Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076393

RESUMEN

DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase; however, robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.


Asunto(s)
Proteínas Arqueales , ADN-Topoisomerasas de Tipo II , ADN Encadenado , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Encadenado/química , ADN Encadenado/genética , ADN Encadenado/metabolismo , Methanosarcina/enzimología , Imagen Individual de Molécula , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; 59(38): 16366-16370, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32997429

RESUMEN

DNA walkers are molecular machines that can move with high precision onthe nanoscale due to their structural and functional programmability. Despite recent advances in the field that allow exploring different energy sources, stimuli, and mechanisms of action for these nanomachines, the continuous operation and reusability of DNA walkers remains challenging because in most cases the steps, once taken by the walker, cannot be taken again. Herein we report the path regeneration of a burnt-bridges DNA catenane walker using RNase A. This walker uses a T7RNA polymerase that produces long RNA transcripts to hybridize to the path and move forward while the RNA remains hybridized to the path and blocks it for an additional walking cycle. We show that RNA degradation triggered by RNase A restores the path and returns the walker to the initial position. RNase inhibition restarts the function of the walker.


Asunto(s)
ADN Encadenado/química , Nanotecnología/métodos , ARN/química , Ribonucleasa Pancreática/química , Bacteriófago T7/enzimología , ADN Encadenado/genética , ARN Polimerasas Dirigidas por ADN/química , Hibridación de Ácido Nucleico , ARN/genética , Proteínas Virales/química
3.
Genes (Basel) ; 11(8)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784550

RESUMEN

At each round of cell division, the DNA must be correctly duplicated and distributed between the two daughter cells to maintain genome identity. In order to achieve proper chromosome replication and segregation, sister chromatids must be recognized as such and kept together until their separation. This process of cohesion is mainly achieved through proteinaceous linkages of cohesin complexes, which are loaded on the sister chromatids as they are generated during S phase. Cohesion between sister chromatids must be fully removed at anaphase to allow chromosome segregation. Other (non-proteinaceous) sources of cohesion between sister chromatids consist of DNA linkages or sister chromatid intertwines. DNA linkages are a natural consequence of DNA replication, but must be timely resolved before chromosome segregation to avoid the arising of DNA lesions and genome instability, a hallmark of cancer development. As complete resolution of sister chromatid intertwines only occurs during chromosome segregation, it is not clear whether DNA linkages that persist in mitosis are simply an unwanted leftover or whether they have a functional role. In this review, we provide an overview of DNA linkages between sister chromatids, from their origin to their resolution, and we discuss the consequences of a failure in their detection and processing and speculate on their potential role.


Asunto(s)
Anafase , ADN Encadenado/genética , Inestabilidad Genómica , Animales , Cromátides/química , Cromátides/genética , Segregación Cromosómica , ADN Encadenado/química , Humanos
4.
Small ; 16(6): e1905987, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31917513

RESUMEN

Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal-templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA-based molecular architectures with unique structural programmability and well-defined topology.


Asunto(s)
Catenanos , ADN Encadenado , Oro , Nanopartículas del Metal , Catenanos/química , ADN/química , ADN Encadenado/química , Oro/química , Nanopartículas del Metal/química
5.
Nucleic Acids Res ; 47(14): 7182-7198, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31276584

RESUMEN

Due to helical structure of DNA, massive amounts of positive supercoils are constantly introduced ahead of each replication fork. Positive supercoiling inhibits progression of replication forks but various mechanisms evolved that permit very efficient relaxation of that positive supercoiling. Some of these mechanisms lead to interesting topological situations where DNA supercoiling, catenation and knotting coexist and influence each other in DNA molecules being replicated. Here, we first review fundamental aspects of DNA supercoiling, catenation and knotting when these qualitatively different topological states do not coexist in the same circular DNA but also when they are present at the same time in replicating DNA molecules. We also review differences between eukaryotic and prokaryotic cellular strategies that permit relaxation of positive supercoiling arising ahead of the replication forks. We end our review by discussing very recent studies giving a long-sought answer to the question of how slow DNA topoisomerases capable of relaxing just a few positive supercoils per second can counteract the introduction of hundreds of positive supercoils per second ahead of advancing replication forks.


