Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 257: 112582, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38723329

RESUMEN

When subjected to γ-irradiation at cryogenic temperatures the oxygenated complexes of Cytochrome P450 CYP17A1 (CYP17A1) bound with either of the lyase substrates, 17α-Hydroxypregnenolone (17-OH PREG) or 17α-Hydroxyprogesterone (17-OH PROG) are shown to generate the corresponding lyase products, dehydroepiandrosterone (DHEA) and androstenedione (AD) respectively. The current study uses gas chromatography-mass spectrometry (GC/MS) to document the presence of the initial substrates and products in extracts of the processed samples. A rapid and efficient method for the simultaneous determination of residual substrate and products by GC/MS is described without derivatization of the products. It is also shown that no lyase products were detected for similarly treated control samples containing no nanodisc associated CYP17 enzyme, demonstrating that the product is formed during the enzymatic reaction and not by GC/MS conditions, nor the conditions produced by the cryoradiolysis process.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Esteroide 17-alfa-Hidroxilasa , Esteroide 17-alfa-Hidroxilasa/metabolismo , Deshidroepiandrosterona/química , Deshidroepiandrosterona/metabolismo , 17-alfa-Hidroxiprogesterona/química , 17-alfa-Hidroxiprogesterona/metabolismo , 17-alfa-Hidroxipregnenolona/química , 17-alfa-Hidroxipregnenolona/metabolismo , Androstenodiona/química , Androstenodiona/metabolismo , Humanos , Liasas/metabolismo , Liasas/química , Rayos gamma , Especificidad por Sustrato , Oxígeno/química
2.
Mol Hum Reprod ; 28(10)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36069625

RESUMEN

Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.


Asunto(s)
Liasas , Progesterona , 17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxiprogesterona/metabolismo , Alginatos/metabolismo , Fosfatasa Alcalina/metabolismo , Andrógenos/metabolismo , Androstenodiona/metabolismo , Animales , Proteínas Portadoras/metabolismo , Deshidroepiandrosterona/metabolismo , Estradiol/metabolismo , Femenino , Células de la Granulosa/metabolismo , Humanos , Inhibinas/metabolismo , Liasas/metabolismo , Ratones , Pregnenolona/metabolismo , Progesterona/metabolismo , Células Tecales
3.
Front Endocrinol (Lausanne) ; 12: 633785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149610

RESUMEN

Cytochrome P450s (CYPs) are an essential family of enzymes in the human body. They play a crucial role in metabolism, especially in human steroid biosynthesis. Reactions catalyzed by these enzymes are highly stereo- and regio-specific. Lack or severe malfunctions of CYPs can cause severe diseases and even shorten life. Hence, investigations on metabolic reactions and structural requirements of substrates are crucial to gain further knowledge on the relevance of different enzymes in the human body functions and the origin of diseases. One key enzyme in the biosynthesis of gluco- and mineralocorticoids is CYP21A2, also known as steroid 21-hydroxylase. To investigate the steric and regional requirements of substrates for this enzyme, we performed whole-cell biotransformation assays using a strain of fission yeast Schizosaccharomyces pombe recombinantly expressing CYP21A2. The progestogens progesterone, pregnenolone, and their 17α-hydroxy-derivatives were used as substrates. After incubation, samples were analyzed using gas chromatography coupled to mass spectrometry. For progesterone and 17α-hydroxyprogesterone, their corresponding 21-hydroxylated metabolites 11-deoxycorticosterone and 11-deoxycortisol were detected, while after incubation of pregnenolone and 17α-hydroxypregnenolone, no hydroxylated product was observed. Findings were confirmed with authentic reference material. Molecular docking experiments agree with these results and suggest that interaction between the 3-oxo group and arginine-234 of the enzyme is a strict requirement. The presented results demonstrate once more that the presence of an oxo-group in position 3 of the steroid is indispensable, while a 3-hydroxy group prevents hydroxylation in position C-21 by CYP21A2. This knowledge may be transferred to other CYP21A2 substrates and hence help to gain essential insights into steroid metabolism.


