Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 859, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441677

RESUMEN

While most restriction enzymes catalyze the hydrolysis of phosphodiester bonds at specific nucleotide sequences in DNA, restriction enzymes of the HALFPIPE superfamily cleave N-glycosidic bonds, similar to DNA glycosylases. Apurinic/apyrimidinic (AP) sites generated by HALFPIPE superfamily proteins are cleaved by their inherent AP lyase activities, other AP endonuclease activities or heat-promoted ß-elimination. Although the HALFPIPE superfamily protein R.PabI, obtained from a hyperthermophilic archaea, Pyrococcus abyssi, shows weak AP lyase activity, HALFPIPE superfamily proteins in mesophiles, such as R.CcoLI from Campylobacter coli and R. HpyAXII from Helicobacter pylori, show significant AP lyase activities. To identify the structural basis for the AP lyase activity of R.CcoLI, we determined the structure of R.CcoLI by X-ray crystallography. The structure of R.CcoLI, obtained at 2.35-Å resolution, shows that a conserved lysine residue (Lys71), which is stabilized by a characteristic ß-sheet structure of R.CcoLI, protrudes into the active site. The results of mutational assays indicate that Lys71 is important for the AP lyase activity of R.CcoLI. Our results help to elucidate the mechanism by which HALFPIPE superfamily proteins from mesophiles efficiently introduce double-strand breaks to specific sites on double-stranded DNA.


Asunto(s)
Campylobacter coli/enzimología , ADN Glicosilasas/genética , ADN Glicosilasas/ultraestructura , Secuencia de Bases/genética , Campylobacter coli/genética , Campylobacter coli/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X/métodos , ADN/química , ADN/genética , División del ADN , Daño del ADN/genética , ADN Glicosilasas/metabolismo , Reparación del ADN/genética , Enzimas de Restricción del ADN/metabolismo , Enzimas de Restricción del ADN/ultraestructura , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/ultraestructura
2.
DNA Repair (Amst) ; 35: 116-25, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26519825

RESUMEN

Aprataxin, aprataxin and PNKP-like factor (APLF) and polynucleotide kinase phosphatase (PNKP) are key DNA-repair proteins with diverse functions but which all contain a homologous forkhead-associated (FHA) domain. Their primary binding targets are casein kinase 2-phosphorylated forms of the XRCC1 and XRCC4 scaffold molecules which respectively coordinate single-stranded and double-stranded DNA break repair pathways. Here, we present the high-resolution X-ray structure of a complex of phosphorylated XRCC4 with APLF, the most divergent of the three FHA domain family members. This, combined with NMR and biochemical analysis of aprataxin and APLF binding to singly and multiply-phosphorylated forms of XRCC1 and XRCC4, and comparison with PNKP reveals a pattern of distinct but overlapping binding specificities that are differentially modulated by multi-site phosphorylation. Together, our data illuminate important differences between activities of the three phospho-binding domains, in spite of a close evolutionary relationship between them.


Asunto(s)
Daño del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas de Unión al ADN/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Sitios de Unión , Quinasa de la Caseína II/metabolismo , Cristalografía por Rayos X , Reparación del ADN , Enzimas Reparadoras del ADN/ultraestructura , ADN-(Sitio Apurínico o Apirimidínico) Liasa/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Humanos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/ultraestructura , Proteínas de Unión a Poli-ADP-Ribosa , Estructura Terciaria de Proteína , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
3.
Physiol Res ; 63(Suppl 1): S155-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24564655

RESUMEN

Many aspects of protein function regulation require specific protein-protein interactions to carry out the exact biochemical and cellular functions. The highly conserved members of the 14-3-3 protein family mediate such interactions and through binding to hundreds of other proteins provide multitude of regulatory functions, thus playing key roles in many cellular processes. The 14-3-3 protein binding can affect the function of the target protein in many ways including the modulation of its enzyme activity, its subcellular localization, its structure and stability, or its molecular interactions. In this minireview, we focus on mechanisms of the 14-3-3 protein-dependent regulation of three important 14-3-3 binding partners: yeast neutral trehalase Nth1, regulator of G-protein signaling 3 (RGS3), and phosducin.


Asunto(s)
Proteínas 14-3-3/química , Proteínas 14-3-3/ultraestructura , ADN Glicosilasas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Proteínas del Ojo/química , Reguladores de Proteínas de Unión al GTP/química , Complejos Multienzimáticos/química , Fosfoproteínas/química , Proteínas RGS/química , Proteínas de Schizosaccharomyces pombe/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , ADN Glicosilasas/ultraestructura , ADN-(Sitio Apurínico o Apirimidínico) Liasa/ultraestructura , Proteínas del Ojo/ultraestructura , Reguladores de Proteínas de Unión al GTP/ultraestructura , Humanos , Datos de Secuencia Molecular , Complejos Multienzimáticos/ultraestructura , Fosfoproteínas/ultraestructura , Unión Proteica , Conformación Proteica , Proteínas RGS/ultraestructura , Proteínas de Schizosaccharomyces pombe/ultraestructura , Relación Estructura-Actividad
4.
PLoS Comput Biol ; 4(4): e1000066, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18437203

RESUMEN

Abasic (AP) sites in DNA arise through both endogenous and exogenous mechanisms. Since AP sites can prevent replication and transcription, the cell contains systems for their identification and repair. AP endonuclease (APEX1) cleaves the phosphodiester backbone 5' to the AP site. The cleavage, a key step in the base excision repair pathway, is followed by nucleotide insertion and removal of the downstream deoxyribose moiety, performed most often by DNA polymerase beta (pol-beta). While yeast two-hybrid studies and electrophoretic mobility shift assays provide evidence for interaction of APEX1 and pol-beta, the specifics remain obscure. We describe a theoretical study designed to predict detailed interacting surfaces between APEX1 and pol-beta based on published co-crystal structures of each enzyme bound to DNA. Several potentially interacting complexes were identified by sliding the protein molecules along DNA: two with pol-beta located downstream of APEX1 (3' to the damaged site) and three with pol-beta located upstream of APEX1 (5' to the damaged site). Molecular dynamics (MD) simulations, ensuring geometrical complementarity of interfaces, enabled us to predict interacting residues and calculate binding energies, which in two cases were sufficient (approximately -10.0 kcal/mol) to form a stable complex and in one case a weakly interacting complex. Analysis of interface behavior during MD simulation and visual inspection of interfaces allowed us to conclude that complexes with pol-beta at the 3'-side of APEX1 are those most likely to occur in vivo. Additional multiple sequence analyses of APEX1 and pol-beta in related organisms identified a set of correlated mutations of specific residues at the predicted interfaces. Based on these results, we propose that pol-beta in the open or closed conformation interacts and makes a stable interface with APEX1 bound to a cleaved abasic site on the 3' side. The method described here can be used for analysis in any DNA-metabolizing pathway where weak interactions are the principal mode of cross-talk among participants and co-crystal structures of the individual components are available.


Asunto(s)
ADN Polimerasa beta/química , ADN Polimerasa beta/ultraestructura , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/ultraestructura , ADN/química , ADN/ultraestructura , Modelos Químicos , Modelos Moleculares , Sitios de Unión , Simulación por Computador , Activación Enzimática , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA