Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.797
Filtrar
1.
Biochemistry ; 63(13): 1636-1646, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888931

RESUMEN

The conserved enzyme aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in certain bacteria and eukaryotes by catalyzing the condensation of glycine and succinyl-CoA to yield aminolevulinic acid. In humans, the ALAS isoform responsible for heme production during red blood cell development is the erythroid-specific ALAS2 isoform. Owing to its essential role in erythropoiesis, changes in human ALAS2 (hALAS2) function can lead to two different blood disorders. X-linked sideroblastic anemia results from loss of ALAS2 function, while X-linked protoporphyria results from gain of ALAS2 function. Interestingly, mutations in the ALAS2 C-terminal extension can be implicated in both diseases. Here, we investigate the molecular basis for enzyme dysfunction mediated by two previously reported C-terminal loss-of-function variants, hALAS2 V562A and M567I. We show that the mutations do not result in gross structural perturbations, but the enzyme stability for V562A is decreased. Additionally, we show that enzyme stability moderately increases with the addition of the pyridoxal 5'-phosphate (PLP) cofactor for both variants. The variants display differential binding to PLP and the individual substrates compared to wild-type hALAS2. Although hALAS2 V562A is a more active enzyme in vitro, it is less efficient concerning succinyl-CoA binding. In contrast, the M567I mutation significantly alters the cooperativity of substrate binding. In combination with previously reported cell-based studies, our work reveals the molecular basis by which hALAS2 C-terminal mutations negatively affect ALA production necessary for proper heme biosynthesis.


Asunto(s)
5-Aminolevulinato Sintetasa , Anemia Sideroblástica , Humanos , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/deficiencia , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Mutación con Pérdida de Función , Estabilidad de Enzimas , Hemo/metabolismo , Hemo/química , Porfirias/genética , Porfirias/metabolismo , Modelos Moleculares , Mutación , Protoporfiria Eritropoyética
2.
J Mol Diagn ; 26(5): 430-444, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360212

RESUMEN

Inherited iron metabolism defects are possibly missed or underdiagnosed in iron-deficient endemic settings because of a lack of awareness or a methodical screening approach. Hence, we systematically evaluated anemia cases (2019 to 2021) based on clinical phenotype, normal screening tests (high-performance liquid chromatography, α gene sequencing, erythrocyte sedimentation rate, C-reactive protein, and tissue transglutaminase), and abnormal iron profile by targeted next-generation sequencing (26-gene panel) supplemented with whole-exome sequencing, multiplex ligation probe amplification/mitochondrial DNA sequencing, and chromosomal microarray. Novel variants in ALAS2, STEAP3, and HSPA9 genes were functionally validated. A total of 290 anemia cases were screened, and 41 (14%) enrolled for genomic testing as per inclusion criteria. Comprehensive genomic testing revealed pathogenic variants in 23 of 41 cases (56%). Congenital sideroblastic anemia was the most common diagnosis (14/23; 61%), with pathogenic variations in ALAS2 (n = 6), SLC25A38 (n = 3), HSPA9 (n = 2) and HSCB, SLC19A2, and mitochondrial DNA deletion (n = 1 each). Nonsideroblastic iron defects included STEAP3-related microcytic anemia (2/23; 8.7%) and hypotransferrenemia (1/23; 4.3%). A total of 6 of 22 cases (27%) revealed a non-iron metabolism gene defect on whole-exome sequencing. Eleven novel variants (including variants of uncertain significance) were noted in 13 cases. Genotype-phenotype correlation revealed a significant association of frameshift/nonsense/splice variants with lower presentation age (0.8 months versus 9 years; P < 0.01) compared with missense variants. The systematic evaluation helped uncover an inherited iron defect in 41% (17/41) of cases, suggesting the need for active screening and awareness for these rare diseases in an iron-deficient endemic population.