Asunto(s)
Corticoesteroides/metabolismo , Pregnenolona/farmacología , Esteroide 21-Hidroxilasa/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Dominio Catalítico , Sistema Enzimático del Citocromo P-450 , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidroxilación , Modelos Moleculares , Simulación del Acoplamiento Molecular , Pregnenolona/metabolismo , Progesterona/metabolismo , Schizosaccharomyces , Esteroide 17-alfa-Hidroxilasa/metabolismo , Esteroides/metabolismo , Especificidad por Sustrato
4.
PLoS One ; 15(12): e0244000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33320886

RESUMEN

The aim of this study was to investigate the potential interference of cyanobacterial metabolites, in particular microcystins (MCs), with steroid hormone biosynthesis. Steroid hormones control many fundamental processes in an organism, thus alteration of their tissue concentrations may affect normal homeostasis. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to investigate the modulation of 14 hormones involved in the adrenal steroid biosynthesis pathway using forskolin-treated H295R cells, following exposure with either microcystin-LR (MC-LR) alone, a mixture made up of MC-LR together with eight other MCs and nodularin-R (NOD-R), or extracts from the MC-LR-producing Microcystis aeruginosa PCC7806 strain or its MC-deficient mutant PCC7806mcyB-. Production of 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) was increased in the presence of MC-LR in a dose-dependent manner, indicating an inhibitory effect on 3ß-hydroxysteroid dehydrogenase (3ß-HSD). This effect was not observed following exposure with a MCs/NOD-R mixture, and thus the effect of MC-LR on 3ß-HSD appears to be stronger than for other congeners. Exposure to extracts from both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB- had an opposite effect on 3ß-HSD, i.e. concentrations of pregnenolone, 17-hydroxypregnenolone and DHEA were significantly decreased, showing that there are other cyanobacterial metabolites that outcompete the effect of MC-LR, and possibly result instead in net-induction. Another finding was a possible concentration-dependent inhibition of CYP21A2 or CYP11ß1, which catalyse oxidation reactions leading to cortisol and cortisone, by MC-LR and the MCs/NOD-R mixture. However, both M. aeruginosa PCC7806 and M. aeruginosa PCC7806mcyB- extracts had an opposite effect resulting in a substantial increase in cortisol levels. Our results suggest that MCs can modulate steroidogenesis, but the net effect of the M. aeruginosa metabolome on steroidogenesis is different from that of pure MC-LR and independent of MC production.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Deshidroepiandrosterona/biosíntesis , Inhibidores Enzimáticos/farmacología , Microcistinas/farmacología , Microcystis/química , Línea Celular Tumoral , Familia 11 del Citocromo P450/antagonistas & inhibidores , Familia 21 del Citocromo P450/antagonistas & inhibidores , Humanos
5.
J Biol Chem ; 294(26): 10028-10041, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072872

RESUMEN

Cytochrome P450 (P450, CYP) enzymes are the major catalysts involved in the oxidation of steroids as well as many other compounds. Their versatility has been explained in part by flexibility of the proteins and complexity of the binding mechanisms. However, whether these proteins bind their substrates via induced fit or conformational selection is not understood. P450 17A1 has a major role in steroidogenesis, catalyzing the two-step oxidations of progesterone and pregnenolone to androstenedione and dehydroepiandrosterone, respectively, via 17α-hydroxy (OH) intermediates. We examined the interaction of P450 17A1 with its steroid substrates by analyzing progress curves (UV-visible spectroscopy), revealing that the rates of binding of any of these substrates decreased with increasing substrate concentration, a hallmark of conformational selection. Further, when the concentration of 17α-OH pregnenolone was held constant and the P450 concentration increased, the binding rate increased, and such opposite patterns are also diagnostic of conformational selection. Kinetic simulation modeling was also more consistent with conformational selection than with an induced-fit mechanism. Cytochrome b5 partially enhances P450 17A1 lyase activity by altering the P450 17A1 conformation but did not measurably alter the binding of 17α-OH pregnenolone or 17α-OH progesterone, as judged by the apparent Kd and binding kinetics. The P450 17A1 inhibitor abiraterone also bound to P450 17A1 in a multistep manner, and modeling indicated that the selective inhibition of the two P450 17A1 steps by the drug orteronel can be rationalized only by a multiple-conformation model. In conclusion, P450 17A1 binds its steroid substrates via conformational selection.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxiprogesterona/metabolismo , Androstenos/metabolismo , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/metabolismo , 17-alfa-Hidroxipregnenolona/química , 17-alfa-Hidroxiprogesterona/química , Androstenos/química , Humanos , Cinética , Conformación Proteica , Especificidad por Sustrato
6.
Chemosphere ; 218: 328-339, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30476764

RESUMEN

The presence of environmental pollutants in our ecosystem may impose harmful health effects to wildlife and humans. Several of these toxic chemicals have a potential to interfere with the endocrine system. The adrenal cortex has been identified as the main target organ affected by endocrine disrupting chemicals. The aim of this work was to assess exposure effects of defined and environmentally relevant mixtures of chlorinated, brominated and perfluorinated chemicals on steroidogenesis, using the H295R adrenocortical cell line model in combination with a newly developed liquid chromatography tandem mass spectrometry (LC-MS/MS) method. By using this approach, we could simultaneously analyze 19 of the steroids in the steroid biosynthesis pathway, revealing a deeper insight into possible disruption of steroidogenesis. Our results showed a noticeable down-regulation in steroid production when cells were exposed to the highest concentration of a mixture of brominated and fluorinated compounds (10,000-times human blood values). In contrast, up-regulation was observed with estrone under the same experimental condition, as well as with some other steroids when cells were exposed to a perfluorinated mixture (1000-times human blood values), and the mixture of chlorinated and fluorinated compounds. Interestingly, the low concentration of the perfluorinated mixture alone produced a significant, albeit small, down-regulation of pregnenolone, and the total mixture a similar effect on 17-hydroxypregnenolone. Other mixtures resulted in only slight deviations from the control. Indication of synergistic effects were noted when we used a statistical model to improve data interpretation. A potential for adverse outcomes of human exposures is indicated, pointing to the need for further investigation into these mixtures.


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Esteroides/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Corteza Suprarrenal/efectos de los fármacos , Corteza Suprarrenal/metabolismo , Línea Celular , Línea Celular Tumoral , Cromatografía Liquida , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Disruptores Endocrinos/administración & dosificación , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/administración & dosificación , Éteres Difenilos Halogenados/toxicidad , Humanos , Metaboloma/efectos de los fármacos , Modelos Estadísticos , Bifenilos Policlorados/toxicidad , Espectrometría de Masas en Tándem
7.
Biochemistry ; 57(5): 764-771, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29283561

RESUMEN

CYP17A1 is a key steroidogenic enzyme known to conduct several distinct chemical transformations on multiple substrates. In its hydroxylase activity, this enzyme adds a hydroxyl group at the 17α position of both pregnenolone and progesterone at approximately equal rates. However, the subsequent 17,20 carbon-carbon scission reaction displays variable substrate specificity in the numerous CYP17A1 isozymes operating in vertebrates, manifesting as different Kd and kcat values when presented with 17α-hydroxypregnenlone (OHPREG) versus 17α-hydroxyprogesterone (OHPROG). Here we show that the identity of the residue at position 202 in human CYP17A1, thought to form a hydrogen bond with the A-ring alcohol substituent on the pregnene- nucleus, is a key driver of this enzyme's native preference for OHPREG. Replacement of asparagine 202 with serine completely reverses the preference of CYP17A1, more than doubling the rate of turnover of the OHPROG to androstenedione reaction and substantially decreasing the rate of formation of dehydroepiandrosterone from OHPREG. In a series of resonance Raman experiments, it was observed that, in contrast with the case for the wild-type protein, in the mutant the 17α alcohol of OHPROG tends to form a H-bond with the proximal rather than terminal oxygen of the oxy-ferrous complex. When OHPREG was a substrate, the mutant enzyme was found to have a H-bonding interaction with the proximal oxygen that is substantially weaker than that of the wild type. These results demonstrate that a single-point mutation in the active site pocket of CYP17A1, even when far from the heme, has profound effects on steroidogenic selectivity in androgen biosynthesis.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxiprogesterona/metabolismo , Androstenodiona/biosíntesis , Deshidroepiandrosterona/biosíntesis , Esteroide 17-alfa-Hidroxilasa/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Catálisis , Dominio Catalítico , Secuencia Conservada , Genes Sintéticos , Humanos , Enlace de Hidrógeno , Mamíferos/genética , Modelos Moleculares , Mutación Missense , Mutación Puntual , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/genética , Especificidad por Sustrato
8.
J Biol Chem ; 292(32): 13168-13185, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28684414

