Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.093
Filtrar
1.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574835

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Simulación del Acoplamiento Molecular , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/química , Animales , Humanos , Ratas , Relación Estructura-Actividad , Proteínas de la Membrana/metabolismo , Fluorocarburos/química , Fluorocarburos/metabolismo , Fluorocarburos/farmacología , Unión Proteica , Carbono/química , Carbono/metabolismo , Sitios de Unión
2.
Chem Biol Interact ; 394: 110971, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521455

RESUMEN

Selective Androgen Receptor Modulators (SARMs), particularly (17α,20E)-17,20-[(1-methoxyethylidene)bis(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic-acid-methyl-ester (YK11), are increasingly popular among athletes seeking enhanced performance. Serving as an Androgen Receptor (AR) agonist, YK11 stimulates muscle growth while inhibiting myostatin. Our study delved into the impact of YK11 on the rat hippocampus, analyzing potential alterations in neurochemical mechanisms and investigating its synergistic effects with exercise (EXE), based on the strong relationship between SARM users and regular exercise. Utilizing Physiologically Based Pharmacokinetic (PBPK) modeling, we demonstrated YK11 remarkable brain permeability, with molecular docking analysis revealing YK11 inhibitory effects on 5-alpha-reductase type II (5αR2), suggesting high cell bioavailability. Throughout a 5-week experiment, we divided the animals into the following groups: Control, YK11 (0.35 g/kg), EXE (swimming exercise), and EXE + YK11. Our findings showed that YK11 displayed a high binding affinity with AR in the hippocampus, influencing neurochemical function and modulating aversive memory consolidation, including the downregulation of the BDNF/TrkB/CREB signaling, irrespective of EXE combination. In the hippocampus, YK11 increased pro-inflammatory IL-1ß and IL-6 cytokines, while reducing anti-inflammatory IL-10 levels. However, the EXE + YK11 group counteracted IL-6 effects and elevated IL-10. Analysis of apoptotic proteins revealed heightened p38 MAPK activity in response to YK11-induced inflammation, initiating the apoptotic cascade involving Bax/Bcl-2/cleaved caspase-3. Notably, the EXE + YK11 group mitigated alterations in Bcl-2 and cleaved caspase-3 proteins. In conclusion, our findings suggest that YK11, at anabolic doses, significantly alters hippocampal neurochemistry, leading to impairments in memory consolidation. This underscore concerns about the misuse risks of SARMs among athletes and challenges common perceptions of their minimal side effects.


Asunto(s)
Hipocampo , Simulación del Acoplamiento Molecular , Receptores Androgénicos , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores Androgénicos/metabolismo , Masculino , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Apoptosis/efectos de los fármacos , Ratas Sprague-Dawley , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Condicionamiento Físico Animal , Colestenona 5 alfa-Reductasa/metabolismo , Receptor trkB/metabolismo
3.
Sci Rep ; 13(1): 19553, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945678