Asunto(s)
Replicación del ADN , ADN Encadenado/química , ADN Circular/química , ADN Superhelicoidal/química , ADN/química , Conformación de Ácido Nucleico , ADN/genética , Células Eucariotas/metabolismo , Modelos Moleculares , Células Procariotas/metabolismo
6.
Chem Commun (Camb) ; 54(72): 10156-10159, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30132764

RESUMEN

In spite of remarkable progress in synthetic methodology, a closed three-link chain (one of the simplest but the most important topological isomers of [3]catenane) has never been prepared. Here we synthesized this isomer in high yield from three oligonucleotides which are designed to optimize various chemical and steric factors in their mutual hybridization.


Asunto(s)
ADN Encadenado/química , ADN de Cadena Simple/química , Oligodesoxirribonucleótidos/química , ADN Ligasas/química , ADN Encadenado/síntesis química , ADN de Cadena Simple/síntesis química , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/síntesis química
7.
Methods Mol Biol ; 1703: 75-86, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177734

RESUMEN

Two-dimensional agarose gel electrophoresis is the method of choice to identify and quantify all the topological forms DNA molecules can adopt in vivo. Here we describe the materials and protocols needed to analyze catenanes, the natural outcome of DNA replication, in Saccharomyces cerevisiae. We describe the formation of pre-catenanes during replication and how inhibition of topoisomerase 2 leads to the accumulation of intertwined sister duplexes. This knowledge is essential to determine how replication forks blockage or pausing affects the dynamic of DNA topology during replication.


Asunto(s)
Replicación del ADN , ADN Encadenado/genética , Saccharomyces cerevisiae/genética , Replicación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Encadenado/química , ADN de Hongos/química , ADN de Hongos/genética , Electroforesis en Gel Bidimensional , Conformación de Ácido Nucleico , Inhibidores de Topoisomerasa II/farmacología
8.
Methods Mol Biol ; 1703: 217-240, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177745

RESUMEN

Topoisomerase II activity is crucial to maintain genome stability through the removal of catenanes in the DNA formed during DNA replication and scaffolding the mitotic chromosome. Perturbed Topo II activity causes defects in chromosome segregation due to persistent catenations and aberrant DNA condensation during mitosis. Recently, novel top2 alleles in the yeast Saccharomyces cerevisiae revealed a checkpoint control which responds to perturbed Topo II activity. Described in this chapter are protocols for assaying the phenotypes seen in top2 mutants on a cell biological basis in live cells: activation of the Topo II checkpoint using spindle morphology, chromosome condensation using fluorescently labeled chromosomal loci and cell cycle progression by flow cytometry. Further characterization of this novel checkpoint is warranted so that we can further our understanding of the cell cycle, genomic stability, and the possibility of identifying novel drug targets.


Asunto(s)
Puntos de Control del Ciclo Celular , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Encadenado/química , Saccharomyces cerevisiae/enzimología , Cromosomas Fúngicos/química , Replicación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN de Hongos/química , Inestabilidad Genómica , Mitosis , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
9.
Nucleic Acids Res ; 46(2): 861-872, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29253195

RESUMEN

DNA topoisomerases are essential enzymes involved in all the DNA processes and among them, type IA topoisomerases emerged as a key actor in the maintenance of genome stability. The hyperthermophilic archaeon, Sulfolobus solfataricus, contains three topoisomerases IA including one classical named TopA. SsoTopA is very efficient at unlinking DNA catenanes, grouping SsoTopA into the topoisomerase III family. SsoTopA is active over a wide range of temperatures and at temperatures of up to 85°C it produces highly unwound DNA. At higher temperatures, SsoTopA unlinks the two DNA strands. Thus depending on the temperature, SsoTopA is able to either prevent or favor DNA melting. While canonical topoisomerases III require a single-stranded DNA region or a nick in one of the circles to decatenate them, we show for the first time that a type I topoisomerase, SsoTopA, is able to efficiently unlink covalently closed catenanes, with no additional partners. By using single molecule experiments we demonstrate that SsoTopA requires the presence of a short single-stranded DNA region to be efficient. The unexpected decatenation property of SsoTopA probably comes from its high ability to capture this unwound region. This points out a possible role of TopA in S. solfataricus as a decatenase in Sulfolobus.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Encadenado/metabolismo , Sulfolobus solfataricus/enzimología , Proteínas Arqueales/genética , Secuencia de Bases , ADN-Topoisomerasas de Tipo I/genética , ADN de Archaea/química , ADN de Archaea/genética , ADN de Archaea/metabolismo , ADN Encadenado/química , ADN Encadenado/genética , ADN Concatenado/química , ADN Concatenado/genética , ADN Concatenado/metabolismo , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Calor , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Sulfolobus solfataricus/genética
10.
Methods Mol Biol ; 1624: 339-372, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28842894