RESUMEN

Cytochrome P450 (P450, CYP) 17A1 plays a critical role in steroid metabolism, catalyzing both the 17α-hydroxylation of pregnenolone and progesterone and the subsequent 17α,20-lyase reactions to form dehydroepiandrosterone (DHEA) and androstenedione (Andro), respectively, critical for generating glucocorticoids and androgens. Human P450 17A1 reaction rates examined are enhanced by the accessory protein cytochrome b5 (b5), but the exact role of b5 in P450 17A1-catalyzed reactions is unclear as are several details of these reactions. Here, we examined in detail the processivity of the 17α-hydroxylation and lyase steps. b5 did not enhance reaction rates by decreasing the koff rates of any of the steroids. Steroid binding to P450 17A1 was more complex than a simple two-state system. Pre-steady-state experiments indicated lag phases for Andro production from progesterone and for DHEA from pregnenolone, indicating a distributive character of the enzyme. However, we observed processivity in pregnenolone/DHEA pulse-chase experiments. (S)-Orteronel was three times more inhibitory toward the conversion of 17α-hydroxypregnenolone to DHEA than toward the 17α-hydroxylation of pregnenolone. IC50 values for (S)-orteronel were identical for blocking DHEA formation from pregnenolone and for 17α-hydroxylation, suggestive of processivity. Global kinetic modeling helped assign sets of rate constants for individual or groups of reactions, indicating that human P450 17A1 is an inherently distributive enzyme but that some processivity is present, i.e. some of the 17α-OH pregnenolone formed from pregnenolone did not dissociate from P450 17A1 before conversion to DHEA. Our results also suggest multiple conformations of P450 17A1, as previously proposed on the basis of NMR spectroscopy and X-ray crystallography.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , Citocromos b5/metabolismo , Deshidroepiandrosterona/metabolismo , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/metabolismo , Pregnenolona/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , 17-alfa-Hidroxipregnenolona/química , Androstenodiona/química , Androstenodiona/metabolismo , Animales , Sitios de Unión , Biocatálisis/efectos de los fármacos , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Citocromos b5/genética , Deshidroepiandrosterona/química , Humanos , Imidazoles/química , Imidazoles/metabolismo , Imidazoles/farmacología , Cinética , Ligandos , NADPH-Ferrihemoproteína Reductasa/genética , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/farmacología , Oxidación-Reducción , Pregnenolona/química , Progesterona/química , Progesterona/metabolismo , Conformación Proteica , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/genética
9.
J Clin Endocrinol Metab ; 102(8): 2701-2710, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472487

RESUMEN

Context: Patients with 21-hydroxylase deficiency (21OHD) have long-term complications, resulting from poor disease control and/or glucocorticoid overtreatment. Lack of optimal biomarkers has made it challenging to tailor therapy and predict long-term outcomes. Objective: To identify biomarkers of disease control and long-term complications in 21OHD. Setting and Participants: Cross-sectional study of 114 patients (70 males), ages 2 to 67 years (median, 15 years), seen in a tertiary referral center. Methods: We correlated a mass-spectrometry panel of 23 steroids, obtained before first morning medication, with bone age advancement (children), adrenal volume (adults), testicular adrenal rest tumors (TART), hirsutism, menstrual disorders, and pituitary hormones. Results: Total adrenal volume correlated positively with 18 steroids, most prominently 21-deoxycortisol and four 11-oxygenated-C19 (11oxC19) steroids: 11ß-hydroxyandrostenedione (11OHA4), 11-ketoandrostenedione (11ketoA4), 11ß-hydroxytestosterone (11OHT), and 11-ketotestosterone (11ketoT) (r ≈ 0.7, P < 0.0001). Nine steroids were significantly higher (P ≤ 0.01) in males with TART compared with those without TART, including 11OHA4 (6.8-fold), 11OHT (4.9-fold), 11ketoT (3.6-fold), 11ketoA4 (3.3-fold), and pregnenolone sulfate (PregS; 4.8-fold). PregS (28.5-fold) and 17-hydroxypregnenolone sulfate (19-fold) levels were higher (P < 0.01) in postpubertal females with menstrual disorders. In males, testosterone levels correlated positively with all 11oxC19 steroids in Tanner stages 1 and 2 (r ≈ 0.7; P < 0.001) but negatively in Tanner stage 5 (r = -0.3 and P < 0.05 for 11ketoA4 and 11ketoT). In females, testosterone level correlated positively with all four 11oxC19 steroids across all Tanner stages (r ≈ 0.8; P < 0.0001). Conclusion: 11oxC19 steroids and PregS might serve as clinically useful biomarkers of disease control and long-term complications in 21OHD.