RESUMEN

The cloning and characterization of the complete coding sequence of the Clarias magur SRD5A1 (CmSRD5A1) gene, which encodes an enzyme responsible for regulating steroid levels by converting testosterone into 5α-dihydrotestosterone (DHT), have been successfully achieved. DHT plays a vital role in enabling the complete expression of testosterone's actions in neuroendocrine tissues. The ORF of the full-length cDNA sequence of SRD5A1 was 795 bp, translating into 265 amino acids, with a total length of 836 bp including UTRs. Like other vertebrates, the signal peptide analysis revealed that SRD5A1 is a non-secretory protein, and hydropathy profiles indicated that it is hydrophobic in nature. The 3D structure of CmSRD5A1 sequence generated above was predicted using highly accurate AlphaFold 2 in Google Colab online platform. CmSRD5A1 contains seven transmembrane helices connected by six loops, with the N-termini located on the periplasmic side and C-termini on the cytosolic side. Structural superimposition with known bacterial and human SRD5As showed very high structural similarity. The electrostatic potential calculation and surface analysis of CmSRD5A1 revealed the presence of a large cavity with two openings one highly electropositive towards the cytosolic side and another relatively neutral towards the transmembrane region. The structural comparison revealed that the electropositive side of the cavity should bind to NADPH and the steroid hormone in the hydrophobic environment. Polar residues binding to NADPH are highly conserved and the same as known strictures. The conserved residues involved in hydrogen bonding with the ketone group at C-3 in the steroids hence fevering Δ4 double-bond reduction are identified as E66 and Y101. Our findings showed that SRD5A1 expression was lower during the spawning phase than the preparatory phase in female fish, while the administration of Ovatide (a GnRH analogue) resulted in up-regulation of expression after 6 h of injection in the ovary. In males, the lowest expression was observed during the preparatory phase and peaked at 16 h post- Ovatide injection in the testis. The expression of SRD5A1 in the brain of female fish was slightly higher during the Ovatide stimulation phase than the spawning phase. This study represents the first report on the cloning and characterization of the full-length cDNA of SRD5A1 in Indian catfish.


Asunto(s)
Bagres , Colestenona 5 alfa-Reductasa , Masculino , Animales , Femenino , Humanos , Colestenona 5 alfa-Reductasa/metabolismo , Bagres/genética , Bagres/metabolismo , ADN Complementario/genética , NADP/metabolismo , Secuencia de Aminoácidos , Testosterona/metabolismo , Dihidrotestosterona/metabolismo , Esteroides/metabolismo , Clonación Molecular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo
4.
Methods Enzymol ; 689: 263-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37802573

RESUMEN

The two human steroid 5α-reductase (5αR) enzymes catalyze the conversion 3-keto-Δ4-steroids to their 5α-reduced congeners. In the genital skin and prostate, the type 2 isoenzyme converts testosterone (T) to the more potent androgen 5α-dihydrotestosterone (DHT), and intracellular DHT is essential for the morphogenesis of the undifferentiated external genitalia to the male phenotype. Both isoenzymes also metabolize other 19- and 21-carbon 3-keto-Δ4-steroids, both endogenous compounds and some steroid-based drugs. Rigorous biochemical studies have been limited due to the extremely hydrophobic nature of these proteins. We have described the heterologous expression of these enzymes in bacteria, their purification with affinity chromatography, and the reconstitution of activity in liposomes. This article details these procedures, as well as reconstitution in phospholipid nanodiscs and enzyme assay.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Liposomas , Humanos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Fosfolípidos , Testosterona/metabolismo , Dihidrotestosterona/metabolismo
5.
Cancer Prev Res (Phila) ; 16(3): 139-151, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517462

RESUMEN

Cinnamon and its bioactive compounds inhibit prostate cancer cell proliferation in vitro. The aim of the current study was to assess the chemopreventive efficacy of cinnamon (CN) and its bioactive compounds in vivo using N-methyl-N-nitrosourea (MNU) and testosterone (T) to induce prostate carcinogenesis in male Wistar/National Institute of Nutrition rats. Cancer-induced (CI) rats (n = 10) developed prostatic hyperplasia and prostatic intraepithelial neoplasia. These histopathologic changes were diminished in CI rats fed for 4 months with diets supplemented with either CN (n = 20) or its bioactive compounds (cinnamaldehyde, n = 10 and procyanidin B2, n = 10). Androgen receptor (AR) expression was lower in the prostates of CI rats than in control, but the AR target gene, probasin, was robustly upregulated. Treatment of CI rats with CN or its bioactive compounds upregulated AR expression but inhibited the expression of the 5-alpha reductase genes (Srd5a1 and Srd5a2) and did not further increase probasin expression, suggesting blunted transcriptional activity of AR due to the limited availability of dihydrotestosterone. MNU+T induced an altered oxidant status in rat prostate, which was reflected by an increase in lipid peroxidation and DNA oxidation. These changes were completely or partially corrected by treatment with CN or the bioactive compounds. CN and its active components increased the activity of the apoptotic enzymes caspase-8 and caspase-3 in the prostates of CI rats. In conclusion, our data demonstrate that CN and its bioactive compounds have inhibitory effects on premalignant prostate lesions induced by MNU + T and, therefore, may be considered for the chemoprevention of prostate cancer. PREVENTION RELEVANCE: The research work presented in this article demonstrates the chemopreventive efficacy of CN and its bioactive compounds in a rat model of premalignant prostate cancer.