Asunto(s)
Anemia Sideroblástica , Hierro , Humanos , Lactante , Hierro/metabolismo , Mutación , Anemia Sideroblástica/epidemiología , Anemia Sideroblástica/genética , Anemia Sideroblástica/diagnóstico , Genómica , ADN Mitocondrial , Proteínas de Transporte de Membrana/genética , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo
3.
Curr Res Transl Med ; 72(1): 103438, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38244303

RESUMEN

Congenital sideroblastic anemia (CSA) is a group of disorders caused by different genetic mutations that result in low iron utilization and ineffective erythropoiesis. Current treatments are limited, and some patients do not respond to vitamin B6 therapy. Luspatercept is a novel erythropoietic maturation agent approved for adult ß-thalassemia and Myelodysplastic syndromes with ring sideroblasts (MDS-RS) associated with ineffective erythropoiesis. Here we report 2 patients with CSA due to mutations in ALAS2 and SLC25A38 genes who became unresponsive after a period of treatment with vitamin B6 and iron chelators but achieved transfusion independence and a markedly reduced spleen after combination with luspatercept.


Asunto(s)
Receptores de Activinas Tipo II , Anemia Sideroblástica , Enfermedades Genéticas Ligadas al Cromosoma X , Proteínas Recombinantes de Fusión , Adulto , Humanos , 5-Aminolevulinato Sintetasa , Receptores de Activinas Tipo II/efectos adversos , Anemia Sideroblástica/tratamiento farmacológico , Anemia Sideroblástica/genética , Anemia Sideroblástica/congénito , Fragmentos Fc de Inmunoglobulinas/efectos adversos , Proteínas Recombinantes de Fusión/efectos adversos , Vitamina B 6
4.
Cell Biochem Funct ; 42(1): e3925, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269509

RESUMEN

Photodynamic therapy (PDT) is nowadays widely employed in cancer treatment. We sought to assess the efficacy of combining PDT with anti-programmed cell death protein 1 (PD1) and to investigate the associated mechanisms in nonsmall cell lung cancer (NSCLC). We established a xenograft tumor model in C57BL/6J mice using Lewis lung carcinoma (LLC) cells, recorded tumor growth, and quantified reactive oxygen species (ROS) levels using a ROS detection kit. Pathological changes were assessed through H&E staining, while immunofluorescence (IF) was used to determine the expression of CD8 and Foxp3. Transcriptomic analysis was conducted, analyzing differential expressed genes (DEGs) among control, PDT, and PDT combined with anti-PD1 (PDT+anti-PD1) groups. Functional enrichment analysis via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The Cancer Genome Atlas (TCGA) database was utilized to analyze the expression of aminolevulinate synthase gene (ALAS2), integrin alpha10 (ITGA10), ATP1A2, a disintegrin and metalloprotease 12 (ADAM12), and Lox1 in lung adenocarcinoma and adjacent tissues, with concurrent immune infiltration analysis. Quantitative real-time polymerase chain reaction and western blot were employed to measure mRNA and protein expression levels. Treatment with PDT combined with anti-PD1 significantly inhibited tumor growth and increased the number of CD8+ cells while decreasing Foxp3+ cells. Immune infiltration results presented ALAS2, ADAM12, and ITGA10 were associated with various types of T cells or macrophages. Additionally, the expression levels of EGFR, ERK, and PI3K/Akt were suppressed after PDT with anti-PD1 treatment. Our findings collectively suggest that PDT combined with anti-PD1 treatment could enhance the infiltration of CD8+ T cells, suppressing tumor growth, and this effect was associated with ALAS2, ITGA10, and ADAM12. The underlying mechanism might be linked to EGFR, ERK, and PI3K/Akt signaling. Overall, this study provides valuable insights into the application of PDT combined with anti-PD1 treatment in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Ratones , Animales , Ratones Endogámicos C57BL , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Linfocitos T CD8-positivos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB , Factores de Transcripción Forkhead , Inmunidad , 5-Aminolevulinato Sintetasa
6.
Clin Exp Immunol ; 216(1): 45-54, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38133636

RESUMEN

Cold agglutinin disease (CAD) is a rare B-cell lymphoproliferative disorder of the bone marrow, manifested by autoimmune hemolytic anemia caused by binding of monoclonal IgM autoantibodies to the I antigen. Underlying genetic changes have previously been reported, but their impact on gene expression profile has been unknown. Here, we define differentially expressed genes in CAD B cells. To unravel downstream alteration in cellular pathways, gene expression by RNA sequencing was undertaken. Clonal B-cell samples from 12 CAD patients and IgM-expressing memory B cells from 4 healthy individuals were analyzed. Differential expression analysis and filtering resulted in 93 genes with significant differential expression. Top upregulated genes included SLC4A1, SPTA1, YBX3, TESC, HBD, AHSP, TRAF1, HBA2, RHAG, CA1, SPTB, IL10, UBASH3B, ALAS2, HBA1, CRYM, RGCC, KANK2, and IGHV4-34. They were upregulated at least 8-fold, while complement receptor 1 (CR1/CD35) was downregulated 11-fold in clonal CAD B cells compared to control B cells. Flow cytometry analyses further confirmed reduced CR1 (CD35) protein expression by clonal CAD IgM+ B cells compared to IgM+ memory B cells in controls. CR1 (CD35) is an important negative regulator of B-cell activation and differentiation. Therefore, reduced CR1 (CD35) expression may increase activation, proliferation, and antibody production in CAD-associated clonal B cells.


Asunto(s)
Anemia Hemolítica Autoinmune , Humanos , Anemia Hemolítica Autoinmune/genética , Anemia Hemolítica Autoinmune/metabolismo , Regulación hacia Abajo , Receptores de Complemento 3b/genética , Linfocitos B , Inmunoglobulina M , Perfilación de la Expresión Génica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo
7.
Autoimmunity ; 56(1): 2281225, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38053370

RESUMEN

OBJECTIVE: High-throughput sequencing was used to screen expressing differences of miRNA, lncRNA, and mRNA in CD19+ B peripheral blood samples of newly diagnosed immune thrombocytopenia (ITP) patients and healthy controls. The study aimed to explore the regulatory role of ceRNA network in the pathogenesis of dysfunctional CD19 + B lymphocytes of ITP patients. METHODS: CD19+ B lymphocytes were isolated from peripheral blood samples of ITP patients and their healthy counterparts. High-throughput sequencing was used to screen for the expression of miRNA, lncRNA, and mRNA of ITP patients and healthy controls, which were analysed by the ceRNA network. Moreover, qPCR was used to verify the differential expression of miRNA, lncRNA, and mRNA in ITP patients and healthy controls. The correlation between differentially expressed miRNA, lncRNA, mRNA, and B lymphocyte subsets was also analysed. RESULTS: The CD19+ B lymphocytes of 4 newly diagnosed ITP patients and 4 healthy controls were sequenced and analysed. There were 65 differentially expressed lncRNA and 149 mRNA forming a ceRNA network showed that 12 lncRNA and 136 differentially expressed mRNA were closely associated. Similarly, miR-144-3p, miR-374c-3p, and miR-451a were highly expressed in ITP patients, as confirmed by qPCR, which was consistent with the high-throughput sequence results. LOC102724852 and CCL20 were highly expressed in ITP patients, while LOC105378901, LOC112268311, ALAS2, and TBC1D3F were not as compared to healthy controls, which was consistent with the high-throughput sequence results. In addition, the expression of miR-374c-3p, LOC112268311, LOC105378901, and CXCL3 were correlated with the percentage of B lymphocyte subsets. CONCLUSIONS: The ceRNA network of miRNA, lncRNA, and mRNA in peripheral CD19 + B lymphocytes plays an essential role in the pathogenesis of ITP.