Asunto(s)
Hiperplasia Suprarrenal Congénita/metabolismo , Tumor de Resto Suprarrenal/metabolismo , Andrógenos/metabolismo , Hirsutismo/metabolismo , Trastornos de la Menstruación/metabolismo , Neoplasias Testiculares/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/metabolismo , Adolescente , Glándulas Suprarrenales/patología , Adulto , Determinación de la Edad por el Esqueleto , Anciano , Androstenodiona/análogos & derivados , Androstenodiona/metabolismo , Androstenos/metabolismo , Niño , Preescolar , Cortodoxona/metabolismo , Estudios Transversales , Femenino , Humanos , Hidroxitestosteronas/metabolismo , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Pregnenolona/metabolismo , Testosterona/análogos & derivados , Testosterona/metabolismo , Adulto Joven
10.
Gen Comp Endocrinol ; 241: 80-88, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27163792

RESUMEN

In vertebrates, steroids are synthesized de novo in the central and peripheral nervous system, independent of peripheral steroidogenic glands, such as the adrenal, gonads and placenta. 3ß-Hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3ß-HSD) is a key steroidogenic enzyme in vertebrate gonads, placenta and adrenal. It mediates the oxidation and isomerization reactions of progesterone from pregnenolone, 17-hydroxyprogesterone from 17-hydroxypregnenolone and androstenedione from dehydroepiandrosterone. In the present study, we examined the expression of 3ß-HSD cDNA by real time-PCR and localization of the mRNA by in situ hybridization in the brain and its regions during the different phases of the reproductive cycle of the catfish Heteropneustes fossilis. Further, 3ß-HSD activity was assayed biochemically to show seasonal variations. We showed significant seasonal and sexual dimorphic changes in the levels of transcript abundance in the whole brain and its regions. In whole brain, level was the highest in post-spawning phase and lowest in spawning phase in males. In females, there was a progressive increase through resting phase to pre-spawning phase, a decline in the spawning phase and increase in the post-spawning phase. In the preparatory phase, the highest transcript level was seen in medulla oblongata and the lowest in pituitary in males. In females, the level was the highest in the hypothalamus and lowest in olfactory bulb and pituitary. However, in the pre-spawning phase, in males it was the highest in telencephalon and hypothalamus and lowest in pituitary. In females, the highest transcript level was in olfactory bulb and lowest in pituitary. 3ß-HSD enzyme activity showed significant seasonal variation in the brain, the highest in the resting phase and lowest in the preparatory and spawning phases. In situ hybridization showed the presence of 3ß-HSD transcript was especially high in the cerebellum region. The presence of 3ß-HSD in the brain may indicate steroidogenesis in the catfish brain.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Encéfalo/metabolismo , Bagres/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxiprogesterona/metabolismo , Animales , Deshidroepiandrosterona/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Gónadas/metabolismo , Masculino , Hipófisis/metabolismo , Reproducción/genética , Estaciones del Año , Caracteres Sexuales , Esteroides/metabolismo , Distribución Tisular
11.
Biomed Res Int ; 2016: 5727631, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27340662

RESUMEN

The metabolism of cholesterol is critical in eukaryotes as a precursor for vitamins, steroid hormones, and bile acids. Some steroid compounds can be transformed into precursors of steroid medicine by some microorganisms. In this study, the biotransformation products of cholesterol and 16α,17α-epoxypregnenolone produced by Burkholderia cepacia SE-1 were investigated, and a correlative enzyme, hydroxylase, was also studied. The biotransformation products, 7ß-hydroxycholesterol, 7-oxocholesterol, and 20-droxyl-16α,17α-epoxypregn-1,4-dien-3-one, were purified by silica gel and Sephadex LH-20 column chromatography and identified by nuclear magnetic resonance and mass spectroscopy. The hydroxylase was isolated from the bacterium and the partial sequences of the hydroxylase, which belong to the catalases/peroxidase family, were analyzed using MS/MS analyses. The enzyme showed activity toward cholesterol and had a specific activity of 37.2 U/mg of protein at 30°C and pH 7.0.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , Burkholderia cepacia/metabolismo , Colesterol/metabolismo , Esteroide Hidroxilasas/biosíntesis , Esteroide Hidroxilasas/química , Biotransformación/fisiología , Burkholderia cepacia/clasificación , Activación Enzimática , Especificidad de la Especie , Esteroide Hidroxilasas/aislamiento & purificación
12.
Biol Reprod ; 94(1): 9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26607716

