Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 569
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652748

RESUMEN

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/metabolismo , Plásmidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Segregación Cromosómica , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
2.
FEBS J ; 291(9): 1889-1891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581152

RESUMEN

Several recent cryo-electron microscopy (cryo-EM) studies about the eukaryotic primosome, including the human primosome described by Yin et al. in this issue, have uncovered the structural intricacies between the RNA primase and the DNA polymerase. These studies show that these two partners tango on DNA to synthesize a hybrid primer composed of ~ 10 nucleotide (nt) RNA and ~ 10-nt DNA. They reveal key intermediate steps involved in this process; from the self-inhibited apo state to the initiation of RNA primer synthesis, RNA primer handover to the polymerase, primer elongation by polymerase, and finally, primer termination and release. Remarkably, the polymerase domain orchestrates all major steps during primer synthesis.


Asunto(s)
ADN Polimerasa I , ADN Primasa , ADN , ARN , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Humanos , ARN/química , ARN/metabolismo , ARN/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , ADN/química , ADN/metabolismo , ADN/genética , Microscopía por Crioelectrón , Cartilla de ADN/genética , Replicación del ADN
3.
Bioorg Med Chem Lett ; 106: 129761, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38642810

RESUMEN

Helicase-primase is an interesting target for the therapy of herpes simplex virus (HSV) infections. Since amenamevir is already approved for varicella-zoster virus (VZV) and HSV in Japan and pritelivir has received breakthrough therapy status for the treatment of acyclovir-resistant HSV infections in immunocompromised patients, the target has sparked interest in me-too approaches. Here, we describe the attempt to improve nervous tissue penetration in Phaeno Therapeutics drug candidate HN0037 to target the latent reservoir of HSV by installing less polar moieties, mainly a difluorophenyl instead of a pyridyl group, and replacing the primary sulfonamide with a methyl sulfoximine moiety. However, all obtained stereoisomers exhibited a weaker inhibitory activity on HSV-1 and HSV-2.


Asunto(s)
Antivirales , ADN Primasa , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , ADN Primasa/antagonistas & inhibidores , ADN Primasa/metabolismo , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga , Iminas/química , Iminas/farmacología , Iminas/síntesis química
4.
Nucleic Acids Res ; 52(9): 4818-4829, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38597656

RESUMEN

Protein binding microarrays (PBM), SELEX, RNAcompete and chromatin-immunoprecipitation have been intensively used to determine the specificity of nucleic acid binding proteins. While the specificity of proteins with pronounced sequence specificity is straightforward, the determination of the sequence specificity of proteins of modest sequence specificity is more difficult. In this work, an explorative data analysis workflow for nucleic acid binding data was developed that can be used by scientists that want to analyse their binding data. The workflow is based on a regressor realized in scikit-learn, the major machine learning module for the scripting language Python. The regressor is built on a thermodynamic model of nucleic acid binding and describes the sequence specificity with base- and position-specific energies. The regressor was used to determine the binding specificity of the T7 primase. For this, we reanalysed the binding data of the T7 primase obtained with a custom PBM. The binding specificity of the T7 primase agrees with the priming specificity (5'-GTC) and the template (5'-GGGTC) for the preferentially synthesized tetraribonucleotide primer (5'-pppACCC) but is more relaxed. The dominant contribution of two positions in the motif can be explained by the involvement of the initiating and elongating nucleotides for template binding.


Asunto(s)
Bacteriófago T7 , ADN Primasa , Unión Proteica , Termodinámica , ADN Primasa/metabolismo , ADN Primasa/química , Bacteriófago T7/enzimología , Análisis por Matrices de Proteínas/métodos , Sitios de Unión , Proteínas Virales/metabolismo , Proteínas Virales/química
5.
Viruses ; 16(4)2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675856

RESUMEN

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Asunto(s)
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/clasificación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Retroelementos , Variación Genética , Profagos/genética , ADN Viral/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Genómica/métodos , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo
6.
Nat Struct Mol Biol ; 31(5): 777-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491139

RESUMEN

The mechanism by which polymerase α-primase (polα-primase) synthesizes chimeric RNA-DNA primers of defined length and composition, necessary for replication fidelity and genome stability, is unknown. Here, we report cryo-EM structures of Xenopus laevis polα-primase in complex with primed templates representing various stages of DNA synthesis. Our data show how interaction of the primase regulatory subunit with the primer 5' end facilitates handoff of the primer to polα and increases polα processivity, thereby regulating both RNA and DNA composition. The structures detail how flexibility within the heterotetramer enables synthesis across two active sites and provide evidence that termination of DNA synthesis is facilitated by reduction of polα and primase affinities for the varied conformations along the chimeric primer-template duplex. Together, these findings elucidate a critical catalytic step in replication initiation and provide a comprehensive model for primer synthesis by polα-primase.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Replicación del ADN , Modelos Moleculares , Xenopus laevis , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/química , Animales , Dominio Catalítico , ADN/metabolismo , ADN/química , ADN/biosíntesis , Cartilla de ADN/metabolismo , Cartilla de ADN/genética , ARN/metabolismo , ARN/química , Conformación Proteica
7.
Nature ; 629(8011): 467-473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471529

RESUMEN

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Asunto(s)
Bacillus cereus , Proteínas Bacterianas , Bacteriófagos , Microscopía por Crioelectrón , Inmunidad Innata , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Apoproteínas/química , Apoproteínas/inmunología , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Bacteriófagos/inmunología , ADN/metabolismo , ADN/química , División del ADN , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Viabilidad Microbiana , Bacillus cereus/química , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bacillus cereus/ultraestructura , Estructura Cuaternaria de Proteína , ADN Primasa/química , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN-Topoisomerasas/química , ADN-Topoisomerasas/metabolismo , ADN-Topoisomerasas/ultraestructura
8.
J Mol Biol ; 436(9): 168542, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492718

RESUMEN

PrimPol is a human DNA primase-polymerase which restarts DNA synthesis beyond DNA lesions and non-B DNA structures blocking replication. Disfunction of PrimPol in cells leads to slowing of DNA replication rates in mitochondria and nucleus, accumulation of chromosome aberrations, cell cycle delay, and elevated sensitivity to DNA-damaging agents. A defective PrimPol has been suggested to be associated with the development of ophthalmic diseases, elevated mitochondrial toxicity of antiviral drugs and increased cell resistance to chemotherapy. Here, we describe a rare missense PrimPol variant V102A with altered biochemical properties identified in patients suffering from ovarian and cervical cancer. The Val102 to Ala substitution dramatically reduced both the primase and DNA polymerase activities of PrimPol as well as specifically decreased its ability to incorporate ribonucleotides. Structural analysis indicates that the V102A substitution can destabilize the hydrophobic pocket adjacent to the active site, affecting dNTP binding and catalysis.


Asunto(s)
ADN Primasa , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Mutación Missense , Neoplasias Ováricas , Neoplasias del Cuello Uterino , Femenino , Humanos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , ADN Primasa/metabolismo , ADN Primasa/química , ADN Primasa/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/química , Modelos Moleculares , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/química , Conformación Proteica , Neoplasias del Cuello Uterino/genética , Neoplasias Ováricas/genética
9.
Nature ; 627(8004): 664-670, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418884