RESUMEN

A detailed protocol of molecular dynamics simulations of supercoiled DNA molecules that can be in addition knotted or catenated is described. We also describe how to model ongoing action of DNA gyrase that introduces negative supercoing into DNA molecules. The protocols provide detailed instructions about model parameters, equations of used potentials, simulation, and visualization. Implementation of the model into a frequently used molecular dynamics simulation environment, ESPResSo, is shown step by step.


Asunto(s)
Biología Computacional/métodos , Girasa de ADN/metabolismo , ADN/química , Algoritmos , ADN Encadenado/química , ADN Superhelicoidal/química , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico
11.
Nucleic Acids Res ; 45(13): 7855-7869, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28541438

RESUMEN

DNA nano-structures present appealing new means for monitoring different molecules. Here, we demonstrate the assembly and utilization of a surface-attached double-stranded DNA catenane composed of two intact interlinked DNA nano-circles for specific and sensitive measurements of the life essential topoisomerase II (Topo II) enzyme activity. Topo II activity was detected via the numeric release of DNA nano-circles, which were visualized at the single-molecule level in a fluorescence microscope upon isothermal amplification and fluorescence labeling. The transition of each enzymatic reaction to a micrometer sized labeled product enabled quantitative detection of Topo II activity at the single decatenation event level rendering activity measurements in extracts from as few as five cells possible. Topo II activity is a suggested predictive marker in cancer therapy and, consequently, the described highly sensitive monitoring of Topo II activity may add considerably to the toolbox of individualized medicine where decisions are based on very sparse samples.


Asunto(s)
ADN-Topoisomerasas de Tipo II/metabolismo , ADN Encadenado/química , ADN Encadenado/metabolismo , Antígenos de Neoplasias/análisis , Antígenos de Neoplasias/metabolismo , Secuencia de Bases , ADN-Topoisomerasas de Tipo II/análisis , ADN Encadenado/genética , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Proteínas Recombinantes/análisis , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
12.
J Biol Chem ; 291(46): 23999-24008, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697840

RESUMEN

Properly condensed chromosomes are necessary for accurate segregation of the sisters after DNA replication. The Escherichia coli condesin is MukB, a structural maintenance of chromosomes (SMC)-like protein, which forms a complex with MukE and the kleisin MukF. MukB is known to be able to mediate knotting of a DNA ring, an intramolecular reaction. In our investigations of how MukB condenses DNA we discovered that it can also mediate catenation of two DNA rings, an intermolecular reaction. This activity of MukB requires DNA binding by the head domains of the protein but does not require either ATP or its partner proteins MukE or MukF. The ability of MukB to mediate DNA catenation underscores its potential for bringing distal regions of a chromosome together.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Bacteriano/metabolismo , ADN Encadenado/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Encadenado/química , ADN Encadenado/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas Represoras/química , Proteínas Represoras/genética
13.
Nat Commun ; 7: 12074, 2016 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-27337657

RESUMEN

Many rationally engineered DNA nanostructures use mechanically interlocked topologies to connect individual DNA components, and their physical connectivity is achieved through the formation of a strong linking duplex. The existence of such a structural element also poses a significant topological constraint on functions of component rings. Herein, we hypothesize and confirm that DNA catenanes with a strong linking duplex prevent component rings from acting as the template for rolling circle amplification (RCA). However, by using an RNA-containing DNA [2] catenane with a strong linking duplex, we show that a stimuli-responsive RNA-cleaving DNAzyme can linearize one component ring, and thus enable RCA, producing an ultra-sensitive biosensing system. As an example, a DNA catenane biosensor is engineered to detect the model bacterial pathogen Escherichia coli through binding of a secreted protein, with a detection limit of 10 cells ml(-1), thus establishing a new platform for further applications of mechanically interlocked DNA nanostructures.