Asunto(s)
Anticarcinógenos , Lesiones Precancerosas , Neoplasias de la Próstata , Humanos , Ratas , Masculino , Animales , Próstata/patología , Cinnamomum zeylanicum , Ratas Wistar , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/prevención & control , Neoplasias de la Próstata/patología , Anticarcinógenos/farmacología , Andrógenos , Lesiones Precancerosas/patología , Carcinogénesis/patología , Proteínas de la Membrana/efectos adversos , Proteínas de la Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/efectos adversos , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo
6.
Front Endocrinol (Lausanne) ; 13: 1027164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465608

RESUMEN

Decidualization is the hormone-dependent process of endometrial remodeling that is essential for fertility and reproductive health. It is characterized by dynamic changes in the endometrial stromal compartment including differentiation of fibroblasts, immune cell trafficking and vascular remodeling. Deficits in decidualization are implicated in disorders of pregnancy such as implantation failure, intra-uterine growth restriction, and pre-eclampsia. Androgens are key regulators of decidualization that promote optimal differentiation of stromal fibroblasts and activation of downstream signaling pathways required for endometrial remodeling. We have shown that androgen biosynthesis, via 5α-reductase-dependent production of dihydrotestosterone, is required for optimal decidualization of human stromal fibroblasts in vitro, but whether this is required for decidualization in vivo has not been tested. In the current study we used steroid 5α-reductase type 1 (SRD5A1) deficient mice (Srd5a1-/- mice) and a validated model of induced decidualization to investigate the role of SRD5A1 and intracrine androgen signaling in endometrial decidualization. We measured decidualization response (weight/proportion), transcriptomic changes, and morphological and functional parameters of vascular development. These investigations revealed a striking effect of 5α-reductase deficiency on the decidualization response. Furthermore, vessel permeability and transcriptional regulation of angiogenesis signaling pathways, particularly those that involved vascular endothelial growth factor (VEGF), were disrupted in the absence of 5α-reductase. In Srd5a1-/- mice, injection of dihydrotestosterone co-incident with decidualization restored decidualization responses, vessel permeability, and expression of angiogenesis genes to wild type levels. Androgen availability declines with age which may contribute to age-related risk of pregnancy disorders. These findings show that intracrine androgen signaling is required for optimal decidualization in vivo and confirm a major role for androgens in the development of the vasculature during decidualization through regulation of the VEGF pathway. These findings highlight new opportunities for improving age-related deficits in fertility and pregnancy health by targeting androgen-dependent signaling in the endometrium.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Decidua , Remodelación Vascular , Animales , Femenino , Ratones , Embarazo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Andrógenos/farmacología , Colestenona 5 alfa-Reductasa/genética , Colestenona 5 alfa-Reductasa/metabolismo , Decidua/efectos de los fármacos , Decidua/metabolismo , Dihidrotestosterona/farmacología , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/genética , Remodelación Vascular/fisiología
7.
Nat Med ; 28(11): 2321-2332, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36357675

RESUMEN

Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.