RESUMEN

Brominated flame retardants (BFRs) are incorporated into various consumer products to prevent flame propagation. These compounds leach into the domestic environment, resulting in chronic exposure and contamination. Pregnancy failure is associated with high levels of BFRs in human follicular fluid, raising serious questions regarding their impact on female reproductive health. The goal of this study is to elucidate the effects of an environmentally relevant BFR mixture on female rat ovarian functions (i.e., folliculogenesis and steroidogenesis). A BFR dietary mixture formulated to mimic the relative BFR congener levels in North American house dust was administered to adult female Sprague-Dawley rats from 2 to 3 wk before mating until Gestational Day 20; these diets were designed to deliver nominal doses of 0, 0.06, 20, or 60 mg/kg/day of the BFR mixture. Exposure to BFRs triggered an approximately 50% increase in the numbers of preantral and antral follicles and an enlargement of the antral follicles in the ovaries of the dams. A significant reduction in the expression of catalase, an antioxidant enzyme, and downregulation of the expression of insulin-like factor 3 (Insl3) and 17alpha-hydroxylase (Cyp17a1) were observed in the ovary. In addition, BFR exposure affected steroidogenesis; we observed a significant decrease in circulating 17-hydroxypregnenolone and an increase in testosterone concentrations in BFR-exposed dams. Thus, BFRs target ovarian function in the rat, adversely affecting both folliculogenesis and steroidogenesis.


Asunto(s)
Contaminantes Ambientales/toxicidad , Retardadores de Llama/toxicidad , Hidrocarburos Bromados/toxicidad , Folículo Ovárico/efectos de los fármacos , Ovario/efectos de los fármacos , Esteroides/biosíntesis , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Catalasa/biosíntesis , Relación Dosis-Respuesta a Droga , Polvo/análisis , Femenino , Insulina/genética , Insulina/metabolismo , Ovario/enzimología , Ovario/metabolismo , Embarazo , Proteínas/genética , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo , Testosterona/metabolismo
13.
Gen Comp Endocrinol ; 227: 130-5, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26608258

RESUMEN

In the Japanese quail, 7α-hydroxypregnenolone, a previously undescribed avian neurosteroid, is actively produced in the brain. 7α-Hydroxypregnenolone acts as a novel neuronal activator to stimulate locomotor activity of quail. Therefore, in this study, we determined whether 7α-hydroxypregnenolone changes the expression of sexual behavior in Japanese quail. We first measured diurnal changes in sexual behavior of male quail exposed to a long-day photoperiod. We found that sexual behavior of male quail was high in the morning when endogenous 7α-hydroxypregnenolone level is high. Subsequently, we centrally administered 7α-hydroxypregnenolone in the evening when endogenous 7α-hydroxypregnenolone level is low. In the 30 min after intracerebroventricular (ICV) injection, 7α-hydroxypregnenolone dose dependently increased the frequency of sexual behavior of male quail. However, 7ß-hydroxypregnenolone, a stereoisomer of 7α-hydroxypregnenolone, did not effect on the frequency of sexual behavior of male quail. In addition, to confirm the action of 7α-hydroxypregnenolone on sexual behavior, male birds received an ICV injection of ketoconazole, an inhibitor of cytochrome P450s, and behavioral experiments were performed in the morning. Ketoconazole significantly decreased the frequency of sexual behavior of male quail, whereas administration of 7α-hydroxypregnenolone to ketoconazole-treated males increased the frequency of their sexual behavior. These results indicate that 7α-hydroxypregnenolone regulates diurnal changes in sexual behavior of male quail.


Asunto(s)
17-alfa-Hidroxipregnenolona/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efectos de los fármacos , Conducta Sexual/efectos de los fármacos , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Coturnix , Masculino , Fotoperiodo
14.
Proc Natl Acad Sci U S A ; 112(52): 15856-61, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668369

RESUMEN

Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17-C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon-carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , Andrógenos/metabolismo , Deshidroepiandrosterona/metabolismo , Pregnenolona/metabolismo , Esteroide 17-alfa-Hidroxilasa/metabolismo , 17-alfa-Hidroxipregnenolona/química , Andrógenos/química , Biocatálisis , Vías Biosintéticas , Deshidroepiandrosterona/química , Humanos , Enlace de Hidrógeno , Hidroxilación , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Pregnenolona/química , Conformación Proteica , Espectrofotometría/métodos , Esteroide 17-alfa-Hidroxilasa/química , Esteroide 17-alfa-Hidroxilasa/genética , Especificidad por Sustrato , Temperatura
15.
Endocrinology ; 156(7): 2646-56, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25942073