Asunto(s)
MicroARNs , Púrpura Trombocitopénica Idiopática , ARN Largo no Codificante , Trombocitopenia , Humanos , Púrpura Trombocitopénica Idiopática/diagnóstico , Púrpura Trombocitopénica Idiopática/genética , ARN Largo no Codificante/genética , MicroARNs/genética , Linfocitos B , ARN Mensajero/genética , Antígenos CD19/genética , Redes Reguladoras de Genes , 5-Aminolevulinato Sintetasa/genética
8.
Hematology ; 28(1): 2261802, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37791839

RESUMEN

BACKGROUND: : Erythroid cells play important roles in hemostasis and disease. However, there is still significant knowledge gap regarding stress erythropoiesis. METHODS: : Two single-cell RNAseq datasets of erythroid cells on GEO with accession numbers GSE149938 and GSE184916 were obtained. The datasets from two sources, bone marrow and peripheral blood were analyzed using Seurat v4.1.1, and other tools in R. QC metrics were performed, data were normalized and scaled. Principal components that capture the variation of the data were determined. In clustering the cells, KNN graph was constructed and Louvain algorithm was applied to optimize the standard modularity function. Clusters were defined via differential expression of features. RESULTS: We identified 9 different cell types, with a particular cluster representing the stress erythroids. The clusters showed differentially expressed genes as observed from the gene signature plot. The stress erythroid cluster differentially expressed some genes including ALAS2, HEMGN, and GUK1. CONCLUSION: The erythroid population was found to be heterogeneous, with a distinct sub-cell type constituting the stress erythroids; this may have important implications for our knowledge of steady-state and stress erythropoiesis, and the markers found in this cluster may prove useful for future research into the dynamics of stress erythroid progenitor cell differentiation.


Asunto(s)
Células Eritroides , Análisis de Expresión Génica de una Sola Célula , Humanos , Células Precursoras Eritroides , Algoritmos , Diferenciación Celular , Proteínas Nucleares , 5-Aminolevulinato Sintetasa
9.
J Transl Med ; 21(1): 728, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845713

RESUMEN

BACKGROUND: Feature selection is a critical step for translating advances afforded by systems-scale molecular profiling into actionable clinical insights. While data-driven methods are commonly utilized for selecting candidate genes, knowledge-driven methods must contend with the challenge of efficiently sifting through extensive volumes of biomedical information. This work aimed to assess the utility of large language models (LLMs) for knowledge-driven gene prioritization and selection. METHODS: In this proof of concept, we focused on 11 blood transcriptional modules associated with an Erythroid cells signature. We evaluated four leading LLMs across multiple tasks. Next, we established a workflow leveraging LLMs. The steps consisted of: (1) Selecting one of the 11 modules; (2) Identifying functional convergences among constituent genes using the LLMs; (3) Scoring candidate genes across six criteria capturing the gene's biological and clinical relevance; (4) Prioritizing candidate genes and summarizing justifications; (5) Fact-checking justifications and identifying supporting references; (6) Selecting a top candidate gene based on validated scoring justifications; and (7) Factoring in transcriptome profiling data to finalize the selection of the top candidate gene. RESULTS: Of the four LLMs evaluated, OpenAI's GPT-4 and Anthropic's Claude demonstrated the best performance and were chosen for the implementation of the candidate gene prioritization and selection workflow. This workflow was run in parallel for each of the 11 erythroid cell modules by participants in a data mining workshop. Module M9.2 served as an illustrative use case. The 30 candidate genes forming this module were assessed, and the top five scoring genes were identified as BCL2L1, ALAS2, SLC4A1, CA1, and FECH. Researchers carefully fact-checked the summarized scoring justifications, after which the LLMs were prompted to select a top candidate based on this information. GPT-4 initially chose BCL2L1, while Claude selected ALAS2. When transcriptional profiling data from three reference datasets were provided for additional context, GPT-4 revised its initial choice to ALAS2, whereas Claude reaffirmed its original selection for this module. CONCLUSIONS: Taken together, our findings highlight the ability of LLMs to prioritize candidate genes with minimal human intervention. This suggests the potential of this technology to boost productivity, especially for tasks that require leveraging extensive biomedical knowledge.