Asunto(s)
Errores Innatos del Metabolismo , Metaboloma , Humanos , Metaboloma/genética , Metabolómica , Plasma/metabolismo , Fenotipo , Errores Innatos del Metabolismo/genética , Proteínas de la Membrana/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo
8.
Phytomedicine ; 102: 154169, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35636178

RESUMEN

BACKGROUND: Benign prostatic hyperplasia (BPH) is a urinary system disease with high prevalence among the middle and elder men. In BPH, proliferation of prostate cells and the imbanlance between androgen and estrogen are both important inducers. Previous studies have demonstrated that compounds from Ligustri Lucidi Fructus (LLF) and Ecliptae Herba (EH) are of phytoestrogenic or phytoandrogenic activities. The combination of LLF with EH at the ratio of 1:1 on crude drugs quantity is called Erzhi formula (EZF), which is used for in vivo research of our study. PURPOSE: This study aimed to investigate potential mechanisms of EZF and its active pharmaceutical ingredients on BPH in vitro and in vivo. METHODS: Therapeutic effects of EZF was evaluated in E2/testosterone (1:100) induced BPH rats model. The pathological changes of prostate, concentrations of testosterone, DHT, E2, PSA in rats' plasma and prostate were detected. The expressions of PCNA, AR, ERα, ERß, SRD5A1, SRD5A2 were measured in BPH rat prostates and E2-stimulated human benign prostatic epithelial cells (BPH-1). RESULTS: EZF treatment significantly attenuated rat prostate enlargement, alleviated BPH pathological features, and decreased the expression of PCNA. The up-regulation of AR, ERα, SRD5A1/2 expressions, and down-regulation of ERß expression at prostate of rat BPH model were significantly blocked by EZF administration. The expression levels of testosterone, DHT, E2, PSA were strongly inhibited by EZF treatment. At the cellular level, ligustrosidic acid and echinocystic acid inhibited E2-induced BPH-1 cell proliferation and PCNA expressions, which were consistent with the results in vivo. And these two ingredients also down-regulated the expressions of AR, ERα, SRD5A1/2 and up-regulated the expression of ERß in BPH-1 cells. CONCLUSION: EZF, ligustrosidic acid from LLF and echinocystic acid from EH showed inhibitive effects on BPH via down-regulating prostatic AR, ERα, SRD5A1/2 expressions and up-regulating ERß expression.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Andrógenos , Medicamentos Herbarios Chinos , Eclipta , Ligustrum , Fitoestrógenos , Hiperplasia Prostática , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Anciano , Andrógenos/farmacología , Animales , Medicamentos Herbarios Chinos/farmacología , Eclipta/química , Estradiol/metabolismo , Humanos , Ligustrum/química , Masculino , Proteínas de la Membrana/metabolismo , Fitoestrógenos/farmacología , Hiperplasia Prostática/inducido químicamente , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Ratas , Testosterona/metabolismo
9.
Molecules ; 27(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35268636

RESUMEN

Oily skin from overactive sebaceous glands affects self-confidence and personality. There is report of an association between steroid 5-alpha reductase gene (SRD5A) expression and facial sebum production. There is no study of the effect of Asparagus racemosus Willd. root extract on the regulation of SRD5A mRNA expression and anti-sebum efficacy. This study extracted A. racemosus using the supercritical carbon dioxide fluid technique with ethanol and investigated its biological compounds and activities. The A. racemosus root extract had a high content of polyphenolic compounds, including quercetin, naringenin, and p-coumaric acid, and DPPH scavenging activity comparable to that of the standard L-ascorbic acid. A. racemosus root extract showed not only a significant reduction in SRD5A1 and SRD5A2 mRNA expression by about 45.45% and 90.86%, respectively, but also a reduction in the in vivo anti-sebum efficacy in male volunteers, with significantly superior percentage changes in facial sebum production and a reduction in the percentages of pore area after 15 and 30 days of treatment. It can be concluded that A. racemosus root extract with a high content of polyphenol compounds, great antioxidant effects, promising downregulation of SRD5A1 and SRD5A2, and predominant facial sebum reduction and pore-minimizing efficacy could be a candidate for an anti-sebum and pore-minimizing active ingredient to serve in functional cosmetic applications.