RESUMEN

Urocortin 2 (UCN2) is a neuropeptide of the CRH family, involved in homeostatic mechanisms, the stress response, and control of anxiety. To elucidate the effects of UCN2 on steroidogenesis, we developed a mouse model that allows a Cre recombinase-determined conditional overexpression of UCN2 (UCN2-COE). In these mice SF1-Cre-driven overexpression of UCN2 was restricted to the adrenal glands, gonads, and parts of the hypothalamus. UCN2-COE animals of both sexes revealed significantly higher plasma UCN2 levels and significantly higher UCN2 expression levels in the adrenals and ovaries. In contrast, the baseline expression of UCN2 was already high in the testes of control mice with no further increase achievable in UCN2-COE animals. Adrenal steroidogenesis of UCN2-COE animals was investigated under baseline conditions, upon an ACTH stimulation test, and following a restraint stress test. A tendency toward lower expression of steroidogenic enzymes was detectable in UCN2-COE animals of both sexes with slight differences between males and females. A similar reduction in the expression levels of the final steps of ovarian steroidogenesis, accompanied by reduced plasma estradiol levels, was observed in female UCN2-COE animals. Thus, adrenal UCN2 overexpression resulted in down-regulation of adrenal steroidogenesis, suggesting a reduction in the stress response in the mouse (stress coping behavior). Similarly, UCN2 overexpression in the ovaries caused a decrease in steroidogenesis and reduction of follicles that had undergone ovulation. Nevertheless, this finding was not associated with reduced fertility.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Hormona Liberadora de Corticotropina/genética , Ovario/metabolismo , ARN Mensajero/metabolismo , Urocortinas/genética , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-alfa-Hidroxipregnenolona/metabolismo , 3-Hidroxiesteroide Deshidrogenasas/efectos de los fármacos , 3-Hidroxiesteroide Deshidrogenasas/genética , Glándulas Suprarrenales/efectos de los fármacos , Hormona Adrenocorticotrópica/farmacología , Animales , Aromatasa/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/efectos de los fármacos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Citocromo P-450 CYP11B2/efectos de los fármacos , Citocromo P-450 CYP11B2/genética , Estradiol/metabolismo , Femenino , Técnicas de Sustitución del Gen , Hormonas Esteroides Gonadales , Masculino , Ratones , Ovario/anatomía & histología , Fenotipo , Fosfoproteínas/efectos de los fármacos , Fosfoproteínas/genética , Progesterona/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroide 11-beta-Hidroxilasa/efectos de los fármacos , Esteroide 11-beta-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/genética , Testículo/metabolismo
16.
PLoS One ; 10(3): e0120473, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25785994

RESUMEN

Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism.


Asunto(s)
17-alfa-Hidroxipregnenolona/agonistas , Ansiolíticos/farmacología , Deshidroepiandrosterona/agonistas , Hipotálamo/efectos de los fármacos , Oxazinas/farmacología , Pregnanolona/agonistas , Progesterona/agonistas , 17-alfa-Hidroxipregnenolona/metabolismo , 20-alfa-Dihidroprogesterona/antagonistas & inhibidores , 20-alfa-Dihidroprogesterona/biosíntesis , Animales , Bicuculina/farmacología , Mezclas Complejas/química , Deshidroepiandrosterona/biosíntesis , Relación Dosis-Respuesta a Droga , Flumazenil/farmacología , Moduladores del GABA/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Expresión Génica , Hipotálamo/metabolismo , Isoquinolinas/farmacología , Masculino , Neuropéptidos/farmacología , Fragmentos de Péptidos/farmacología , Pregnanolona/biosíntesis , Progesterona/biosíntesis , Rana esculenta , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Técnicas de Cultivo de Tejidos
17.
Gen Comp Endocrinol ; 205: 11-22, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24704561