Asunto(s)
Relevancia Clínica , Minería de Datos , Humanos , Perfilación de la Expresión Génica , Conocimiento , Lenguaje , 5-Aminolevulinato Sintetasa
10.
BMC Med Genomics ; 16(1): 215, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697358

RESUMEN

BACKGROUND: Hereditary hemolytic anemia (HHA) refers to a heterogeneous group of genetic disorders that share one common feature: destruction of circulating red blood cells (RBCs). The destruction of RBCs may be due to membranopathies, enzymopathies, or hemoglobinopathies. Because these are genetic disorders, incorporation of next-generation sequencing (NGS) has facilitated the diagnostic process of HHA. METHOD: Genetic data from 29 patients with suspected hereditary anemia in a tertiary hospital were retrospectively reviewed to evaluate the efficacy of NGS on hereditary anemia diagnosis. Targeted NGS was performed with custom probes for 497 genes associated with hematologic disorders. After genomic DNA was extracted from peripheral blood, prepared libraries were hybridized with capture probes and sequenced using NextSeq 550Dx (Illumina, San Diego, CA, USA). RESULT: Among the 29 patients, ANK1 variants were detected in five, four of which were pathogenic or likely pathogenic variants. SPTB variants were detected in six patients, five of which were classified as pathogenic or likely pathogenic variants. We detected g6pd pathogenic and spta1 likely pathogenic variants in two patients and one patient, respectively. Whole-gene deletions in both HBA1 and HBA2 were detected in two patients, while only HBA2 deletion was detected in one patient. One likely pathogenic variant in PLKR was detected in one patient, and one likely pathogenic variant in ALAS2 was detected in another. CONCLUSION: Here, NGS played a critical role in definitive diagnosis in 18 out of 29 patients (62.07%) with suspected HHA. Thus, its incorporation into the diagnostic workflow is crucial.


Asunto(s)
Anemia Hemolítica Congénita , Humanos , Niño , Estudios Retrospectivos , Anemia Hemolítica Congénita/diagnóstico , Anemia Hemolítica Congénita/genética , Eritrocitos , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas del Citoesqueleto , 5-Aminolevulinato Sintetasa
11.
Pharmacol Ther ; 248: 108487, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392940

RESUMEN

Protoporphyrin IX (PPIX) is an intermediate in the heme biosynthesis pathway. Abnormal accumulation of PPIX due to certain pathological conditions such as erythropoietic protoporphyria and X-linked protoporphyria causes painful phototoxic reactions of the skin, which can significantly impact daily life. Endothelial cells in the skin have been proposed as the primary target for PPIX-induced phototoxicity through light-triggered generation of reactive oxygen species. Current approaches for the management of PPIX-induced phototoxicity include opaque clothing, sunscreens, phototherapy, blood therapy, antioxidants, bone marrow transplantation, and drugs that increase skin pigmentation. In this review, we discuss the present understanding of PPIX-induced phototoxicity including PPIX production and disposition, conditions that lead to PPIX accumulation, symptoms and individual differences, mechanisms, and therapeutics.


Asunto(s)
Células Endoteliales , Protoporfiria Eritropoyética , Humanos , Células Endoteliales/metabolismo , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Protoporfiria Eritropoyética/metabolismo , Protoporfiria Eritropoyética/patología , Protoporfiria Eritropoyética/terapia , 5-Aminolevulinato Sintetasa
13.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769209