Asunto(s)
Asparagus , Dióxido de Carbono , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Asparagus/química , Dióxido de Carbono/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sebo
10.
Commun Biol ; 5(1): 233, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35293897

RESUMEN

Prostate cancer (PCa) is the most frequent malignancy in male urogenital system around worldwide. We performed molecular subtyping and prognostic assessment based on consensus genes in patients with PCa. Five cohorts containing 1,046 PCa patients with RNA expression profiles and recorded clinical follow-up information were included. Univariate, multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) Cox regression were used to select prognostic genes and establish the signature. Immunohistochemistry staining, cell proliferation, migration and invasion assays were used to assess the biological functions of key genes. Thirty-nine intersecting consensus prognostic genes from five independent cohorts were identified. Subsequently, an eleven-consensus-gene classifier was established. In addition, multivariate Cox regression analyses showed that the classifier served as an independent indicator of recurrence-free survival in three of the five cohorts. Combined receiver operating characteristic (ROC) analysis achieved synthesized effects by combining the classifier with clinicopathological features in four of five cohorts. SRD5A2 inhibits cell proliferation, while ITGA11 promotes cell migration and invasion, possibly through the PI3K/AKT signaling pathway. To conclude, we established and validated an eleven-consensus-gene classifier, which may add prognostic value to the currently available staging system.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Consenso , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Masculino , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
11.
Aging (Albany NY) ; 14(4): 1743-1766, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196258

RESUMEN

Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with high mortality and poor prognosis worldwide. This study aimed to identify hub genes and investigate the underlying molecular mechanisms in HCC progression by integrated bioinformatics analysis and experimental validation. Based on the Gene Expression Omnibus (GEO) databases and The Cancer Genome Atlas (TCGA), 12 critical differential co-expression genes were identified between tumor and normal tissues. Via survival analysis, we found higher expression of LCAT, ACSM3, IGF1, SRD5A2, THRSP and ACADS was associated with better prognoses in HCC patients. Among which, THRSP was selected for the next investigations. We found that THRSP mRNA expression was negatively correlated with its methylation and closely associated with clinical characteristics in HCC patients. Moreover, THRSP expression had a negative correlation with the infiltration levels of several immune cells (e.g., B cells and CD4+ T cells). qRT-PCR verified that THRSP was lower expressed in HCC tissues and cell lines compared with control. Silencing of THRSP promoted the migration, invasion, proliferation, and inhibited cell apoptosis of HCCLM and Huh7 cell lines. Decreased expression of THRSP promoted HCC progression by NF-κB, ERK1/2, and p38 MAPK signaling pathways. In conclusion, THRSP might serve as a novel biomarker and therapeutic target of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Proteínas de la Membrana/genética , Pronóstico
12.
BMC Biol ; 20(1): 11, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996447

RESUMEN

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Colestenona 5 alfa-Reductasa , Kisspeptinas , Proteínas de la Membrana/metabolismo , Adaptación Fisiológica , Animales , Colestenona 5 alfa-Reductasa/genética , Colestenona 5 alfa-Reductasa/metabolismo , Epigénesis Genética , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones
13.
Front Endocrinol (Lausanne) ; 12: 759971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764940

RESUMEN

Alterations in glucocorticoid metabolism may contribute to the development of obesity and insulin resistance (IR). Obesity in turn affects the androgen balance. The peripheral metabolism of steroids is equally an important determinant of their bioavailability and activity. The aim of this study was to evaluate steroid metabolism in obese children and to define which enzyme alterations are associated with IR. Clinical characteristics and anthropometric measurements were determined in 122 obese children and adolescents (72 girls, 50 boys) aged 8 - 18 years. 26 of them (21.3%) were diagnosed with IR (13 boys, 13 girls). Routine laboratory tests were performed and 24h urinary steroid excretion profiles were analyzed by gas chromatography/mass spectrometry. Positive relationship between 5α-reductase (SRD5A) activity and IR was found. According to the androsterone to etiocholanolone (An/Et) ratio the activity of SRD5A was significantly increased in obese children with IR, but the difference remained insignificant once the 5α-dihydrotestosterone to testosterone (5αDHT/T) ratio was considered. Furthermore, this relationship persisted in boys but was not observed in girls. The activity of 20α-hydroxysteroid dehydrogenase (20αHSD) and 20ß-hydroxysteroid dehydrogenase (20ßHSD) was reduced only in obese girls with IR. Conclude, in the context of obese children and adolescents with IR, we surmise that increased SRD5A represents a compensatory mechanism to reduce local glucocorticoid availability. This phenomenon is probably different in the liver (restriction) and in the adipose tissue (expected increase in activity). We show significant changes in 20αHSD and 20ßHSD activity in obese girls with IR, but it is difficult to clearly determine whether the activity of these enzymes is an indicator of the function in their ovaries or adrenal glands.


