its dynamic stability based on observations of its crystal structure and polyhedral geometry, which show stable configurations. Alumina exhibits a distinctive charge, kinetic, and potential (CKP) geometry, which contributes to its interesting structural framework and molecular-level stability. The optical properties of alumina were evaluated using pseudo-atomic computations, demonstrating its responsiveness to external stimuli. The refractive indices, reflectance, and dielectric functions indicate that the transmission of light by alumina depends on numerous factors that are essential for the optical performance of alumina as a material for esthetic crowns. The band structures of both the materials were explored, and the band gap of alumina was determined to be 5.853 eV. In addition, the band structure describes electronic transitions that influence the conductivity and optical properties of a material. The stability of alumina can be deduced from its bandgap, an essential property that determines its use as a dental material. Refractive indices are vital optical properties of esthetic crown materials. Therefore, the ability to understand their refractive-index graphs explains their transparency and color distortion through how the material responds to light..The regulated absorption characteristics exhibited by YSZ render it a highly attractive option for the development of esthetic crowns, as it guarantees minimal color distortion. CONCLUSION: The acceptability of materials for esthetic crowns is strongly determined by mechanical properties such as elastic stiffness constants, Young's modulus, and shear modulus. YSZ is a highly durable material for dental applications, owing to its superior mechanical strength.


Asunto(s)
Óxido de Aluminio , Coronas , Itrio , Circonio , Itrio/química , Circonio/química , Óxido de Aluminio/química , Humanos , Teoría Cuántica
13.
Mikrochim Acta ; 191(5): 247, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587580

RESUMEN

Alumina inorganic molecularly imprinted polymer (MIP) modified multi-walled carbon nanotubes (MWCNTs) on a glassy carbon electrode (MWCNTs-Al2O3-MIP/GCE) was firstly designed and fabricated by one-step electro deposition technique for the detection of uric acid (UA) in sweat. The UA templates were embedded within the inorganic MIP by co-deposition with Al2O3. Through the evaluation of morphology and structure by Field Emission Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM), it was verified that the specific recognition sites can be fabricated in the electrodeposited Al2O3 molecular imprinted layer. Due to the high selectivity of molecular imprinting holes, the MWCNTs-Al2O3-MIP/GCE electrode demonstrated an impressive imprinting factor of approximately 2.338 compared to the non-molecularly imprinted glassy carbon electrode (MWCNTs-Al2O3-NIP/GCE) toward uric acid detection. Moreover, it exhibited a remarkable limit of detection (LOD) of 50 nM for UA with wide detection range from 50 nM to 600 µM. The MWCNTs-Al2O3-MIP/GCE electrode also showed strong interference resistance against common substances found in sweat. These results highlight the excellent interference resistance and selectivity of MWCNTs-Al2O3-MIP/GCE sensor, positioning it as a novel sensing platform for non-invasive uric acid detection in human sweat.


Asunto(s)
Nanotubos de Carbono , Fosfatos , Sudor , Humanos , Polímeros Impresos Molecularmente , Ácido Úrico , Óxido de Aluminio
14.
Environ Pollut ; 349: 123903, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38599272

RESUMEN

To investigate watershed remediation within a Total Maximum Daily Load program, this study examined the field-scale filtration performance of two specialty absorbents. The goal was to simultaneously remove nutrients and biological pollutants along Canal 23 (C-23) in the St. Lucie River Basin, Florida. The filtration system installed in the C-23 river corridor was equipped with either clay-perlite with sand sorption media (CPS) or zero-valent iron and perlite green environmental media (ZIPGEM). Both media were formulated with varying combinations of sand, clay, perlite, and/or recycled iron based on distinct recipes. In comparison with CPS, ZIPGEM exhibited higher average removal percentages for nutrients. Findings indicated that ZIPGEM could remove total nitrogen up to 49.3%, total Kjeldahl nitrogen up to 67.1%, dissolved organic nitrogen (DON) up to 72.9%, total phosphorus up to 79.6%, and orthophosphate up to 73.2%. Both ZIPGEM and CPS demonstrated similar efficiency in eliminating biological pollutants, such as E. coli (both media exhibiting an 80% removal percentage) and chlorophyll a (both media achieving approximately 95% removal). Seasonality effects were also evident in nutrient removal efficiencies, particularly in the case of ammonia nitrogen; the negative removal efficiency of ammonia nitrogen from the fifth sampling event could be attributed to processes such as photochemical ammonification, microbial transformation, and mineralization of DON in wet seasons. Overall, ZIPGEM demonstrated a more stable nutrient removal efficiency than CPS in the phase of seasonal changes.