RESUMEN

Bargmann-Scharrer's discovery of "neurosecretion" in the first half of the 20th century has since matured into the scientific discipline of neuroendocrinology. Identification of novel neurohormones, such as neuropeptides and neurosteroids, is essential for the progress of neuroendocrinology. Our studies over the past two decades have significantly broadened the horizons of this field of research by identifying novel neuropeptides and neurosteroids in vertebrates that have opened new lines of scientific investigation in neuroendocrinology. We have established de novo synthesis and functions of neurosteroids in the brain of various vertebrates. Recently, we discovered 7α-hydroxypregnenolone (7α-OH PREG), a novel bioactive neurosteroid that acts as a key regulator for inducing locomotor behavior by means of the dopaminergic system. We further discovered that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol (CHOL). The pineal gland secretes 7α-OH PREG and 3α,5α-tetrahydroprogesterone (3α,5α-THP; allopregnanolone) that are involved in locomotor rhythms and neuronal survival, respectively. Subsequently, we have demonstrated their mode of action and functional significance. This review summarizes the discovery of these novel neurosteroids and its contribution to the progress of neuroendocrinology.


Asunto(s)
Neuroendocrinología , Neuropéptidos/metabolismo , Neurotransmisores/metabolismo , Glándula Pineal/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Humanos , Actividad Motora/fisiología
18.
FEBS J ; 281(6): 1700-13, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24491228

RESUMEN

Oxysterols and neurosteroids are important signaling molecules produced by monooxygenases of the cytochrome P450 family that realize their effect through nuclear receptors. CYP7B1 catalyzes the 6- or 7-hydroxylation of both steroids and oxysterols and thus is involved in the metabolism of neurosteroids and bile acid synthesis, respectively. The dual physiological role of CYP7B1 is evidenced from different diseases, liver failure and progressive neuropathy, caused by enzyme malfunction. Here we present biochemical characterization of CYP7B1 at the molecular level to understand substrate specificity and susceptibility to azole drugs. Based on our experiments with purified enzyme, the requirements for CYP7B1 hydroxylation of steroid molecules are as follows: C5 hydrogen in the α-configuration (or double bond at C5), a polar group at C17, a hydroxyl group at C3, and the absence of the hydroxyl group at C20-C24 in the C27-sterol side chain. 21-hydroxy-pregnenolone was identified as a new substrate, and overall low activity toward pregnanes could be related to the increased potency of 7-hydroxy derivatives produced by CYP7B1. Metabolic conversion (deactivation) of oxysterols by CYP7B1 in a reconstituted system proceeds via two sequential hydroxylations. Two mutations that are found in patients with diseases, Gly57Arg and Phe216Ser, result in apo-P450 (devoid of heme) protein formation. Our CYP7B1 homology model provides a rationale for understanding clinical mutations and relatively broad substrate specificity for steroid hydroxylase.


Asunto(s)
Esteroide Hidroxilasas/química , Esteroide Hidroxilasas/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Sustitución de Aminoácidos , Azoles/metabolismo , Dominio Catalítico , Familia 7 del Citocromo P450 , Humanos , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrofotometría , Esteroide Hidroxilasas/genética , Homología Estructural de Proteína , Especificidad por Sustrato
19.
Front Neuroendocrinol ; 34(3): 179-89, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23685042

RESUMEN

Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.


Asunto(s)
17-alfa-Hidroxipregnenolona/análogos & derivados , Encéfalo/metabolismo , Locomoción/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Glándula Pineal/metabolismo , 17-alfa-Hidroxipregnenolona/metabolismo , Animales , Encéfalo/fisiología , Corticosterona/fisiología , Femenino , Luz , Masculino , Melatonina/fisiología , Actividad Motora/fisiología , Prolactina/fisiología , Salamandridae
20.
J Biol Chem ; 288(23): 17008-17018, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23620596

RESUMEN

The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Here the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bifunctional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction that is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicates that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (Glu-48 or Glu-49) or the corresponding cationic CYP17A1 residues (Arg-347, Arg-358, or Arg-449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase. To probe the differential effects of b5 on the two CYP17A1-mediated reactions and, thus, communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site.


Asunto(s)
17-alfa-Hidroxipregnenolona/química , Citocromos b5/química , Complejos Multienzimáticos/química , NADP/química , Esteroide 17-alfa-Hidroxilasa/química , 17-alfa-Hidroxipregnenolona/metabolismo , Sustitución de Aminoácidos , Dominio Catalítico , Citocromos b5/genética , Citocromos b5/metabolismo , Humanos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutagénesis , Mutación Missense , NADP/genética , NADP/metabolismo , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Esteroide 17-alfa-Hidroxilasa/genética , Esteroide 17-alfa-Hidroxilasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA