Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Mutat Res ; 823: 111762, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34563793

RESUMEN

Although UV-induced mutagenesis has been studied extensively, the precise mechanisms that convert UV-induced DNA damage into mutations remain elusive. One well-studied mechanism involves DNA polymerase (Pol) η and ζ, which produces C > T transitions during translesion synthesis (TLS) across pyrimidine dimers. We previously proposed another biochemical mechanism that involves multiple UV-irradiations with incubation in the dark in between. The incubation facilitates spontaneous deamination of cytosine in a pyrimidine dimer, and the subsequent UV irradiation induces photolyase-independent (direct) photoreversal that converts cytosine into monomeric uracil residue. In this paper, we first demonstrate that natural sunlight can induce both mutational processes in vitro. The direct photoreversal was also reproduced by monochromatic UVB at 300 nm. We also demonstrate that post-irradiation incubation in the dark is required for both mutational processes, suggesting that cytosine deamination is required for both the Pol η/ζ-dependent and the photoreversal-dependent mechanisms. Another Y-family polymerase Pol ι also mediated a mutagenic TLS on UV-damaged templates when combined with Pol ζ. The Pol ι-dependent mutations were largely independent of post-irradiation incubation, indicating that cytosine deamination was not essential for this mutational process. Sunlight-exposure also induced C > A transversions which were likely caused by oxidation of guanine residues. Finally, we constructed in vitro mutation spectra in a comparable format to cancer mutation signatures. While both Pol η-dependent and photoreversal-dependent spectra showed high similarities to a cancer signature (SBS7a), Pol ι-dependent mutation spectrum has distinct T > A/C substitutions, which are found in another cancer signature (SBS7d). The Pol ι-dependent T > A/C substitutions were resistant to T4 pyrimidine dimer glycosylase-treatment, suggesting that this mutational process is independent of cis-syn pyrimidine dimers. An updated model about multiple mechanisms of UV-induced mutagenesis is discussed.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , Mutación/efectos de la radiación , Neoplasias/genética , Rayos Ultravioleta/efectos adversos , Citosina/química , Citosina/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Neoplasias/etiología , Neoplasias/patología , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Luz Solar/efectos adversos , Uracilo/química , Uracilo/metabolismo
2.
Science ; 372(6541): 520-524, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33926956

RESUMEN

Bacteriophage genomes harbor the broadest chemical diversity of nucleobases across all life forms. Certain DNA viruses that infect hosts as diverse as cyanobacteria, proteobacteria, and actinobacteria exhibit wholesale substitution of aminoadenine for adenine, thereby forming three hydrogen bonds with thymine and violating Watson-Crick pairing rules. Aminoadenine-encoded DNA polymerases, homologous to the Klenow fragment of bacterial DNA polymerase I that includes 3'-exonuclease but lacks 5'-exonuclease, were found to preferentially select for aminoadenine instead of adenine in deoxynucleoside triphosphate incorporation templated by thymine. Polymerase genes occur in synteny with genes for a biosynthesis enzyme that produces aminoadenine deoxynucleotides in a wide array of Siphoviridae bacteriophages. Congruent phylogenetic clustering of the polymerases and biosynthesis enzymes suggests that aminoadenine has propagated in DNA alongside adenine since archaic stages of evolution.


Asunto(s)
2-Aminopurina/análogos & derivados , Replicación del ADN , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Polimerizacion , Siphoviridae/química , Siphoviridae/enzimología , Proteínas no Estructurales Virales/química , 2-Aminopurina/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Genoma Viral , Filogenia , Siphoviridae/genética , Proteínas no Estructurales Virales/clasificación , Proteínas no Estructurales Virales/genética
3.
Genome Biol Evol ; 13(2)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33432342

RESUMEN

Mitochondria retain their own genomes as other bacterial endosymbiont-derived organelles. Nevertheless, no protein for DNA replication and repair is encoded in any mitochondrial genomes (mtDNAs) assessed to date, suggesting that the nucleus primarily governs the maintenance of mtDNA. As the proteins of diverse evolutionary origins occupy a large proportion of the current mitochondrial proteomes, we anticipate finding the same evolutionary trend in the nucleus-encoded machinery for mtDNA maintenance. Indeed, none of the DNA polymerases (DNAPs) in the mitochondrial endosymbiont, a putative α-proteobacterium, seemingly had been inherited by their descendants (mitochondria), as none of the known types of mitochondrion-localized DNAP showed a specific affinity to the α-proteobacterial DNAPs. Nevertheless, we currently have no concrete idea of how and when the known types of mitochondrion-localized DNAPs emerged. We here explored the origins of mitochondrion-localized DNAPs after the improvement of the samplings of DNAPs from bacteria and phages/viruses. Past studies have revealed that a set of mitochondrion-localized DNAPs in kinetoplastids and diplonemids, namely PolIB, PolIC, PolID, PolI-Perk1/2, and PolI-dipl (henceforth designated collectively as "PolIBCD+") have emerged from a single DNAP. In this study, we recovered an intimate connection between PolIBCD+ and the DNAPs found in a particular group of phages. Thus, the common ancestor of kinetoplastids and diplonemids most likely converted a laterally acquired phage DNAP into a mitochondrion-localized DNAP that was ancestral to PolIBCD+. The phage origin of PolIBCD+ hints at a potentially large contribution of proteins acquired via nonvertical processes to the machinery for mtDNA maintenance in kinetoplastids and diplonemids.


Asunto(s)
Bacteriófagos/genética , ADN Polimerasa Dirigida por ADN/genética , Euglenozoos/genética , Transferencia de Gen Horizontal , Kinetoplastida/genética , Bacteriófagos/enzimología , ADN Polimerasa Dirigida por ADN/clasificación , Euglenozoos/enzimología , Kinetoplastida/enzimología , Mitocondrias/enzimología , Mitocondrias/genética , Filogenia
4.
Nucleic Acids Res ; 47(9): 4393-4405, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30916324

RESUMEN

Bacterial Y-family DNA polymerases are usually classified into DinB (Pol IV), UmuC (the catalytic subunit of Pol V) and ImuB, a catalytically dead essential component of the ImuA-ImuB-DnaE2 mutasome. However, the true diversity of Y-family polymerases is unknown. Furthermore, for most of them the structures are unavailable and interactions are poorly characterized. To gain a better understanding of bacterial Y-family DNA polymerases, we performed a detailed computational study. It revealed substantial diversity, far exceeding traditional classification. We found that a large number of subfamilies feature a C-terminal extension next to the common Y-family region. Unexpectedly, in most C-terminal extensions we identified a region homologous to the N-terminal oligomerization motif of RecA. This finding implies a universal mode of interaction between Y-family members and RecA (or ImuA), in the case of Pol V strongly supported by experimental data. In gram-positive bacteria, we identified a putative Pol V counterpart composed of a Y-family polymerase, a YolD homolog and RecA. We also found ImuA-ImuB-DnaE2 variants lacking ImuA, but retaining active or inactive Y-family polymerase, a standalone ImuB C-terminal domain and/or DnaE2. In summary, our analyses revealed that, despite considerable diversity, bacterial Y-family polymerases share previously unanticipated similarities in their structural domains/motifs and interactions.


Asunto(s)
Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Escherichia coli/genética , Conformación Proteica , Rec A Recombinasas/genética , Secuencia de Aminoácidos/genética , Dominio Catalítico/genética , Biología Computacional , Citoesqueleto/química , Citoesqueleto/genética , ADN Polimerasa III/química , ADN Polimerasa III/genética , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Modelos Moleculares , Rec A Recombinasas/química
5.
Biochem Soc Trans ; 47(1): 239-249, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30647142

RESUMEN

Replicative DNA polymerases are nano-machines essential to life, which have evolved the ability to copy the genome with high fidelity and high processivity. In contrast with cellular transcriptases and ribosome machines, which evolved by accretion of complexity from a conserved catalytic core, no replicative DNA polymerase is universally conserved. Strikingly, four different families of DNA polymerases have evolved to perform DNA replication in the three domains of life. In Bacteria, the genome is replicated by DNA polymerases belonging to the A- and C-families. In Eukarya, genomic DNA is copied mainly by three distinct replicative DNA polymerases, Polα, Polδ, and Polε, which all belong to the B-family. Matters are more complicated in Archaea, which contain an unusual D-family DNA polymerase (PolD) in addition to PolB, a B-family replicative DNA polymerase that is homologous to the eukaryotic ones. PolD is a heterodimeric DNA polymerase present in all Archaea discovered so far, except Crenarchaea. While PolD is an essential replicative DNA polymerase, it is often underrepresented in the literature when the diversity of DNA polymerases is discussed. Recent structural studies have shown that the structures of both polymerase and proofreading active sites of PolD differ from other structurally characterized DNA polymerases, thereby extending the repertoire of folds known to perform DNA replication. This review aims to provide an updated structural classification of all replicative DNAPs and discuss their evolutionary relationships, both regarding the DNA polymerase and proofreading active sites.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , Archaea , Bacterias , Evolución Biológica , Eucariontes , Conformación Proteica
6.
Antiviral Res ; 156: 1-9, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29842914

RESUMEN

BACKGROUND: Human Adenovirus (HAdV) are responsible for severe infections in hematopoietic stem cells transplant (HSCT) recipient, species C viruses being the most commonly observed in this population. There is no approved antiviral treatment yet. Cidofovir (CDV), a cytidine analog, is the most frequently used and its lipophilic conjugate, brincidofovir (BCV), is under clinical development. These drugs target the viral DNA polymerase (DNA pol). Little is known about the natural polymorphism of HAdV DNA pol in clinical strains. METHODS: We assessed the inter- and intra-species variability of the whole gene coding for HAdV DNA pol of HAdV clinical strains of species C. The study included 60 species C HAdV (21 C1, 27 C2 and 12 C5) strains isolated from patients with symptomatic infections who had never experienced CDV or BCV treatments and 20 reference strains. We also evaluated the emergence of mutations in thrirteen patients with persistent HAdV infection despite antiviral treatment. RESULTS: We identified 356 polymorphic nucleotide positions (9.9% of the whole gene), including 102 positions with nonsynonymous mutations (28.0%) representing 8.7% of all amino acids. The mean numbers of nucleotide and amino acid mutations per strain were 23.1 (±6.2) and 5.2 (±2.4) respectively. Most of amino acid substitutions (60.6%) were observed in one instance only. A minority (13.8%) were observed in more than 10% of all strains. The most variable region was the NH2 terminal domain (44.2% of amino acid mutations). Mutations in the exonuclease domain accounted for 27.8%. The binding domains for the terminal protein (TPR), TPR1 and TPR2, presented a limited number of mutations, which were nonetheless frequently observed (62.5% and 58.8% of strains for TPR1 and TPR2, respectively). None of the mutations associated with CDV or BCV resistance were detected. In patients receieving antiviral drugs with persistent HAdV replication, we identified a new mutation in the NH2 terminal region. CONCLUSIONS: Our study shows a high diversity in HAdV DNA pol sequences in clinical species C HAdV and provides a comprehensive mapping of its natural polymorphism. These data will contribute to the interpretation of HAdV DNA pol mutations selected in patients receiving antiviral treatments.


Asunto(s)
Adenovirus Humanos/enzimología , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Variación Genética , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/genética , Adenovirus Humanos/aislamiento & purificación , Adolescente , Adulto , Anciano , Niño , Preescolar , Heces/virología , Femenino , Genotipo , Células Madre Hematopoyéticas , Humanos , Lactante , Masculino , Persona de Mediana Edad , Sistema Respiratorio/virología , Adulto Joven
7.
Annu Rev Biochem ; 87: 239-261, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494238

RESUMEN

The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Reparadoras del ADN/clasificación , ADN Polimerasa Dirigida por ADN/clasificación , Humanos , Modelos Biológicos , Modelos Moleculares
8.
Cell Rep ; 21(6): 1574-1587, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117562

RESUMEN

Family B DNA polymerases (PolBs) play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB), that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.


Asunto(s)
Cartilla de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Secuencia de Aminoácidos , Bacteriófago M13/genética , ADN de Cadena Simple/biosíntesis , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Bases de Datos Genéticas , Escherichia coli/enzimología , Filogenia , Plásmidos/genética , Plásmidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Transcripción Genética
9.
Adv Exp Med Biol ; 1019: 247-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29116639

RESUMEN

Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.


Asunto(s)
Proteínas Bacterianas/genética , Replicación del ADN , ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/genética , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapéutico , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Evolución Biológica , ADN Bacteriano/metabolismo , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Variación Genética , Humanos , Tasa de Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/crecimiento & desarrollo , Dominios Proteicos , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/transmisión , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/transmisión
10.
Fed Regist ; 82(247): 61162-3, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29319937

RESUMEN

The Food and Drug Administration (FDA or we) is classifying the reagents for molecular diagnostic instrument test systems into class I (general controls). We are taking this action because we have determined that classifying the device into class I (general controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.


Asunto(s)
Pruebas de Química Clínica/clasificación , Pruebas de Química Clínica/instrumentación , Seguridad de Equipos/clasificación , Indicadores y Reactivos/clasificación , Biología Molecular/clasificación , Biología Molecular/instrumentación , Juego de Reactivos para Diagnóstico/clasificación , ADN Polimerasa Dirigida por ADN/clasificación , Humanos , Ácidos Nucleicos/clasificación , Nucleótidos/clasificación , ADN Polimerasa Dirigida por ARN/clasificación
11.
DNA Repair (Amst) ; 44: 33-41, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27311543

RESUMEN

DNA interstrand crosslinks (ICLs) covalently join the two strands of a DNA duplex and block essential processes such as DNA replication and transcription. Several important anti-tumor drugs such as cisplatin and nitrogen mustards exert their cytotoxicity by forming ICLs. However, multiple complex pathways repair ICLs and these are thought to contribute to the development of resistance towards ICL-inducing agents. While the understanding of many aspects of ICL repair is still rudimentary, studies in recent years have provided significant insights into the pathways of ICL repair. In this perspective we review the recent advances made in elucidating the mechanisms of ICL repair with a focus on the role of TLS polymerases. We describe the emerging models for how these enzymes contribute to and are regulated in ICL repair, discuss the key open questions and examine the implications for this pathway in anti-cancer therapy.


Asunto(s)
Reparación del ADN , ADN de Neoplasias/genética , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Neoplasias/genética , Animales , Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Reactivos de Enlaces Cruzados/uso terapéutico , ADN/antagonistas & inhibidores , ADN/metabolismo , Replicación del ADN/efectos de los fármacos , ADN de Neoplasias/antagonistas & inhibidores , ADN de Neoplasias/metabolismo , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/metabolismo , Resistencia a Antineoplásicos/genética , Humanos , Mecloretamina/uso terapéutico , Neoplasias/enzimología , Neoplasias/patología , Neoplasias/terapia , Transcripción Genética/efectos de los fármacos , Xenopus
12.
Postepy Hig Med Dosw (Online) ; 70(0): 522-33, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-27333922

RESUMEN

TLS polymerases are able to replicate damaged DNA (called translesion DNA synthesis, TLS). Their presence prevents cell death as a result of violating the integrity of the genome. In vitro, they are mutator, but in vivo are recruited by specific types of DNA damage and usually replicate them in a correct manner. The best-known TLS polymerases belong to the Y family, such as Rev1, κ, η, ι, and polymerase ζ from the B family. There are two mechanisms of TLS polymerases action: polymerase-switching model and the gap-filling model. Selection of the mechanism primarily depends on the phase of the cell cycle. The regulation of these polymerases may take place at the transcriptional level and at level of recruitment to the sites of DNA damage. In the latter case post-translational modification of proteins - ubiquitination and sumoylation, and protein-protein interactions are crucial.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Eucariontes/enzimología , Animales , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Eucariontes/genética , Regulación de la Expresión Génica , Humanos , Procesamiento Proteico-Postraduccional
13.
Chem Res Toxicol ; 28(6): 1346-56, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26004422

RESUMEN

Certain phenoxyl radicals can attach covalently to the C8-site of 2'-deoxyguanosine (dG) to afford oxygen-linked C8-dG adducts. Such O-linked adducts can be chemically synthesized through a nucleophilic displacement reaction between a phenolate and a suitably protected 8-Br-dG derivative. This permits the generation of model O-linked C8-dG adducts on scales suitable for insertion into oligonucleotide substrates using solid-phase DNA synthesis. Variation of the C8-aryl moiety provides an opportunity to derive structure-activity relationships on adduct conformation in duplex DNA and replication bypass by DNA polymerases. In the current study, the influence of chlorine C8-dG functionalization on in vitro DNA replication by Klenow fragment exo(-) (Kf(-)) and the Y-family polymerase (Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4)) has been determined. Model O-linked C8-dG adducts derived from the pentachlorophenoxyl radical ([PCP]G) and 2,4,6-trichlorophenoxyl radical ([TCP]G) were inserted into the reiterated G3-position of the NarI sequence (12-mer, NarI(12); and 22-mer, NarI(22)), which is a known hotspot for frameshift mutations mediated by N-linked polycyclic C8-dG adducts in bacterial mutagenesis. Within the NarI(12) duplex, the unsubstituted C8-phenoxy-dG ([PhO]G) adduct adopts a minimally perturbed B-form helix. Chlorination of [PhO]G to afford [PCP]G does not significantly change the adduct conformation within the NarI(12) duplex, as predicted by molecular dynamics simulations. However, when using NarI(22) for DNA synthesis in vitro, the chlorinated [PCP]G and [TCP]G lesions significantly block DNA replication by Kf(-) and Dpo4, whereas [PhO]G is readily bypassed. These findings highlight the impact that chlorine substituents impart to bulky C8-dG lesions.


Asunto(s)
Cloro/metabolismo , Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Cloro/química , Aductos de ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , Guanina/química , Modelos Moleculares , Estructura Molecular
14.
PLoS One ; 10(4): e0122901, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875510

RESUMEN

The rich diversity of the world's reptiles is at risk due to significant population declines of broad taxonomic and geographic scope. Significant factors attributed to these declines include habitat loss, pollution, unsustainable collection and infectious disease. To investigate the presence and significance of a potential pathogen on populations of critically endangered bog turtles (Glyptemys muhlenbergii) as well sympatric endangered wood (G. insculpta) and endangered spotted (Clemmys guttata) turtles in the northeastern United States, choanal and cloacal swabs collected from 230 turtles from 19 sites in 5 states were screened for herpesvirus by polymerase chain reaction. We found a high incidence of herpesvirus infection in bog turtles (51.5%; 105/204) and smaller numbers of positive wood (5) and spotted (1) turtles. Sequence and phylogenetic analysis revealed three previously uncharacterized alphaherpesviruses. Glyptemys herpesvirus 1 was the predominant herpesvirus detected and was found exclusively in bog turtles in all states sampled. Glyptemys herpesvirus 2 was found only in wood turtles. Emydid herpesvirus 2 was found in a small number of bog turtles and a single spotted turtle from one state. Based on these findings, Glyptemys herpesvirus 1 appears to be a common infection in the study population, whereas Glyptemys herpesvirus 2 and Emydid herpesvirus 2 were not as frequently detected. Emydid herpesvirus 2 was the only virus detected in more than one species. Herpesviruses are most often associated with subclinical or mild infections in their natural hosts, and no sampled turtles showed overt signs of disease at sampling. However, infection of host-adapted viruses in closely related species can result in significant disease. The pathogenic potential of these viruses, particularly Emydid herpesvirus 2, in sympatric chelonians warrants additional study in order to better understand the relationship of these viruses with their endangered hosts.


