Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 637
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914129

RESUMEN

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Asunto(s)
Microscopía por Crioelectrón , ADN Helicasas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Multimerización de Proteína , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , Espectrometría de Masas , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura
2.
Nat Cell Biol ; 24(2): 181-193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165413

RESUMEN

The accumulation of deleterious mitochondrial DNA (∆mtDNA) causes inherited mitochondrial diseases and ageing-associated decline in mitochondrial functions such as oxidative phosphorylation. Following mitochondrial perturbations, the bZIP protein ATFS-1 induces a transcriptional programme to restore mitochondrial function. Paradoxically, ATFS-1 is also required to maintain ∆mtDNAs in heteroplasmic worms. The mechanism by which ATFS-1 promotes ∆mtDNA accumulation relative to wild-type mtDNAs is unclear. Here we show that ATFS-1 accumulates in dysfunctional mitochondria. ATFS-1 is absent in healthy mitochondria owing to degradation by the mtDNA-bound protease LONP-1, which results in the nearly exclusive association between ATFS-1 and ∆mtDNAs in heteroplasmic worms. Moreover, we demonstrate that mitochondrial ATFS-1 promotes the binding of the mtDNA replicative polymerase (POLG) to ∆mtDNAs. Interestingly, inhibition of the mtDNA-bound protease LONP-1 increased ATFS-1 and POLG binding to wild-type mtDNAs. LONP-1 inhibition in Caenorhabditis elegans and human cybrid cells improved the heteroplasmy ratio and restored oxidative phosphorylation. Our findings suggest that ATFS-1 promotes mtDNA replication in dysfunctional mitochondria by promoting POLG-mtDNA binding, which is antagonized by LONP-1.


Asunto(s)
Proteasas ATP-Dependientes , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Replicación del ADN , ADN Mitocondrial , Heteroplasmia , Mitocondrias , Proteínas Mitocondriales , Fosforilación Oxidativa , Factores de Transcripción , Animales , Humanos , Animales Modificados Genéticamente , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Línea Celular , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteolisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Mitochondrion ; 61: 147-158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619353

RESUMEN

The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , ADN Polimerasa gamma/metabolismo , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/biosíntesis , Fibroblastos/metabolismo , SARS-CoV-2 , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/metabolismo , Células Cultivadas , Humanos
4.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34115964

RESUMEN

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Mitocondrial/biosíntesis , Inflamasomas/efectos de los fármacos , Metformina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neumonía/prevención & control , Animales , COVID-19/metabolismo , COVID-19/prevención & control , Citocinas/genética , Citocinas/metabolismo , ADN Mitocondrial/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos/toxicidad , Metformina/uso terapéutico , Ratones , Nucleósido-Fosfato Quinasa/metabolismo , Neumonía/metabolismo , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/prevención & control , SARS-CoV-2/patogenicidad
5.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670601

RESUMEN

Gout is a type of inflammatory arthritis caused by the deposition of monosodium uric acid (MSU) crystals in tissues. The etiology of gout is directly linked to the NLRP3 inflammasome, since MSU crystals are NLRP3 inflammasome activators. Therefore, we decided to search for a small-molecule inhibitor of the NLRP3 inflammasome for the prevention of gout inflammation. We found that loganin suppressed MSU crystals-induced caspase-1 (p20) and interleukin (IL)-1ß production and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) specks formation in mouse primary macrophages, showing its ability to inhibit the NLRP3 inflammasome. In an air pouch inflammation model, oral administration of loganin to mice prevented MSU crystals-induced production of mature IL-1ß and IL-18 in air pouch exudates, resulting in decreased neutrophil recruitment. Furthermore, oral administration of loganin suppressed MSU crystals-induced gout inflammation in a mouse foot gout model, which was accompanied by the inhibition of the NLRP3 inflammasome. Loganin blocked de novo synthesis of mitochondrial DNA in air pouches and foot tissues injected with MSU crystals. Consistently, loganin prevented MSU crystals-induced mitochondrial damage in macrophages, as it increased mitochondrial membrane potential and decreased the amount of mitochondrial reactive oxygen species. These data demonstrate that loganin suppresses NLRP3 inflammasome activation by inhibiting mitochondrial stress. These results suggest a novel pharmacological strategy to prevent gout inflammation by blocking NLRP3 inflammasome activation and mitochondrial dysfunction.