Asunto(s)
20-alfa-Hidroxiesteroide Deshidrogenasa/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Cortisona Reductasa/metabolismo , Resistencia a la Insulina , Proteínas de la Membrana/metabolismo , Obesidad Infantil/enzimología , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Esteroides/orina
14.
Biomolecules ; 11(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917905

RESUMEN

Network-based methods for the analysis of drug-target interactions have gained attention and rely on the paradigm that a single drug can act on multiple targets rather than a single target. In this study, we have presented a novel approach to analyze the interactions between the chemicals in the medicinal plants and multiple targets based on the complex multipartite network of the medicinal plants, multi-chemicals, and multiple targets. The multipartite network was constructed via the conjunction of two relationships: chemicals in plants and the biological actions of those chemicals on the targets. In doing so, we introduced an index of the efficacy of chemicals in a plant on a protein target of interest, called target potency score (TPS). We showed that the analysis can identify specific chemical profiles from each group of plants, which can then be employed for discovering new alternative therapeutic agents. Furthermore, specific clusters of plants and chemicals acting on specific targets were retrieved using TPS that suggested potential drug candidates with high probability of clinical success. We expect that this approach may open a way to predict the biological functions of multi-chemicals and multi-plants on the targets of interest and enable repositioning of the plants and chemicals.


Asunto(s)
Redes Neurales de la Computación , Plantas Medicinales/química , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/química , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Algoritmos , Análisis por Conglomerados , Bases de Datos de Compuestos Químicos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Plantas Medicinales/metabolismo , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo
15.
Front Endocrinol (Lausanne) ; 12: 657360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33833737

RESUMEN

Although 11-ketotestosterone (11KT) and testosterone (T) are major androgens in both teleosts and humans, their 5α-reduced derivatives produced by steroid 5α-reductase (SRD5A/srd5a), i.e., 11-ketodihydrotestosterone (11KDHT) and 5α-dihydrotestosterone (DHT), remains poorly characterized, especially in teleosts. In this study, we compared the presence and production of DHT and 11KDHT in Japanese eels and humans. Plasma 11KT concentrations were similar in both male and female eels, whereas T levels were much higher in females. In accordance with the levels of their precursors, 11KDHT levels did not show sexual dimorphism, whereas DHT levels were much higher in females. It is noteworthy that plasma DHT levels in female eels were higher than those in men. In addition, plasma 11KDHT was undetectable in both sexes in humans, despite the presence of 11KT. Three srd5a genes (srd5a1, srd5a2a and srd5a2b) were cloned from eel gonads. All three srd5a genes were expressed in the ovary, whereas only both srd5a2 genes were expressed in the testis. Human SRD5A1 was expressed in testis, ovary and adrenal, whereas SRD5A2 was expressed only in testis. Human SRD5A1, SRD5A2 and both eel srd5a2 isoforms catalyzed the conversion of T and 11KT into DHT and 11KDHT, respectively, whereas only eel srd5a1 converted T into DHT. DHT and 11KDHT activated eel androgen receptor (ar)α-mediated transactivation as similar fashion to T and 11KT. In contrast, human AR and eel arß were activated by DHT and11KDHT more strongly than T and 11KT. These results indicate that in teleosts, DHT and 11KDHT may be important 5α-reduced androgens produced in the gonads. In contrast, DHT is the only major 5α-reduced androgens in healthy humans.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Andrógenos/sangre , Dihidrotestosterona/sangre , Gónadas/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Androgénicos/metabolismo , Testosterona/análogos & derivados , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Animales , Anguilas , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Receptores Androgénicos/genética , Testosterona/sangre
16.
Cell Death Dis ; 12(2): 206, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627630