RESUMEN

In heart failure, the biological and clinical connection between abnormal iron homeostasis, myocardial function, and prognosis is known; however, the expression profiles of iron-linked genes both at myocardial tissue and single-cell level are not well defined. Through publicly available bulk and single-nucleus RNA sequencing (RNA-seq) datasets of left ventricle samples from adult non-failed (NF) and dilated cardiomyopathy (DCM) subjects, we aim to evaluate the altered iron metabolism in a diseased condition, at the whole cardiac tissue and single-cell level. From the bulk RNA-seq data, we found 223 iron-linked genes expressed at the myocardial tissue level and 44 differentially expressed between DCM and NF subjects. At the single-cell level, at least 18 iron-linked expressed genes were significantly regulated in DCM when compared to NF subjects. Specifically, the iron metabolism in DCM cardiomyocytes is altered at several levels, including: (1) imbalance of Fe3+ internalization (SCARA5 down-regulation) and reduction of internal conversion from Fe3+ to Fe2+ (STEAP3 down-regulation), (2) increase of iron consumption to produce hemoglobin (HBA1/2 up-regulation), (3) higher heme synthesis and externalization (ALAS2 and ABCG2 up-regulation), (4) lower cleavage of heme to Fe2+, biliverdin and carbon monoxide (HMOX2 down-regulation), and (5) positive regulation of hepcidin (BMP6 up-regulation).


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Adulto , Humanos , Cardiomiopatía Dilatada/metabolismo , Miocardio/metabolismo , Regulación hacia Abajo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/metabolismo , 5-Aminolevulinato Sintetasa/genética , Receptores Depuradores de Clase A/genética
14.
PLoS Pathog ; 19(2): e1011170, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802406

RESUMEN

Viruses have evolved countless mechanisms to subvert and impair the host innate immune response. Measles virus (MeV), an enveloped, non-segmented, negative-strand RNA virus, alters the interferon response through different mechanisms, yet no viral protein has been described as directly targeting mitochondria. Among the crucial mitochondrial enzymes, 5'-aminolevulinate synthase (ALAS) is an enzyme that catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. In this work, we demonstrate that MeV impairs the mitochondrial network through the V protein, which antagonizes the mitochondrial enzyme ALAS1 and sequesters it to the cytosol. This re-localization of ALAS1 leads to a decrease in mitochondrial volume and impairment of its metabolic potential, a phenomenon not observed in MeV deficient for the V gene. This perturbation of the mitochondrial dynamics demonstrated both in culture and in infected IFNAR-/- hCD46 transgenic mice, causes the release of mitochondrial double-stranded DNA (mtDNA) in the cytosol. By performing subcellular fractionation post infection, we demonstrate that the most significant source of DNA in the cytosol is of mitochondrial origin. Released mtDNA is then recognized and transcribed by the DNA-dependent RNA polymerase III. The resulting double-stranded RNA intermediates will be captured by RIG-I, ultimately initiating type I interferon production. Deep sequencing analysis of cytosolic mtDNA editing divulged an APOBEC3A signature, primarily analyzed in the 5'TpCpG context. Finally, in a negative feedback loop, APOBEC3A an interferon inducible enzyme will orchestrate the catabolism of mitochondrial DNA, decrease cellular inflammation, and dampen the innate immune response.


Asunto(s)
Interferones , Mitocondrias , Ratones , Animales , Mitocondrias/metabolismo , Virus del Sarampión , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , ADN Mitocondrial
15.
Exp Clin Transplant ; 21(1): 70-75, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757170

RESUMEN

Congenital sideroblastic anemia is characterized by anemia and intramitochondrial iron accumulation in erythroid precursors that form ring sideroblasts. The most common recessive forms are caused by sequence variations in the ALAS2 and SLC25A38 genes. In patients with transfusion-dependent and pyridoxine- resistant severe congenital sideroblastic anemia, hematopoietic stem celltransplantis the only curative option. Herein, we described successful implementations of allogeneic hematopoietic stem cell transplant in 4 Iranian children with congenital sideroblastic anemia. The patients had presented with clinical manifestations of anemia early in life, and the diagnoses of congenital sideroblastic anemia were established through blood tests and bone marrow aspiration. Congenital sideroblastic anemia was further confirmed by the identification of pathogenic variants in SLC25A38 in 2 patients. All 4 patients received allogeneic hematopoietic stem cell transplant with myeloablative conditioning regimen that included busulfan, cyclophosphamide, andrabbit antithymocyte globulin. A combination of cyclosporine A and methotrexate or mycophenolate mofetil was used for graft-versus-host disease prophylaxis. Bone marrow and peripheral blood from sibling or related donors with fully matched human leukocyte antigen profiles were applied. The outcomes of hematopoietic stem celltransplantin patients with congenital sideroblastic anemia were favorable. Three patients achieved full donor chimerism (>95%, 98%, and 100%), and the other patient showed mixed chimerism (75%). All patients remained transfusion independent. Hemato- poietic stem celltransplantis a curative treatmentthat can provide long-term survival for patients with congenital sideroblastic anemia, particularly when used in a timely manner. There remain ongoing challenges in various aspects of hematopoietic stem celltransplantin patients with congenital sideroblastic anemia, which remain to be elucidated.