Asunto(s)
Gota/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Iridoides/uso terapéutico , Mitocondrias/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Administración Oral , Animales , Células Cultivadas , ADN Mitocondrial/biosíntesis , Modelos Animales de Enfermedad , Gota/complicaciones , Inflamación/complicaciones , Iridoides/química , Iridoides/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Ácido Úrico
7.
Dev Comp Immunol ; 116: 103924, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33186560

RESUMEN

Cytidine/uridine monophosphate kinase 2 (CMPK2) is a thymidylate kinase and in mammals is known to be involved in mitochondrial DNA (mtDNA) synthesis and antiviral immunity. However, very little is known about the function of CMPK2 in fish. With an aim to elucidate the antimicrobial mechanism of CMPK2 in fish, we in this study examined the function of CMPK2 from triploid crucian carp (3nCmpk2). 3nCmpk2 is 426 residues in length and possesses the conserved thymidylate kinase domain. The deduced amino acid sequence of 3nCmpk2 shares 53.2%-99.1% overall identities with the CMPK2 of several fish species. Quantitative real time RT-PCR (qRT-PCR) analysis showed that 3nCmpk2 expression occurred in multiple tissues and was upregulated by bacterial infection in a time-dependent manner. Recombinant 3nCmpk2 (r3nCmpk2) induced mtDNA synthesis and NLRP3 activation. Overexpression of 3nCmpk2 protects the intestinal barrier and hampers the bacterial colonization in fish tissues. These results provide the first evidence that 3nCmpk2 is involved in host innate immunity and plays a protective role in antimicrobial responses during bacterial infection.


Asunto(s)
Infecciones Bacterianas/veterinaria , Carpas/inmunología , Enfermedades de los Peces/inmunología , Nucleósido-Fosfato Quinasa/inmunología , Aeromonas hydrophila/fisiología , Secuencia de Aminoácidos , Animales , Infecciones Bacterianas/inmunología , Carpas/genética , ADN Mitocondrial/biosíntesis , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Expresión Génica , Inflamasomas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Triploidía
8.
Nucleic Acids Res ; 48(20): 11244-11258, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33021629

RESUMEN

Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN Mitocondrial/biosíntesis , Enfermedades Genéticas Congénitas/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , ADN Mitocondrial/metabolismo , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Fosforilación Oxidativa , Eliminación de Secuencia
9.
Biomed Pharmacother ; 130: 110520, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32707439

RESUMEN

The mechanism of hair loss caused by aging is related to mitochondrial dysfunction. Pep-1-mediated mitochondrial transplantation is a potential therapeutic application for mitochondrial disorders, but its efficacy against hair aging remains unknown. This study compared platelet-rich plasma (PRP) therapy with mitochondrial transplantation for hair restoration and examined the related regulation in naturally aging mice. After dorsal hair removal, 100-week-old mice received weekly unilateral injections of 200 µg of allogeneic mitochondria-labeled 5-bromo-2'-deoxyuridine with (P-Mito) or without Pep-1 conjugation (Mito) or human PRP with a stamp-type electric injector for 1 month. The contralateral sides were used as corresponding sham controls. Compared with the control and corresponding sham groups, all treatments stimulated hair regrowth, and the effectiveness of P-Mito was equal to that of PRP. However, histology revealed that only P-Mito maintained hair length until day 28 and yielded more anagen follicles with abundant dermal collagen equivalent to that of the PRP group. Mitochondrial transplantation increased the thickness of subcutaneous fat compared with the control and PRP groups, and only P-Mito consistently increased mitochondria in the subcutaneous muscle and mitochondrial DNA copies in the skin layer. Therefore, P-Mito had a higher penetrating capacity than Mito did. Moreover, P-Mito treatment was as effective as PRP treatment in comprehensively reducing the expression of aging-associated gene markers, such as IGF1R and MRPS5, and increasing antiaging Klotho gene expression. This study validated the efficacy of mitochondrial therapy in the restoration of aging-related hair loss and demonstrated the distinct effects of PRP treatment.