RESUMEN

Telomerase adds G-rich telomeric repeats to the 3' ends of telomeres1, counteracting telomere shortening caused by loss of telomeric 3' overhangs during leading-strand DNA synthesis ('the end-replication problem'2). Here we report a second end-replication problem that originates from the incomplete duplication of the C-rich telomeric repeat strand (C-strand) by lagging-strand DNA synthesis. This problem is resolved by fill-in synthesis mediated by polymerase α-primase bound to Ctc1-Stn1-Ten1 (CST-Polα-primase). In vitro, priming for lagging-strand DNA replication does not occur on the 3' overhang and lagging-strand synthesis stops in a zone of approximately 150 nucleotides (nt) more than 26 nt from the end of the template. Consistent with the in vitro data, lagging-end telomeres of cells lacking CST-Polα-primase lost 50-60 nt of telomeric CCCTAA repeats per population doubling. The C-strands of leading-end telomeres shortened by around 100 nt per population doubling, reflecting the generation of 3' overhangs through resection. The measured overall C-strand shortening in the absence of CST-Polα-primase fill-in is consistent with the combined effects of incomplete lagging-strand synthesis and 5' resection at the leading ends. We conclude that canonical DNA replication creates two telomere end-replication problems that require telomerase to maintain the G-rich strand and CST-Polα-primase to maintain the C-strand.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Replicación del ADN , Proteínas de Unión a Telómeros , Telómero , Humanos , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
10.
Nucleic Acids Res ; 52(7): 3778-3793, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38348929

RESUMEN

DNA replication stress, caused by various endogenous and exogenous agents, halt or stall DNA replication progression. Cells have developed diverse mechanisms to tolerate and overcome replication stress, enabling them to continue replication. One effective strategy to overcome stalled replication involves skipping the DNA lesion using a specialized polymerase known as PrimPol, which reinitiates DNA synthesis downstream of the damage. However, the mechanism regulating PrimPol repriming is largely unclear. In this study, we observe that knockdown of STN1 or CTC1, components of the CTC1/STN1/TEN1 complex, leads to enhanced replication progression following UV exposure. We find that such increased replication is dependent on PrimPol, and PrimPol recruitment to stalled forks increases upon CST depletion. Moreover, we find that p21 is upregulated in STN1-depleted cells in a p53-independent manner, and p21 depletion restores normal replication rates caused by STN1 deficiency. We identify that p21 interacts with PrimPol, and STN1 depletion stimulates p21-PrimPol interaction and facilitates PrimPol recruitment to stalled forks. Our findings reveal a previously undescribed interplay between CST, PrimPol and p21 in promoting repriming in response to stalled replication, and shed light on the regulation of PrimPol repriming at stalled forks.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina , ADN Primasa , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Proteínas de Unión a Telómeros , Rayos Ultravioleta , Humanos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , ADN Primasa/metabolismo , ADN Primasa/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión a Telómeros/genética , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Daño del ADN
11.
FEBS J ; 291(8): 1813-1829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335062

RESUMEN

Eukaryotic DNA replication depends on the primosome - a complex of DNA polymerase alpha (Pol α) and primase - to initiate DNA synthesis by polymerisation of an RNA-DNA primer. Primer synthesis requires the tight coordination of primase and polymerase activities. Recent cryo-electron microscopy (cryoEM) analyses have elucidated the extensive conformational transitions required for RNA primer handover between primase and Pol α and primer elongation by Pol α. Because of the intrinsic flexibility of the primosome, however, structural information about the initiation of RNA primer synthesis is still lacking. Here, we capture cryoEM snapshots of the priming reaction to reveal the conformational trajectory of the human primosome that brings DNA primase subunits 1 and 2 (PRIM1 and PRIM2, respectively) together, poised for RNA synthesis. Furthermore, we provide experimental evidence for the continuous association of primase subunit PRIM2 with the RNA primer during primer synthesis, and for how both initiation and termination of RNA primer polymerisation are licenced by specific rearrangements of DNA polymerase alpha catalytic subunit (POLA1), the polymerase subunit of Pol α. Our findings fill a critical gap in our understanding of the conformational changes that underpin the synthesis of the RNA primer by the primosome. Together with existing evidence, they provide a complete description of the structural dynamics of the human primosome during DNA replication initiation.


