RESUMEN
Peroxynitrite, which is formed by the fast reaction between nitric oxide and superoxide anion, has been receiving increasing attention as a mediator of human diseases. An initial controversy about the possibility of free radical production from peroxynitrite in test tubes has been resolved, and presently it is important to establish whether peroxynitrite produces radicals in cells. Here we employed the EPR spin trapping methodology with 5,5-dimethylpyrroline N-oxide (DMPO) to study the interaction of peroxynitrite with human erythrocytes. The results confirmed previous findings in demonstrating that oxyhemoglobin is the main target of peroxynitrite in erythrocytes. As we first show here, the produced ferryl-hemoglobin oxidizes its own amino acids and, most probably, amino acids from other hemoglobin monomers to produce hemoglobin-tyrosyl and hemoglobin-cysteinyl radicals. In parallel, ferryl-hemoglobin also oxidizes intracellular glutathione to produce the glutathiyl radical. The EPR spectrum of both DMPO/(*)cysteinyl-hemoglobin (a(beta)(H) = 15.4 G) and DMPO/(*)tyrosyl-hemoglobin (a(beta)(H) = 8.8 G) radical adducts was characterized. It is proposed that erythrocytes can be efficient peroxynitrite scavengers in vivo through the coupled action of oxyhemoglobin and glutathione. Overall, the results indicate that, through the intermediacy of carbon dioxide and/or hemoproteins, oxidation of glutathione to the glutathiyl radical is likely to be an important consequence of peroxynitrite production in vivo.