Asunto(s)
Envejecimiento/fisiología , Cabello/crecimiento & desarrollo , Mitocondrias/trasplante , Plasma Rico en Plaquetas , Trasplante Autólogo/instrumentación , Trasplante Autólogo/métodos , Envejecimiento/genética , Alopecia/fisiopatología , Animales , Bromodesoxiuridina/farmacología , Cisteamina/análogos & derivados , Cisteamina/química , Cisteamina/farmacología , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/genética , Expresión Génica , Glucuronidasa/biosíntesis , Glucuronidasa/genética , Humanos , Proteínas Klotho , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Agujas , Péptidos/química , Péptidos/farmacología , Receptor IGF Tipo 1/biosíntesis , Receptor IGF Tipo 1/genética , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética
11.
J Dermatol Sci ; 96(1): 33-41, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31543430

RESUMEN

BACKGROUND: Reactive oxygen species (ROS)-induced mitochondrial damage aggravates oxidative stress and activates mitochondrial apoptosis pathway to mediate melanocyte death. However, the repair mechanisms underlying damaged mitochondria of melanocytes remain unclear. Accumulative evidence has revealed that the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor, plays a vital role in maintaining mitochondrial homeostasis. OBJECTIVE: To investigate whether the AHR signaling pathway could protect human melanocytes from oxidative damage through controlling mitochondrial quality. METHODS: We constructed an oxidative stress model of melanocytes with hydrogen peroxide (H2O2) in the human normal melanocyte PIG1 cell line, and detected ROS level, apoptosis, mitochondrial ROS level, mitochondrial membrane potential, ATP production, mitochondrial DNA and mitochondrial modulators after co-treatment with AHR ligand or antagonist and H2O2 in the PIG1 cells. RESULTS: In the present study, we found that H2O2-induced oxidative stress directly activated the AHR signaling pathway in melanocytes, whereas abnormal activation of AHR signaling pathway enhanced oxidative damage to mitochondria and melanocytes. Further studies showed that the AHR signaling pathway promoted mitochondrial DNA synthesis and ATP production probably by regulating the expression of nuclear respiratory factor 1 (NRF1) and its downstream targets. CONCLUSION: Our findings reveal that the AHR signaling pathway might have a major role in protecting melanocytes against oxidative damage via inducing mitochondrial biogenesis, while impaired AHR activation could cause defective repair of mitochondria and exacerbate oxidative damage-induced apoptosis in melanocytes. Our data suggest that the AHR signaling pathway might be a novel mechanism of mitochondrial biogenesis involved in protecting melanocytes from oxidative stress.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Melanocitos/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfato/biosíntesis , Apoptosis/fisiología , Línea Celular , ADN Mitocondrial/biosíntesis , Humanos , Peróxido de Hidrógeno/metabolismo , Factor Nuclear 1 de Respiración/metabolismo , Estrés Oxidativo/fisiología
12.
Mitochondrion ; 49: 156-165, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31419493

RESUMEN

Mitochondrial transcription factor A (TFAM) plays an important role in mitochondrial DNA (mtDNA) transcription and replication. In some experimental settings, TFAM expression parallels parameters of mitochondrial biogenesis, which led to a widespread acceptance of TFAM as marker of mitochondrial biogenesis. We modulated TFAM expression in several experimental systems and observed that it fails to consistently parallel mtDNA copy number and expression of mtDNA-encoded polypeptides. We suggest that the use of TFAM as a marker of mitochondrial biogenesis should be avoided outside of systems in which its performance has been carefully validated.


Asunto(s)
ADN Mitocondrial/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Biogénesis de Organelos , Factores de Transcripción/biosíntesis , Biomarcadores/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/genética , Valor Predictivo de las Pruebas , Factores de Transcripción/genética
13.
Mitochondrion ; 49: 166-177, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445096

RESUMEN

Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN de Hongos/biosíntesis , ADN Mitocondrial/biosíntesis , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dominio Catalítico , ADN Polimerasa I/genética , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , ADN de Hongos/genética , ADN Mitocondrial/genética , Humanos , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Molecules ; 24(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174271

RESUMEN

Gout is a chronic inflammatory disease evoked by the deposition of monosodium urate (MSU) crystals in joint tissues. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is responsible for the gout inflammatory symptoms induced by MSU crystals. We investigated whether epigallocatechin-3-gallate (EGCG) suppresses the activation of the NLRP3 inflammasome, thereby effectively preventing gouty inflammation. EGCG blocked MSU crystal-induced production of caspase-1(p10) and interleukin-1ß in primary mouse macrophages, indicating its suppressive effect on the NLRP3 inflammasome. In an acute gout mouse model, oral administration of EGCG to mice effectively alleviated gout inflammatory symptoms in mouse foot tissue injected with MSU crystals. The in vivo suppressive effects of EGCG correlated well with the suppression of the NLRP3 inflammasome in mouse foot tissue. EGCG inhibited the de novo synthesis of mitochondrial DNA as well as the production of reactive oxygen species in primary mouse macrophages, contributing to the suppression of the NLRP3 inflammasome. These results show that EGCG suppresses the activation of the NLRP3 inflammasome in macrophages via the blockade of mitochondrial DNA synthesis, contributing to the prevention of gouty inflammation. The inhibitory effects of EGCG on the NLRP3 inflammasome make EGCG a promising therapeutic option for NLRP3-dependent diseases such as gout.


Asunto(s)
Catequina/análogos & derivados , Gota/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Caspasa 1/genética , Catequina/farmacología , ADN Mitocondrial/biosíntesis , ADN Mitocondrial/efectos de los fármacos , Modelos Animales de Enfermedad , Gota/genética , Gota/patología , Humanos , Inflamasomas/efectos de los fármacos , Inflamasomas/genética , Inflamación/genética , Inflamación/patología , Interleucina-1beta/genética , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Ácido Úrico/toxicidad
15.
Theriogenology ; 133: 104-112, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31078068

RESUMEN

The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.


Asunto(s)
Bovinos/fisiología , Genes Mitocondriales , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/metabolismo , Animales , ADN Mitocondrial/biosíntesis , Femenino , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
16.
Mol Cell ; 73(6): 1127-1137.e5, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30772175

RESUMEN

We have previously proposed that selective inheritance, the limited transmission of damaging mtDNA mutations from mother to offspring, is based on replication competition in Drosophila melanogaster. This model, which stems from our observation that wild-type mitochondria propagate much more vigorously in the fly ovary than mitochondria carrying fitness-impairing mutations, implies that germ cells recognize the fitness of individual mitochondria and selectively boost the propagation of healthy ones. Here, we demonstrate that the protein kinase PINK1 preferentially accumulates on mitochondria enriched for a deleterious mtDNA mutation. PINK1 phosphorylates Larp to inhibit protein synthesis on the mitochondrial outer membrane. Impaired local translation on defective mitochondria in turn limits the replication of their mtDNA and hence the transmission of deleterious mutations to the offspring. Our work confirms that selective inheritance occurs at the organelle level during Drosophila oogenesis and provides molecular entry points to test this model in other systems.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Mitocondrias/enzimología , Membranas Mitocondriales/enzimología , Proteínas Mitocondriales/biosíntesis , Mutación , Oocitos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , ADN Mitocondrial/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Patrón de Herencia , Mitocondrias/genética , Proteínas Mitocondriales/genética , Oogénesis , Biogénesis de Organelos , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
PLoS Genet ; 15(1): e1007781, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605451

RESUMEN

Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/biosíntesis , Mitocondrias/genética , Ribonucleasa H/genética , Animales , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Origen de Réplica/genética
18.
J Biol Chem ; 293(52): 20285-20294, 2018 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-30385507

RESUMEN

Mitochondrial inner membrane protein MPV17 is a protein of unknown function that is associated with mitochondrial DNA (mtDNA)-depletion syndrome (MDS). MPV17 loss-of-function has been reported to result in tissue-specific nucleotide pool imbalances, which can occur in states of perturbed folate-mediated one-carbon metabolism (FOCM), but MPV17 has not been directly linked to FOCM. FOCM is a metabolic network that provides one-carbon units for the de novo synthesis of purine and thymidylate nucleotides (e.g. dTMP) for both nuclear DNA (nuDNA) and mtDNA replication. In this study, we investigated the impact of reduced MPV17 expression on markers of impaired FOCM in HeLa cells. Depressed MPV17 expression reduced mitochondrial folate levels by 43% and increased uracil levels, a marker of impaired dTMP synthesis, in mtDNA by 3-fold. The capacity of mitochondrial de novo and salvage pathway dTMP biosynthesis was unchanged by the reduced MPV17 expression, but the elevated levels of uracil in mtDNA suggested that other sources of mitochondrial dTMP are compromised in MPV17-deficient cells. These results indicate that MPV17 provides a third dTMP source, potentially by serving as a transporter that transfers dTMP from the cytosol to mitochondria to sustain mtDNA synthesis. We propose that MPV17 loss-of-function and related hepatocerebral MDS are linked to impaired FOCM in mitochondria by providing insufficient access to cytosolic dTMP pools and by severely reducing mitochondrial folate pools.


Asunto(s)
ADN Mitocondrial/biosíntesis , Regulación de la Expresión Génica , Proteínas de la Membrana/biosíntesis , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/biosíntesis , Uracilo/metabolismo , Transporte Biológico Activo/genética , ADN Mitocondrial/genética , Ácido Fólico/genética , Ácido Fólico/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Timidina Monofosfato/genética , Timidina Monofosfato/metabolismo
19.
Crit Care Med ; 46(12): 2018-2028, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30113320

RESUMEN

OBJECTIVES: Extracellular mitochondrial DNA and N-formyl peptides released following tissue damage may contribute to systemic inflammation through stimulation of the innate immune system. In this review, we evaluate existing in vivo human data regarding a role for mitochondrial DNA and N-formyl peptides in producing systemic inflammation in trauma and critical illness, investigate the utility of these molecules in risk prediction and clinical decision support, and provide suggestions for standardization of future research. DATA SOURCES: PubMed, Embase (1971-2017). STUDY SELECTION: Studies measuring extracellular mitochondrial DNA and/or N-formyl peptides in acutely ill patients. DATA EXTRACTION: Fifty-four studies were analyzed. Data extracted included article characteristics, methods, results, and performance in clinical prediction. DATA SYNTHESIS: The most common patient types investigated were trauma (19 studies) and sepsis (eight). In studies comparing patient mitochondrial DNA or N-formyl peptide levels to healthy controls, 38 (90.5%) reported significantly elevated mitochondrial DNA levels in patients at first reported time point, as did the one study making this comparison for N-formyl peptides. Nine studies (81.8%) reported significantly elevated plasma/serum mitochondrial DNA levels in at least one time point in patients who developed inflammatory complications of their primary pathology compared with patients without inflammatory complications. For the ability of mitochondrial DNA to predict complications or outcomes, the area under the curve was 0.7 or greater in 84.6% of receiver operating characteristic curves, and 92.9% of odds, adjusted odds, risk, and hazard ratios were statistically significant. CONCLUSIONS: Extracellular mitochondrial DNA levels are elevated early in patients' hospital courses in many acute illnesses and are higher in patients who develop inflammatory complications. Elevated mitochondrial DNA levels may be clinically useful in risk prediction and clinical decision support systems. Further research is needed to determine the role of extracellular N-formyl peptides in systemic inflammation and their possible clinical utility.


Asunto(s)
Enfermedad Crítica , ADN Mitocondrial/inmunología , Inflamación/inmunología , Péptidos/inmunología , Sepsis/inmunología , Heridas y Lesiones/inmunología , Alarminas/inmunología , Biomarcadores , ADN Mitocondrial/biosíntesis , Humanos , Proteínas Mitocondriales/inmunología , Curva ROC
20.
Nature ; 560(7717): 198-203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30046112

RESUMEN

Dysregulated NLRP3 inflammasome activity results in uncontrolled inflammation, which underlies many chronic diseases. Although mitochondrial damage is needed for the assembly and activation of the NLRP3 inflammasome, it is unclear how macrophages are able to respond to structurally diverse inflammasome-activating stimuli. Here we show that the synthesis of mitochondrial DNA (mtDNA), induced after the engagement of Toll-like receptors, is crucial for NLRP3 signalling. Toll-like receptors signal via the MyD88 and TRIF adaptors to trigger IRF1-dependent transcription of CMPK2, a rate-limiting enzyme that supplies deoxyribonucleotides for mtDNA synthesis. CMPK2-dependent mtDNA synthesis is necessary for the production of oxidized mtDNA fragments after exposure to NLRP3 activators. Cytosolic oxidized mtDNA associates with the NLRP3 inflammasome complex and is required for its activation. The dependence on CMPK2 catalytic activity provides opportunities for more effective control of NLRP3 inflammasome-associated diseases.


Asunto(s)
ADN Mitocondrial/biosíntesis , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Biocatálisis , Citosol/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Nucleósido-Fosfato Quinasa/genética , Nucleósido-Fosfato Quinasa/metabolismo , Oxidación-Reducción , Transducción de Señal , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...