Asunto(s)
ADN Polimerasa I , ADN Primasa , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Polimerasa I/genética , ARN , Replicación del ADN
12.
Nucleic Acids Res ; 52(7): 3740-3760, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321962

RESUMEN

It is well-established that, through canonical functions in transcription and DNA repair, the tumor suppressor p53 plays a central role in safeguarding cells from the consequences of DNA damage. Recent data retrieved in tumor and stem cells demonstrated that p53 also carries out non-canonical functions when interacting with the translesion synthesis (TLS) polymerase iota (POLι) at DNA replication forks. This protein complex triggers a DNA damage tolerance (DDT) mechanism controlling the DNA replication rate. Given that the levels of p53 trigger non-binary rheostat-like functions in response to stress or during differentiation, we explore the relevance of the p53 levels for its DDT functions at the fork. We show that subtle changes in p53 levels modulate the contribution of some DDT factors including POLι, POLη, POLζ, REV1, PCNA, PRIMPOL, HLTF and ZRANB3 to the DNA replication rate. Our results suggest that the levels of p53 are central to coordinate the balance between DDT pathways including (i) fork-deceleration by the ZRANB3-mediated fork reversal factor, (ii) POLι-p53-mediated fork-slowing, (iii) POLι- and POLη-mediated TLS and (iv) PRIMPOL-mediated fork-acceleration. Collectively, our study reveals the relevance of p53 protein levels for the DDT pathway choice in replicating cells.


Asunto(s)
Daño del ADN , ADN Polimerasa iota , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Reparación del ADN , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , ADN Primasa/metabolismo , ADN Primasa/genética , Tolerancia al Daño del ADN
13.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38267027

RESUMEN

All animals must maintain genome and proteome integrity, especially when experiencing endogenous or exogenous stress. To cope, organisms have evolved sophisticated and conserved response systems: unfolded protein responses (UPRs) ensure proteostasis, while DNA damage responses (DDRs) maintain genome integrity. Emerging evidence suggests that UPRs and DDRs crosstalk, but this remains poorly understood. Here, we demonstrate that depletion of the DNA primases pri-1 or pri-2, which synthesize RNA primers at replication forks and whose inactivation causes DNA damage, activates the UPR of the endoplasmic reticulum (UPR-ER) in Caenorhabditis elegans, with especially strong activation in the germline. We observed activation of both the inositol-requiring-enzyme 1 (ire-1) and the protein kinase RNA-like endoplasmic reticulum kinase (pek-1) branches of the (UPR-ER). Interestingly, activation of the (UPR-ER) output gene heat shock protein 4 (hsp-4) was partially independent of its canonical activators, ire-1 and X-box binding protein (xbp-1), and instead required the third branch of the (UPR-ER), activating transcription factor 6 (atf-6), suggesting functional redundancy. We further found that primase depletion specifically induces the (UPR-ER), but not the distinct cytosolic or mitochondrial UPRs, suggesting that primase inactivation causes compartment-specific rather than global stress. Functionally, loss of ire-1 or pek-1 sensitizes animals to replication stress caused by hydroxyurea. Finally, transcriptome analysis of pri-1 embryos revealed several deregulated processes that could cause (UPR-ER) activation, including protein glycosylation, calcium signaling, and fatty acid desaturation. Together, our data show that the (UPR-ER), but not other UPRs, responds to replication fork stress and that the (UPR-ER) is required to alleviate this stress.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , ADN Primasa/genética , ADN Primasa/metabolismo , Respuesta de Proteína Desplegada , Proteínas de Ciclo Celular/genética , Daño del ADN , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética
14.
Nat Commun ; 15(1): 73, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168108

RESUMEN

Transcription-replication conflicts (TRCs), especially Head-On TRCs (HO-TRCs) can introduce R-loops and DNA damage, however, the underlying mechanisms are still largely unclear. We previously identified a chloroplast-localized RNase H1 protein AtRNH1C that can remove R-loops and relax HO-TRCs for genome integrity. Through the mutagenesis screen, we identify a mutation in chloroplast-localized primase ATH that weakens the binding affinity of DNA template and reduces the activities of RNA primer synthesis and delivery. This slows down DNA replication, and reduces competition of transcription-replication, thus rescuing the developmental defects of atrnh1c. Strand-specific DNA damage sequencing reveals that HO-TRCs cause DNA damage at the end of the transcription unit in the lagging strand and overexpression of ATH can boost HO-TRCs and exacerbates DNA damage. Furthermore, mutation of plastid DNA polymerase Pol1A can similarly rescue the defects in atrnh1c mutants. Taken together these results illustrate a potentially conserved mechanism among organisms, of which the primase activity can promote the occurrence of transcription-replication conflicts leading to HO-TRCs and genome instability.


Asunto(s)
ADN Primasa , Replicación del ADN , ADN Primasa/genética , ADN Primasa/metabolismo , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Daño del ADN , Mutación
15.
Nat Struct Mol Biol ; 31(1): 68-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177671

RESUMEN

The Mpox pandemic, caused by the Mpox virus (or monkeypox virus, MPXV), has gained global attention. The D5 protein, a putative helicase-primase found in MPXV, plays a vital role in viral replication and genome uncoating. Here we determined multiple cryo-EM structures of full-length hexameric D5 in diverse states. These states were captured during ATP hydrolysis while moving along the single-stranded DNA (ssDNA) track. Through comprehensive structural analysis combined with the helicase activity system, we revealed that when the primase domain is truncated or the interaction between the primase and helicase domains is disrupted, the double-stranded DNA (dsDNA) unwinds into ssDNA, suggesting a critical regulatory role of the primase domain. Two transition states bound with ssDNA substrate during unwinding reveals that two ATP molecules were consumed to drive DNA moving forward two nucleotides. Collectively, our findings shed light on the molecular mechanism that links ATP hydrolysis to the DNA unwinding in poxviruses.


Asunto(s)
ADN Primasa , Monkeypox virus , ADN Primasa/química , ADN Primasa/genética , ADN Primasa/metabolismo , Monkeypox virus/genética , Monkeypox virus/metabolismo , ADN Helicasas/metabolismo , ADN/química , ADN de Cadena Simple , Adenosina Trifosfato/metabolismo
16.
J Mol Biol ; 436(1): 168275, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714300

RESUMEN

Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.


Asunto(s)
ADN Primasa , Reparación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN , Enzimas Multifuncionales , Síntesis Translesional de ADN , Daño del ADN , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Animales , ADN Primasa/metabolismo , Enzimas Multifuncionales/metabolismo
17.
Nucleic Acids Res ; 52(1): 243-258, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37971291

RESUMEN

The primase/polymerase PRIMPOL restarts DNA synthesis when replication is arrested by template impediments. However, we do not have a comprehensive view of how PRIMPOL-dependent repriming integrates with the main pathways of damage tolerance, REV1-dependent 'on-the-fly' lesion bypass at the fork and PCNA ubiquitination-dependent post-replicative gap filling. Guided by genome-wide CRISPR/Cas9 screens to survey the genetic interactions of PRIMPOL in a non-transformed and p53-proficient human cell line, we find that PRIMPOL is needed for cell survival following loss of the Y-family polymerases REV1 and POLη in a lesion-dependent manner, while it plays a broader role in promoting survival of cells lacking PCNA K164-dependent post-replicative gap filling. Thus, while REV1- and PCNA K164R-bypass provide two layers of protection to ensure effective damage tolerance, PRIMPOL is required to maximise the effectiveness of the interaction between them. We propose this is through the restriction of post-replicative gap length provided by PRIMPOL-dependent repriming.


Asunto(s)
Daño del ADN , ADN Primasa , ADN Polimerasa Dirigida por ADN , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Replicación del ADN , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo
18.
Mol Inform ; 43(3): e202300284, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123523