Asunto(s)
Especies en Peligro de Extinción , Herpesviridae/fisiología , Interacciones Huésped-Patógeno , Tortugas/virología , Animales , ADN Viral/química , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Geografía , Herpesviridae/clasificación , Herpesviridae/genética , Datos de Secuencia Molecular , New England , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la Especie , Tortugas/clasificación , Proteínas Virales/genética
15.
Genome Biol Evol ; 7(4): 943-59, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25740821

RESUMEN

The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3ß (helix-loop-helix, 3 ß-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Evolución Molecular , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/clasificación , Genoma Mitocondrial , Humanos , Proteínas Mitocondriales/clasificación , Nematodos/genética , Filogenia , Multimerización de Proteína , Subunidades de Proteína/química , Eliminación de Secuencia
16.
Mol Cell Probes ; 29(2): 126-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25656919

RESUMEN

Spoligotyping is a widely used typing method for the Mycobacterium tuberculosis complex. Protocols and platforms can be adapted for direct use on patient samples. Serial dilutions of genomic DNA from Mycobacterium bovis BCG strain DSM45071 were spoligotyped by array hybridization using 32 different commercial PCR polymerase preparations. In samples with very low concentrations of mycobacterial DNA, commercially available PCR polymerases differed in their performance, and some yielded no, or false, identification. Direct spoligotyping from samples with very low concentrations of mycobacterial DNA thus requires careful selection of polymerase and strict standardization.


Asunto(s)
ADN Bacteriano/genética , ADN Polimerasa Dirigida por ADN/clasificación , Mycobacterium tuberculosis/clasificación , Técnicas de Tipificación Bacteriana , Humanos , Mycobacterium tuberculosis/genética
17.
Mol Phylogenet Evol ; 78: 271-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24882428

RESUMEN

Polintons are a recently discovered group of large transposable elements (<40Kb in size) encoding up to 10 different proteins. The increasing number of genome sequencing projects has led to the discovery of these elements in genomes of protists, fungi, and animals, but not in plants. The RepBase database of eukaryotic repetitive elements currently contains consensus sequences and information of 70 Polinton elements from 28 organisms. Previous phylogenetic analyses have shown the relationship of Polintons to linear plasmids, bacteriophages, and retroviruses. However, a comprehensive phylogenetic analysis of all known Polintons has been lacking. We retrieved the Polinton consensus sequences from the most recent version of RepBase, and compiled amino acid sequences for the two most common Polinton-specific genes, the DNA polymerase-B and retroviral-like integrase. Open reading frame predictions and homology comparisons revealed partial or full sequences for 54 polymerases and 55 Polinton integrases. Multiple sequence alignments portrayed conservation in several functional motifs of these proteins. Phylogenetic analyses based on Bayesian inference using single- and combined-gene datasets revealed seven distinct lineages of Polintons that broadly follow the tree of life. Two of the seven lineages are found within the same species, indicating that ancient divergences have been retained to this day.


Asunto(s)
Elementos Transponibles de ADN , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Teorema de Bayes , Secuencia de Consenso , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Integrasas/química , Integrasas/clasificación , Integrasas/genética , Sistemas de Lectura Abierta , Filogenia , Alineación de Secuencia
18.
Nucleic Acids Res ; 42(1): 553-66, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24097443

RESUMEN

Alkylating agents often generate 3-methylcytosine (3meC) lesions that are efficiently repaired by AlkB homologues. If AlkB homologue proteins are not functional, or the number of 3meC lesions exceeds the cellular repair capacity, the damage will persist in the genome and become substrate of DNA polymerases (Pols). Though alkylating agents are present in our environment and used in the clinics, currently nothing is known about the impact of 3meC on the accuracy and efficiency of human Pols. Here we compared the 3meC bypass properties of six human Pols belonging to the three families: B (Pol δ), X (Pols ß and λ) and Y (Pols κ, ι and η). We show that under replicative conditions 3meC impairs B-family, blocks X-family, but not Y-family Pols, in particular Pols η and ι. These Pols successfully synthesize opposite 3meC; Pol ι preferentially misincorporates dTTP and Pol η dATP. The most efficient extenders from 3meC base-paired primers are Pols κ and η. Finally, using xeroderma pigmentosum variant patient cell extracts, we provide evidence that the presence of functional Pol η is mandatory to efficiently overcome 3meC by mediating complete bypass or extension. Our data suggest that Pol η is crucial for efficient 3meC bypass.