Asunto(s)
Anemia Sideroblástica , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Niño , Humanos , 5-Aminolevulinato Sintetasa/genética , Anemia Sideroblástica/diagnóstico , Anemia Sideroblástica/genética , Anemia Sideroblástica/congénito , Ciclosporina , Irán , Acondicionamiento Pretrasplante
16.
Protein Sci ; 32(4): e4600, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36807942

RESUMEN

5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel ß-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.


Asunto(s)
5-Aminolevulinato Sintetasa , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , 5-Aminolevulinato Sintetasa/química , Fosfato de Piridoxal/química , Dominio Catalítico , Hemo/química
17.
Anim Genet ; 54(2): 189-198, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36632647

RESUMEN

ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.


Asunto(s)
5-Aminolevulinato Sintetasa , Cabras , Factores de Transcripción , Animales , Femenino , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Proliferación Celular , Cabras/genética , Cabras/metabolismo , Hemo , Factores de Transcripción/metabolismo
18.
Drug Test Anal ; 15(4): 444-448, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36354188

RESUMEN

Iron supplementation is not considered as a doping method; however, it can affect the levels of several biomarkers of the hematologic module of the athlete biological passport (ABP), such as the reticulocyte percentage (%RET) and hemoglobin (HGB) level. Thus, iron injection could be a confounding factor in antidoping analyses. Previous studies have suggested that the HGB level and the expression levels of reticulocyte-related-mRNAs, such as 5'-aminolevulinate synthase 2 (ALAS2) and carbonic anhydrase 1 (CA1), could be promising biomarkers for the ABP and detectable in dried blood spots (DBSs). Therefore, in this study, we examined the impact of iron injection on the levels of these potential biomarkers in DBSs. Reticulocyte-related-mRNAs analyses were performed by RT-qPCR. Ferritin level in DBS was measured with enzyme-linked immunosorbent assay (ELISA) method. Notably, there were no significant effects of iron supplementation on the levels of ALAS2 and CA1 mRNAs but by contrast, the %RET and immature reticulocyte fraction (IRF) measured in whole blood increased significantly following iron injection. As expected, iron supplementation increased the ferritin level significantly in both serum and DBS samples. In conclusion, these findings reinforce the specificity of reticulocyte-related mRNAs in DBSs as biomarkers of blood doping to target in antidoping analyses.


Asunto(s)
Doping en los Deportes , Humanos , Doping en los Deportes/métodos , Reticulocitos/metabolismo , Hierro , Biomarcadores , Ferritinas , Hemoglobinas/análisis , 5-Aminolevulinato Sintetasa
19.
Int Urogynecol J ; 34(7): 1395-1403, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36136109