Asunto(s)
Restauración y Remediación Ambiental , Filtración , Nitrógeno , Fósforo , Dióxido de Silicio , Contaminantes Químicos del Agua , Filtración/métodos , Contaminantes Químicos del Agua/análisis , Restauración y Remediación Ambiental/métodos , Restauración y Remediación Ambiental/instrumentación , Florida , Purificación del Agua/métodos , Ríos/química , Óxido de Aluminio/química , Escherichia coli , Clorofila A , Arcilla/química , Hierro/química
15.
Bioresour Technol ; 400: 130676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588783

RESUMEN

This work focuses to the value added utilization of animal sewage sludge into gases, bio-oil and char using synthetic zeolite (ZSM-5 and Y-zeolite) and natural sourced (diatomite, kaolin, perlite) materials as catalysts. Pyrolysis was performed in a one-stage bench-scale reactor at temperatures of 400 and 600 °C. The catalyst was mixed with the raw material before the pyrolysis. Catalysts had a significant effect on the yield of products, because the amount of volatile products was higher in their presence, than without them. In case of kaolin, due to the structural transformation occurring between 500-600 °C, a significant increase in activity was observed in terms of pyrolysis reactions resulting in volatiles. The hydrogen content of the gas products increased significantly at a temperature of 600 °C and in thermo-catalysts pyrolysis. In the presence of catalysts, bio-oil had more favourable properties.


Asunto(s)
Aceites de Plantas , Polifenoles , Pirólisis , Aguas del Alcantarillado , Zeolitas , Zeolitas/química , Catálisis , Aguas del Alcantarillado/química , Biocombustibles , Óxido de Aluminio/química , Caolín/química , Calor , Dióxido de Silicio/química , Temperatura , Carbón Orgánico/química
16.
J Environ Manage ; 358: 120857, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626485

RESUMEN

Secondary alumina dross (SAD) has emerged as an alternative to bauxite in the production of flash setting admixtures (FSA), a critical admixture in shotcrete. However, the presence of hazardous components has hampered its large-scale adoption. This study conducted field tests at an FSA factory, utilizing SAD as the primary raw material, to evaluate the feasibility and environmental risks. The results confirmed that SAD can effectively replace bauxite in FSA production without compromising quality, as it closely resembled the chemical properties of bauxite. Emissions of fluorides, heavy metals, dioxins in flue gases during production met the relevant Chinese standards. The analysis of hazardous component distribution revealed that more than 50% of volatile components, such as Cl, Cd, Pb, and Zn, were directed into fly ash, exhibiting a significant internal accumulation pattern. In contrast, more than 95% of low-volatility components, including Cu, Cr, Mn, and F, were transferred to the FSA, and the introduction of CaCO3 was confirmed to effectively immobilize F. Moreover, the leaching risk of heavy metals and fluorides in FSA applications slightly increased but remained minimal and within acceptable limits. This technology provides an environmentally sound solution for the disposal of SAD.


Asunto(s)
Óxido de Aluminio , Metales Pesados , Óxido de Aluminio/química , Metales Pesados/análisis
17.
Biomaterials ; 308: 122569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626556

RESUMEN

In subunit vaccines, aluminum salts (Alum) are commonly used as adjuvants, but with limited cellular immune responses. To overcome this limitation, CpG oligodeoxynucleotides (ODNs) have been used in combination with Alum. However, current combined usage of Alum and CpG is limited to linear mixtures, and the underlying interaction mechanism between CpG and Alum is not well understood. Thus, we propose to chemically conjugate Alum nanoparticles and CpG (with 5' or 3' end exposed) to design combination adjuvants. Our study demonstrates that compared to the 3'-end exposure, the 5'-end exposure of CpG in combination adjuvants (Al-CpG-5') enhances the activation of bone-marrow derived dendritic cells (BMDCs) and promotes Th1 and Th2 cytokine secretion. We used the SARS-CoV-2 receptor binding domain (RBD) and hepatitis B surface antigen (HBsAg) as model antigens to demonstrate that Al-CpG-5' enhanced antigen-specific antibody production and upregulated cytotoxic T lymphocyte markers. Additionally, Al-CpG-5' allows for coordinated adaptive immune responses even at lower doses of both CpG ODNs and HBsAg antigens, and enhances lymph node transport of antigens and activation of dendritic cells, promoting Tfh cell differentiation and B cell activation. Our novel Alum-CPG strategy points the way towards broadening the use of nanoadjuvants for both prophylactic and therapeutic vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Hidróxido de Aluminio , Óxido de Aluminio , Células Dendríticas , Antígenos de Superficie de la Hepatitis B , Nanopartículas , Oligodesoxirribonucleótidos , Adyuvantes Inmunológicos/farmacología , Animales , Nanopartículas/química , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/farmacología , Antígenos de Superficie de la Hepatitis B/inmunología , Antígenos de Superficie de la Hepatitis B/metabolismo , Hidróxido de Aluminio/química , Hidróxido de Aluminio/farmacología , Ratones , Ratones Endogámicos C57BL , Femenino , Citocinas/metabolismo , Compuestos de Alumbre/química , Compuestos de Alumbre/farmacología
18.
Environ Sci Pollut Res Int ; 31(20): 29777-29793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592634