Asunto(s)
Citosina/análogos & derivados , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Línea Celular , Citosina/metabolismo , ADN/biosíntesis , Reparación del ADN , ADN Polimerasa Dirigida por ADN/clasificación , Humanos , ADN Polimerasa iota
19.
Nucleic Acids Res ; 42(3): 1393-413, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24106089

RESUMEN

The analysis of ∼ 2000 bacterial genomes revealed that they all, without a single exception, encode one or more DNA polymerase III α-subunit (PolIIIα) homologs. Classified into C-family of DNA polymerases they come in two major forms, PolC and DnaE, related by ancient duplication. While PolC represents an evolutionary compact group, DnaE can be further subdivided into at least three groups (DnaE1-3). We performed an extensive analysis of various sequence, structure and surface properties of all four polymerase groups. Our analysis suggests a specific evolutionary pathway leading to PolC and DnaE from the last common ancestor and reveals important differences between extant polymerase groups. Among them, DnaE1 and PolC show the highest conservation of the analyzed properties. DnaE3 polymerases apparently represent an 'impaired' version of DnaE1. Nonessential DnaE2 polymerases, typical for oxygen-using bacteria with large GC-rich genomes, have a number of features in common with DnaE3 polymerases. The analysis of polymerase distribution in genomes revealed three major combinations: DnaE1 either alone or accompanied by one or more DnaE2s, PolC + DnaE3 and PolC + DnaE1. The first two combinations are present in Escherichia coli and Bacillus subtilis, respectively. The third one (PolC + DnaE1), found in Clostridia, represents a novel, so far experimentally uncharacterized, set.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , ADN Polimerasa III/química , Secuencias de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , ADN Polimerasa III/clasificación , ADN Polimerasa III/genética , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/genética , Genoma Bacteriano , Filogenia , Estructura Terciaria de Proteína , Electricidad Estática
20.
PLoS One ; 8(7): e69647, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23936065

RESUMEN

DNA polymerase µ is involved in DNA repair, V(D)J recombination and likely somatic hypermutation of immunoglobulin genes. Our previous studies demonstrated that spaceflight conditions affect immunoglobulin gene expression and somatic hypermutation frequency. Consequently, we questioned whether Polµ expression could also be affected. To address this question, we characterized Polµ of the Iberian ribbed newt Pleurodeles waltl and exposed embryos of that species to spaceflight conditions or to environmental modifications corresponding to those encountered in the International Space Station. We noted a robust expression of Polµ mRNA during early ontogenesis and in the testis, suggesting that Polµ is involved in genomic stability. Full-length Polµ transcripts are 8-9 times more abundant in P. waltl than in humans and mice, thereby providing an explanation for the somatic hypermutation predilection of G and C bases in amphibians. Polµ transcription decreases after 10 days of development in space and radiation seem primarily involved in this down-regulation. However, space radiation, alone or in combination with a perturbation of the circadian rhythm, did not affect Polµ protein levels and did not induce protein oxidation, showing the limited impact of radiation encountered during a 10-day stay in the International Space Station.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , Pleurodeles/genética , Vuelo Espacial , Transcriptoma/genética , Animales , Western Blotting , Ritmo Circadiano , ADN Complementario/química , ADN Complementario/genética , ADN Polimerasa Dirigida por ADN/clasificación , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Larva/enzimología , Larva/genética , Larva/efectos de la radiación , Masculino , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de la radiación , Filogenia , Pleurodeles/embriología , Pleurodeles/crecimiento & desarrollo , Carbonilación Proteica/efectos de la radiación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Testículo/embriología , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Transcriptoma/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...