RESUMEN

INTRODUCTION AND HYPOTHESIS: The pathogenesis of pelvic organ prolapse (POP) remains unknown. Herein, we aim to reveal the molecular profile of POP by transcriptomic and metabolomic analysis. METHODS: We selected 12 samples of uterosacral ligaments (USLs) from 6 POP patients and 6 controls for transcriptomic and metabolomic analyses. Differentially expressed genes (DEGs) were identified using the R package edgeR. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using clusterProfiler, and a protein-protein interaction (PPI) network was constructed using STRING and visualized in Cytoscape. Metabolomic profiling was performed by a liquid chromatography-tandem mass spectrometry system. RESULTS: Transcriptomic analysis identified 487 DEGs between the POP and control groups. Functional enrichment analysis revealed that they were mostly related to immune response terms, including "adaptive immune response," "T cell differentiation," and "T cell activation." In addition, PTPRC, LCK, CD247, IL2RB, CD2, CXR5, JUN, CD3E, IL2RG, and PRF1 were the 10 nodes with the highest node degrees in the PPI network. Metabolomic profiling revealed 290 differentially expressed metabolites, which significantly enriched in "glycerophospholipid metabolism," "nicotinate and nicotinamide metabolism," "glycine, serine, and threonine metabolism," "arginine and proline metabolism," "pyrimidine metabolism," and "purine metabolism." Finally, integrated analysis revealed that the DEGs involved in these significantly enriched metabolic pathways included NT5C1A, GMPR, SDS, ALAS2, CARNS1, PYCR1, P4HA3, PGS1, and NMRK2. CONCLUSIONS: Our findings demonstrate that the immune response and metabolic regulatory pathways are intertwined in POP and might provide new therapeutic targets.


Asunto(s)
Prolapso de Órgano Pélvico , Transcriptoma , Humanos , Perfilación de la Expresión Génica/métodos , Metaboloma , Inmunidad , Prolapso de Órgano Pélvico/genética , Procolágeno-Prolina Dioxigenasa/genética , 5-Aminolevulinato Sintetasa/genética
20.
BMC Genomics ; 23(1): 761, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411402

RESUMEN

BACKGROUND: Protoporphyrin IX (Pp IX) is the primary pigment for brown eggshells. However, the regulatory mechanisms directing Pp IX synthesis, transport, and genetic regulation during eggshell calcification in chickens remain obscure. In this study, we investigated the mechanism of brown eggshell formation at different times following oviposition, using White Leghorn hens (WS group), Rhode Island Red light brown eggshell line hens (LBS group) and Rhode Island Red dark brown eggshell line hens (DBS group). RESULTS: At 4, 16 and 22 h following oviposition, Pp IX concentrations in LBS and DBS groups were significantly higher in shell glands than in liver (P < 0.05). Pp IX concentrations in shell glands of LBS and DBS groups at 16 and 22 h following oviposition were significantly higher than WS group (P < 0.05). In comparative transcriptome analysis, δ-aminolevulinate synthase 1 (ALAS1), solute carrier family 25 member 38 (SLC25A38), ATP binding cassette subfamily G member 2 (ABCG2) and feline leukemia virus subgroup C cellular receptor 1 (FLVCR1), which were associated with Pp IX synthesis, were identified as differentially expressed genes (DEGs). RT-qPCR results showed that the expression level of ALAS1 in shell glands was significantly higher in DBS group than in WS group at 16 and 22 h following oviposition (P < 0.05). In addition, four single nucleotide polymorphisms (SNPs) in ALAS1 gene that were significantly associated with eggshell brownness were identified. By identifying the differential metabolites in LBS and DBS groups, we found 11-hydroxy-E4-neuroprostane in shell glands and 15-dehydro-prostaglandin E1(1-) and prostaglandin G2 2-glyceryl ester in uterine fluid were related to eggshell pigment secretion. CONCLUSIONS: In this study, the regulatory mechanisms of eggshell brownness were studied comprehensively by different eggshell color and time following oviposition. Results show that Pp IX is synthesized de novo and stored in shell gland, and ALAS1 is a key gene regulating Pp IX synthesis in the shell gland. We found three transporters in Pp IX pathway and three metabolites in shell glands and uterine fluid that may influence eggshell browning.


Asunto(s)
Pollos , Cáscara de Huevo , Animales , Femenino , Cáscara de Huevo/metabolismo , Pollos/genética , Huevos , Pigmentación , 5-Aminolevulinato Sintetasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...