Asunto(s)
Técnicas Biosensibles , ADN Encadenado/química , Nanoestructuras , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN Bacteriano , Escherichia coli K12
14.
Chembiochem ; 17(12): 1127-31, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27214092

RESUMEN

Topologically controlled DNA catenanes are promising elements for the construction of molecular machines but present a significant effort in DNA nanotechnology. We report an efficient approach for preparing linear three-ring catenanes (L3C) composed of single-stranded DNA. The linking number was strictly controlled by using short complementary regions (6 nt) between each two DNA rings. High efficiency of forming three-ring catenanes (yield as high as 63 %) was obtained by using an 80 nt oligonucleotide as the scaffold to draw close the three pre-rings for hybridization between short complementary DNA. After assembly, three pre-rings were closed by DNA ligation using three 12 nt oligonucleotides as splints to form interlocked three-ring catenanes. L3C nanostructures were imaged in air by AFM: the catenane exhibited a smooth circular shape and was arranged in a line with well-defined structure, as expected.


Asunto(s)
ADN Encadenado/química , Nanoestructuras/química , ADN Encadenado/síntesis química , ADN de Cadena Simple/química , Microscopía de Fuerza Atómica , Hibridación de Ácido Nucleico , Oligonucleótidos/química
15.
Chembiochem ; 17(12): 1142-5, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-26994736

RESUMEN

DNA catenanes are assemblies made up of two or more DNA rings linked together through mechanical bonds, and they are desirable for engineering unique nanoscale devices. However, current methods of synthesizing DNA catenanes rely on the formation of strong linking duplexes between component units to enable interlocking and thus do not permit the synthesis of complex single-stranded DNA structures with freely functioning units. We have recently reported DNA sequences that can thread through a DNA circle without the formation of a linking duplex. Here we show that these unique DNA molecules can be further used to make intricate symmetric or asymmetric DNA [3]catenanes, single-stranded DNA assemblies made up of a central mother ring interlocked to two identical or fraternal twin daughter rings, which have never been reported before. These addressable freely functioning interlocked DNA rings should facilitate the design of elaborate nanoscale machines based on DNA.


Asunto(s)
ADN Encadenado/química , Enzimas de Restricción del ADN , ADN Encadenado/síntesis química , ADN Encadenado/metabolismo , Electroforesis en Gel de Poliacrilamida , Nanoestructuras/química , Técnicas de Amplificación de Ácido Nucleico
16.
J Biochem ; 159(3): 363-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26527691

RESUMEN

DNA topoisomerase IIα (topo IIα) is an essential enzyme for resolution of DNA topologies arising in DNA metabolic reactions. In proliferating cells, topo II activities of DNA catenation or decatenation are required for condensation of chromosomes and segregation of chromatids. Recent studies suggest that the C-terminal domain (CTD) of human topo IIα is required for localization to mitotic chromosomes. Here, we show that the CTD of topo IIα is also associated with efficient DNA catenation in vitro, based on comparison of wild-type (WT) rat topo IIα and its deletion mutants. Unlike WT, the CTD truncated mutant (ΔCTD) lacked linear DNA binding activity, but could bind to negatively supercoiled DNA similarly to WT. The CTD alone showed linear DNA-binding activity. ΔCTD mediated formation of a DNA catenane in the presence of polyethylene glycol, which enhances macromolecular association. These results indicate that DNA-binding activity in the CTD of topo IIα concentrates the enzyme in the vicinity of condensed DNA and allows topo IIα to efficiently form a DNA catenane.