RESUMEN

Tuberculosis (TB) is the second leading cause of mortality after COVID-19, with a global death toll of 1.6 million in 2021. The escalating situation of drug-resistant forms of TB has threatened the current TB management strategies. New therapeutics with novel mechanisms of action are urgently required to address the current global TB crisis. The essential mycobacterial primase DnaG with no structural homology to homo sapiens presents itself as a good candidate for drug targeting. In the present study, Mitoxantrone and Vapreotide, two FDA-approved drugs, were identified as potential anti-mycobacterial agents. Both Mitoxantrone and Vapreotide exhibit a strong Minimum Inhibitory Concentration (MIC) of ≤25µg/ml against both the virulent (M.tb-H37Rv) and avirulent (M.tb-H37Ra) strains of M.tb. Extending the validations further revealed the inhibitory potential drugs in ex vivo conditions. Leveraging the computational high-throughput multi-level docking procedures from the pool of ~2700 FDA-approved compounds, Mitoxantrone and Vapreotide were screened out as potential inhibitors of DnaG. Extensive 200 ns long all-atoms molecular dynamic simulation of DnaGDrugs complexes revealed that both drugs bind strongly and stabilize the DnaG during simulations. Reduced solvent exposure and confined motions of the active centre of DnaG upon complexation with drugs indicated that both drugs led to the closure of the active site of DnaG. From this study's findings, we propose Mitoxantrone and Vapreotide as potential anti-mycobacterial agents, with their novel mechanism of action against mycobacterial DnaG.


Asunto(s)
Mycobacterium tuberculosis , Somatostatina/análogos & derivados , Humanos , Antituberculosos/farmacología , ADN Primasa/química , ADN Primasa/metabolismo , Mitoxantrona/farmacología
19.
Biochemistry (Mosc) ; 88(11): 1933-1943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105210

RESUMEN

Human DNA primase/polymerase PrimPol synthesizes DNA primers de novo after replication fork stalling at the sites of DNA damage, thus contributing to the DNA damage tolerance. The role of PrimPol in response to the different types of DNA damage is poorly understood. We knocked out the PRIMPOL gene in the lung carcinoma A549 cell line and characterized the response of the obtained cells to the DNA damage caused by hydrogen peroxide, methyl methanesulfonate (MMS), cisplatin, bleomycin, and ionizing radiation. The PRIMPOL knockout reduced the number of proliferating cells and cells in the G2 phase after treatment with MMS and caused a more pronounced delay of the S phase in the cisplatin-treated cells. Ionizing radiation at a dose of 10 Gy significantly increased the content of apoptotic cells among the PRIMPOL-deficient cells, while the proportion of cells undergoing necroptosis increased in both parental and knockout cells at any radiation dose. The viability of PRIMPOL-deficient cells upon the hydrogen peroxide-induced oxidative stress increased compared to the control cells, as determined by the methyl tetrazolium (MTT) assay. The obtained data indicate the involvement of PRIMPOL in the modulation of adaptive cell response to various types of genotoxic stress.


Asunto(s)
Adenocarcinoma del Pulmón , ADN Polimerasa Dirigida por ADN , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , Células A549 , Cisplatino/farmacología , Peróxido de Hidrógeno/farmacología , Replicación del ADN , Daño del ADN , Adenocarcinoma del Pulmón/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo
20.
J Mol Biol ; 435(24): 168338, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37923120

RESUMEN

To facilitate the eukaryotic repriming pathway of DNA damage tolerance, PrimPol synthesises de novo oligonucleotide primers downstream of polymerase-stalling obstacles. These primers enable replicative polymerases to resume synthesis and ensure the timely completion of DNA replication. Initiating synthesis de novo requires the coordination of single-stranded DNA, initiating nucleotides, and metal ions within PrimPol's active site to catalyze the formation of the first phosphodiester bond. Here we examine the interactions between human PrimPol's catalytic domain, nucleotides, and DNA template during each of the various catalytic steps to determine the 'choreography' of primer synthesis, where substrates bind in an ordered manner. Our findings show that the ability of PrimPol to conduct de novo primer synthesis is underpinned by a network of stabilising interactions between the enzyme, template, and nucleotides, as we previously observed for related primase CRISPR-Associated Prim-Pol (CAPP). Together, these findings establish a detailed model for the initiation of DNA synthesis by human PrimPol, which appears highly conserved.


Asunto(s)
Dominio Catalítico , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Humanos , ADN Primasa/metabolismo , ADN de Cadena Simple/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Enzimas Multifuncionales/genética , Enzimas Multifuncionales/metabolismo , Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...