RESUMEN

Steroid 5α-reductase type I (SRD5A1) is a validated oncogene in many sex hormone-related cancers, but its role in multiple myeloma (MM) remains unknown. Based on gene expression profiling (GEP) of sequential MM samples during the disease course, we found that the aberrant expression of SRD5A1 was correlated with progression and poor prognosis in MM patients. In this study, the oncogenic roles of SRD5A1 were validated in human MM cell lines (ARP1 and H929) and the xenograft MM model as well as the 5TMM mouse model. MTT and flow cytometry were used to assess MM cell proliferation, cell cycle, and apoptosis post inducible knockdown SRD5A1 by lentivirus-mediated short-hairpin RNA (shRNA). Transcriptomic sequencing, immunofluorescence, and western blot were used to investigate the effects of SRD5A1 suppression on cell apoptosis and autophagy. Mechanistically, SRD5A1 downregulation simultaneously regulated both the Bcl-2 family protein-mediated apoptosis and the autophagic process via PI3K/Akt/mTOR signaling pathway in MM cells. Meanwhile, the autophagy inhibitor (3-methyladenine) and SRD5A1 inhibitor (Dutasteride) were utilized to evaluate their anti-myeloma effect. Thus, our results demonstrated that SRD5A1 downregulation simultaneously regulated both the apoptosis and the autophagic process in MM cells. The dual autophagy-apoptosis regulatory SRD5A1 may serve as a biomarker and potential target for MM progression and prognosis.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Apoptosis , Autofagia , Proteínas de la Membrana/metabolismo , Mieloma Múltiple/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Inhibidores de 5-alfa-Reductasa/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular , Dutasterida/farmacología , Represión Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Transducción de Señal
17.
Molecules ; 26(4)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567691

RESUMEN

Steroid 5-α reductase (5AR) is responsible for the reduction of steroids to 5-α reduced metabolites, such as the reduction of testosterone to 5-α dihydrotestosterone (DHT). A new adverse outcome pathway (AOP) for 5AR inhibition to reduce female reproduction in fish (AOP 289) is under development to clarify the antiestrogenic effects of 5AR inhibitors in female fish. A sensitive method for the DHT analysis using chemical derivatization and liquid chromatography-tandem mass spectrometry was developed. A cell-based 5AR inhibition assay that utilizes human cell lines, a transient overexpression system, and fish cell lines was developed. The measured IC50 values of two well-known 5AR inhibitors, finasteride and dutasteride, were comparable in the different systems. However, the IC50 of dutasteride in the fish cell lines was lower than that in the human cell lines. Finasteride showed a higher IC50 against the RTG-2 cell line. These results demonstrated that 5ARs inhibition could differ in terms of structural characteristics among species. The assay has high sensitivity and reproducibility and is suitable for the application in 5AR inhibition screening for various endocrine disruption chemicals (EDCs). Future studies will continue to evaluate the quantitative inhibition of 5AR by EDCs to compare the endocrine-disrupting pathway in different species.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Inhibidores de 5-alfa-Reductasa/farmacología , Cromatografía Liquida , Evaluación Preclínica de Medicamentos/métodos , Espectrometría de Masas , Animales , Calibración , Línea Celular , Humanos , Oncorhynchus mykiss , Pez Cebra
18.
Nat Commun ; 12(1): 449, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469028