Asunto(s)
Antígenos de Neoplasias/química , ADN-Topoisomerasas de Tipo II/química , ADN Encadenado/química , Proteínas de Unión al ADN/química , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Polietilenglicoles/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Eliminación de Secuencia
17.
ACS Nano ; 9(10): 10304-12, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26343906

RESUMEN

The construction of DNA nanostructures from branched DNA motifs, or tiles, typically relies on the use of sticky-ended cohesion, owing to the specificity and programmability of DNA sequences. The stability of such constructs when unligated is restricted to a specific range of temperatures, owing to the disruption of base pairing at elevated temperatures. Paranemic (PX) cohesion was developed as an alternative to sticky ends for the cohesion of large topologically closed species that could be purified reliably on denaturing gels. However, PX cohesion is also of limited stability. In this work, we added sticky-ended interactions to PX-cohesive complexes to create interlocked complexes by functionalizing the sticky ends with psoralen, which can form cross-links between the two strands of a double helix. We were able to reinforce the stability of the constructs by creating covalent linkages between the 3'-ends and 5'-ends of the sticky ends; the sticky ends were added to double crossover domains via 3'-3' and 5'-5' linkages. Catenated arrays were obtained either by enzymatic ligation or by UV cross-linking. We have constructed finite-length one-dimensional arrays linked by interlocking loops and have positioned streptavidin-gold particles on these constructs.


Asunto(s)
ADN Encadenado/química , Nanoestructuras/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Emparejamiento Base , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Encadenado/metabolismo , Escherichia coli/enzimología , Oro/química , Modelos Moleculares , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Conformación de Ácido Nucleico , Motivos de Nucleótidos
18.
ACS Nano ; 9(10): 10296-303, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26364680

RESUMEN

Catenation is the process by which cyclic strands are combined like the links of a chain, whereas knotting changes the linking properties of a single strand. In the cell, topoisomerases catalyzing strand passage operations enable the knotting and catenation of DNA so that single- or double-stranded segments can be passed through each other. Here, we use a system of closed DNA structures involving a paranemic motif, called PX-DNA, to bind double strands of DNA together. These PX-cohesive closed molecules contain complementary loops whose linking by Escherichia coli topoisomerase 1 (Topo 1) leads to various types of catenated and knotted structures. We were able to obtain specific DNA topological constructs by varying the lengths of the complementary tracts between the complementary loops. The formation of the structures was analyzed by denaturing gel electrophoresis, and the various topologies of the constructs were characterized using the program Knotilus.


Asunto(s)
ADN Encadenado/química , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Encadenado/metabolismo , Escherichia coli/enzimología , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico
19.
Nucleic Acids Res ; 43(15): 7229-36, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26150424

RESUMEN

Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA-DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.


Asunto(s)
ADN Encadenado/química , ADN Superhelicoidal/química , ADN/química , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Encadenado/metabolismo , ADN Circular/química , ADN Superhelicoidal/metabolismo , Simulación de Dinámica Molecular
20.
Angew Chem Int Ed Engl ; 54(27): 7795-8, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25980669

RESUMEN

DNA-based self-assembled nanostructures are widely used to position organic and inorganic objects with nanoscale precision. A particular promising application of DNA structures is their usage as programmable carrier systems for targeted drug delivery. To provide DNA-based templates that are robust against degradation at elevated temperatures, low ion concentrations, adverse pH conditions, and DNases, we built 6-helix DNA tile tubes consisting of 24 oligonucleotides carrying alkyne groups on their 3'-ends and azides on their 5'-ends. By a mild click reaction, the two ends of selected oligonucleotides were covalently connected to form rings and interlocked DNA single strands, so-called DNA catenanes. Strikingly, the structures stayed topologically intact in pure water and even after precipitation from EtOH. The structures even withstood a temperature of 95 °C when all of the 24 strands were chemically interlocked.


Asunto(s)
Alquinos/química , Azidas/química , ADN/química , Nanotubos/química , Química Clic , ADN Encadenado/química , Calor , Nanotecnología , Nanotubos/ultraestructura , Oligonucleótidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...