RESUMEN

The toxicity of aluminum oxide (Al2O3), copper oxide (CuO), iron oxide (Fe3O4), nickel oxide (NiO), zinc oxide (ZnO), and titanium dioxide (TiO2) nanoparticles (NPs) on amphibians and their interaction with high temperatures, remain unknown. In this study, we investigated the survival, developmental, behavioral, and histological reactions of Bufotes viridis embryos and larvae exposed to different NPs for a duration of 10 days, using lethal concentrations (LC25%, LC50%, and LC75% mg/L) under both ambient (AT: 18 °C) and high (HT: 21 °C) temperatures. Based on LC, NiONPs > ZnONPs > CuONPs > Al2O3NPs > TiO2NPs > Fe3O4NPs showed the highest mortality at AT. A similar pattern was observed at HT, although mortality occurred at lower concentrations and Fe3O4NPs were more toxic than TiO2NPs. The results indicated that increasing concentrations of NPs significantly reduced hatching rates, except for TiO2NPs. Survival rates decreased, abnormality rates increased, and developmental processes slowed down, particularly for NiONPs and ZnONPs, under HT conditions. However, exposure to low concentrations of Fe3O4NPs for up to 7 days, CuONPs for up to 72 h, and NiO, ZnONPs, and TiO2NPs for up to 96 h did not have a negative impact on survival compared with the control group under AT. In behavioral tests with larvae, NPs generally induced hypoactivity at AT and hyperactivity at HT. Histological findings revealed liver and internal gill tissue lesions, and an increase in the number of melanomacrophage centers at HT. These results suggest that global warming may exacerbate the toxicity of metal oxide NPs to amphibians, emphasizing the need for further research and conservation efforts in this context.


Asunto(s)
Cambio Climático , Nanopartículas del Metal , Animales , Nanopartículas del Metal/toxicidad , Anuros , Níquel/toxicidad , Óxido de Zinc/toxicidad , Larva/efectos de los fármacos , Titanio/toxicidad , Óxido de Aluminio/toxicidad
19.
Environ Sci Pollut Res Int ; 31(18): 27388-27402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512573

RESUMEN

In aluminum electrolysis, the iron-rich cover material is formed on the cover material and the steel rod connecting the carbon anode. Due to the high iron content in the iron-rich cover material, it differs from traditional cover material and thus requires harmless recycling and treatment. A process was proposed and used in this study to recovery F, Al, and Fe elements from the iron-rich cover material. This process involved aluminum sulfate solution leaching for fluorine recovery and alkali-acid synergistic leaching for α-Al2O3 and Fe2O3 recovery were obtained. The optimal leaching rates for F, Na, Ca, Fe, and Si were 93.92, 96.25, 94.53, 4.48, and 28.87%, respectively. The leaching solution and leaching residue were obtained. The leaching solution was neutralized to obtain the aluminum hydroxide fluoride hydrate (AHFH, AlF1.5(OH)1.5·(H2O)0.375). AHFH was calcined to form a mixture of AlF3 and Al2O3 with a purity of 96.14%. The overall recovery rate of F in the entire process was 92.36%. Additionally, the leaching residue was sequentially leached with alkali and acid to obtain the acid leach residue α-Al2O3. The pH of the acid-leached solution was adjusted to produce a black-brown precipitate, which was converted to Fe2O3 under a high-temperature calcination, and the recovery rate of Fe in the whole process was 94.54%. Therefore, this study provides a new method for recovering F, Al, and Fe in iron-rich cover material, enabling the utilization of aluminum hazardous waste sources.


Asunto(s)
Óxido de Aluminio , Aluminio , Electrólisis , Compuestos Férricos , Fluoruros , Compuestos Férricos/química , Aluminio/química , Fluoruros/química , Óxido de Aluminio/química , Hierro/química , Compuestos de Aluminio/química , Reciclaje
20.
Luminescence ; 39(3): e4724, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38523053

RESUMEN

For white light-rendering research activities, interpretation by using colored emitting materials is an alternative approach. But there are issues in designing the white color emitting materials. Particularly, differences in thermal and decay properties of discrete red, green, and blue emitting materials led to the quest for the search of a single-phased material, able to emit primary colors for white light generation. The current study is an effort to design a simple, single-phase, and cost-effective material with the tunable emission of primary colors by a series of Mg1-xBaxAl2O4:Mn2+ nanopowders. Doping of manganese ion (Mn2+) in the presence of the larger barium cation (Ba2+) at tetrahedral-sites of the spinel magnesium aluminate (MgAl2O4) structure led to the creation of antisite defects. Doped samples were found to have lower bandgaps compared with MgAl2O4, and hybridization of 3d-orbitals of Mn2+ with O(2p), Mg(2s)/Al(2s3p) was found to be responsible for narrowing the bandgap. The distribution of cations at various sites at random results in a variety of electronic transitions between the valance band and oxygen vacancies as well as electron traps produced the antisite defects. The suggested compositions might be used in white light applications since they have three emission bands with centers at 516 nm (green), 464 nm (blue) and 622 nm (red) at an excitation wavelength of 380 nm. A detailed discussion to analyze the effects of the larger cationic radius of Ba2+ on the lattice strain, unit cell parameters, and cell volumes using X-ray diffraction analysis is presented.


Asunto(s)
Óxido de Aluminio , Óxido de Magnesio , Cristalografía por Rayos X , Electrónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...