RESUMEN

Steroid hormones are essential in stress response, immune system regulation, and reproduction in mammals. Steroids with 3-oxo-Δ4 structure, such as testosterone or progesterone, are catalyzed by steroid 5α-reductases (SRD5As) to generate their corresponding 3-oxo-5α steroids, which are essential for multiple physiological and pathological processes. SRD5A2 is already a target of clinically relevant drugs. However, the detailed mechanism of SRD5A-mediated reduction remains elusive. Here we report the crystal structure of PbSRD5A from Proteobacteria bacterium, a homolog of both SRD5A1 and SRD5A2, in complex with the cofactor NADPH at 2.0 Å resolution. PbSRD5A exists as a monomer comprised of seven transmembrane segments (TMs). The TM1-4 enclose a hydrophobic substrate binding cavity, whereas TM5-7 coordinate cofactor NADPH through extensive hydrogen bonds network. Homology-based structural models of HsSRD5A1 and -2, together with biochemical characterization, define the substrate binding pocket of SRD5As, explain the properties of disease-related mutants and provide an important framework for further understanding of the mechanism of NADPH mediated steroids 3-oxo-Δ4 reduction. Based on these analyses, the design of therapeutic molecules targeting SRD5As with improved specificity and therapeutic efficacy would be possible.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/ultraestructura , Proteínas Bacterianas/ultraestructura , Esteroides/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/química , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Inhibidores de 5-alfa-Reductasa/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Coenzimas/química , Coenzimas/metabolismo , Coenzimas/ultraestructura , Cristalografía por Rayos X , Diseño de Fármacos , Enlace de Hidrógeno , NADP/química , NADP/metabolismo , NADP/ultraestructura , Oxidación-Reducción , Proteobacteria/enzimología , Relación Estructura-Actividad
19.
J Steroid Biochem Mol Biol ; 207: 105808, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418075

RESUMEN

The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5ß-reductase [5ßR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5ß-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Inhibidores de 5-alfa-Reductasa/uso terapéutico , Enfermedades Metabólicas/genética , Esteroides/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Andrógenos/metabolismo , Animales , Humanos , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/metabolismo , Especificidad por Sustrato , Testosterona/metabolismo
20.
Curr Drug Discov Technol ; 18(2): 317-332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32208118

RESUMEN

AIMS AND OBJECTIVE: In this study, a novel quantitative structure activity relationship (QSAR) model has been developed for inhibitors of human 5-alpha reductase type II, which are used to treat benign prostate hypertrophy (BPH). METHODS: The dataset consisted of 113 compounds-mainly nonsteroidal-with known inhibitory concentration. Then 3D structures of compounds were optimized and molecular structure descriptors were calculated. The stepwise multiple linear regression was used to select descriptors encoding the inhibitory activity of the compounds. Multiple linear regression (MLR) was used to build up the linear QSAR model. RESULTS: The results obtained revealed that the descriptors which best describe the activity were atom type electropological state, carbon type, radial distribution function (RDF), barysz matrix and molecular linear free energy relation. The suggested model could achieve satisfied square correlation coefficient of R2 = 0.72, higher than of many previous studies, indicating its superiority. Rigid validation criteria were met using external data with Q2 ˃ 0.5 and R2 = 0.75, reflecting the predictive power of the model. CONCLUSION: The QSAR model was applied for screening botanical components of herbal preparations used to treat BPH, and could predict the activity of some, among others, making reasonable attribution to the proposed effect of these preparations. Gamma tocopherol was found to be an active inhibitor, in consistence with many previous studies, anticipating the power of this model in the prediction of new candidate molecules and suggesting further investigations.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Inhibidores de 5-alfa-Reductasa/farmacología , Proteínas de la Membrana , Hiperplasia Prostática , Relación Estructura-Actividad Cuantitativa , gamma-Tocoferol/farmacología , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Dihidrotestosterona/metabolismo , Descubrimiento de Drogas , Humanos , Isoenzimas , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Preparaciones de Plantas/farmacología , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...